Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Gen Comp Endocrinol ; 347: 114424, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101487

RESUMO

To study the estrogen regulated transcription of the uteroglobin (UG) gene, the founding member of the secretoglobin family widely expressed in many different mammalian species, we re-created functional estrogen response elements (EREs) in the UG gene promoter from a species where UG expression is not regulated by estrogens: the hamster Mesocricetus auratus (Ma), to ascertain if the lack of functional EREs is the real cause of its estrogen insensitivity. Functional EREs in the hamster promoter, including the consensus ERE (cERE), failed to respond to an appropriate estrogen stimulus compared with its estrogen regulated ortholog from the brown hare Lepus capensis (Lc). As the nucleotide sequence is the only difference between genetic constructs from these two species, we suspected that the UG promoter from the hamster probably contains cis-acting genetic elements that negatively impairs the estrogen-regulated transcription mediated by the functional ERE. Accordingly, we prepared chimeric DNA constructs which eventually allowed to identify a region located 29 base pairs (bp) downstream of the ERE as responsible for the lack of estrogen-responsiveness of the Ma-UG gene in the breast cancer cell line MCF-7. This region contains the sequence ACACCCC which has been identified as the core sequence of the Sp/ Krüppel-like factor (KLF) family of transcription factors. This finding is relevant, not only due to the observation on a novel mechanism that control estrogen-induced transcription, but also because it may encourage further investigation for better defining specific genes with an ERE that do not respond to estrogen signaling in MCF-7 cells, a cell line widely employed as an in vitro model in breast cancer research.


Assuntos
Neoplasias da Mama , Lebres , Cricetinae , Animais , Humanos , Feminino , Células MCF-7 , Uteroglobina/genética , Sequência de Bases , Estrogênios/farmacologia , Estrogênios/metabolismo , Neoplasias da Mama/genética , Lebres/metabolismo , Transcrição Gênica , Estradiol/farmacologia
2.
Cells ; 12(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566063

RESUMO

Club Cell Secretory Protein (CC16) plays many protective roles within the lung; however, the complete biological functions, especially regarding the pulmonary epithelium during infection, remain undefined. We have previously shown that CC16-deficient (CC16-/-) mouse tracheal epithelial cells (MTECs) have enhanced Mp burden compared to CC16-sufficient (WT) MTECs; therefore, in this study, we wanted to further define how the pulmonary epithelium responds to infection in the context of CC16 deficiency. Using mass spectrometry and quantitative proteomics to analyze proteins secreted apically from MTECs grown at an air-liquid interface, we investigated the protective effects that CC16 elicits within the pulmonary epithelium during Mycoplasma pneumoniae (Mp) infection. When challenged with Mp, WT MTECs have an overall reduction in apical protein secretion, whereas CC16-/- MTECs have increased apical protein secretion compared to their unchallenged controls. Following Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) assessment, many of the proteins upregulated from CC16-/- MTECS (unchallenged and during Mp infection) were related to airway remodeling, which were not observed by WT MTECs. These findings suggest that CC16 may be important in providing protection within the pulmonary epithelium during respiratory infection with Mp, which is the major causative agent of community-acquired pneumoniae.


Assuntos
Pneumonia por Mycoplasma , Uteroglobina , Animais , Camundongos , Células Epiteliais/metabolismo , Epitélio/metabolismo , Pulmão/metabolismo , Pneumonia por Mycoplasma/metabolismo , Proteínas/metabolismo , Uteroglobina/genética , Camundongos Knockout
3.
Am J Respir Crit Care Med ; 208(7): 758-769, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37523710

RESUMO

Rationale: Club cell secretory protein (CC16) is an antiinflammatory protein highly expressed in the airways. CC16 deficiency has been associated with lung function deficits, but its role in asthma has not been established conclusively. Objectives: To determine 1) the longitudinal association of circulating CC16 with the presence of active asthma from early childhood through adult life and 2) whether CC16 in early childhood predicts the clinical course of childhood asthma into adult life. Methods: We assessed the association of circulating CC16 and asthma in three population-based birth cohorts: the Tucson Children's Respiratory Study (years 6-36; total participants, 814; total observations, 3,042), the Swedish Barn/Children, Allergy, Milieu, Stockholm, Epidemiological survey (years 8-24; total participants, 2,547; total observations, 3,438), and the UK Manchester Asthma and Allergy Study (years 5-18; total participants, 745; total observations, 1,626). Among 233 children who had asthma at the first survey in any of the cohorts, baseline CC16 was also tested for association with persistence of symptoms. Measurements and Main Results: After adjusting for covariates, CC16 deficits were associated with increased risk for the presence of asthma in all cohorts (meta-analyzed adjusted odds ratio per 1-SD CC16 decrease, 1.20; 95% confidence interval [CI], 1.12-1.28; P < 0.0001). The association was particularly strong for asthma with frequent symptoms (meta-analyzed adjusted relative risk ratio, 1.40; 95% CI, 1.24-1.57; P < 0.0001), was confirmed for both atopic and nonatopic asthma, and was independent of lung function impairment. After adjustment for known predictors of persistent asthma, children with asthma in the lowest CC16 tertile had a nearly fourfold increased risk for having frequent symptoms persisting into adult life compared with children with asthma in the other two CC16 tertiles (meta-analyzed adjusted odds ratio, 3.72; 95% CI, 1.78-7.76; P < 0.0001). Conclusions: Circulating CC16 deficits are associated with the presence of asthma with frequent symptoms from childhood through midadult life and predict the persistence of asthma symptoms into adulthood. These findings support a possible protective role of CC16 in asthma and its potential use for risk stratification.


Assuntos
Asma , Uteroglobina , Adulto , Criança , Pré-Escolar , Humanos , Asma/sangue , Asma/epidemiologia , Asma/genética , Asma/metabolismo , Uteroglobina/sangue , Uteroglobina/deficiência , Uteroglobina/genética , Uteroglobina/metabolismo , Adolescente , Adulto Jovem , Suécia/epidemiologia
4.
Am J Respir Crit Care Med ; 207(4): 438-451, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36066606

RESUMO

Rationale: CC16 is a protein mainly produced by nonciliated bronchial epithelial cells (BECs) that participates in host defense. Reduced CC16 protein concentrations in BAL and serum are associated with asthma susceptibility. Objectives: Few studies have investigated the relationship between CC16 and asthma progression, and none has focused on BECs. In this study, we sought to determine if CC16 mRNA expression levels in BECs are associated with asthma severity. Methods: Association analyses between CC16 mRNA expression levels in BECs (242 asthmatics and 69 control subjects) and asthma-related phenotypes in Severe Asthma Research Program were performed using a generalized linear model. Measurements and Main Results: Low CC16 mRNA expression levels in BECs were significantly associated with asthma susceptibility and asthma severity, high systemic corticosteroids use, high retrospective and prospective asthma exacerbations, and low pulmonary function. Low CC16 mRNA expression levels were significantly associated with high T2 inflammation biomarkers (fractional exhaled nitric oxide and sputum eosinophils). CC16 mRNA expression levels were negatively correlated with expression levels of Th2 genes (IL1RL1, POSTN, SERPINB2, CLCA1, NOS2, and MUC5AC) and positively correlated with expression levels of Th1 and inflammation genes (IL12A and MUC5B). A combination of two nontraditional T2 biomarkers (CC16 and IL-6) revealed four asthma endotypes with different characteristics of T2 inflammation, obesity, and asthma severity. Conclusions: Our findings indicate that low CC16 mRNA expression levels in BECs are associated with asthma susceptibility, severity, and exacerbations, partially through immunomodulation of T2 inflammation. CC16 is a potential nontraditional T2 biomarker for asthma development and progression.


Assuntos
Asma , Uteroglobina , Humanos , Asma/genética , Asma/metabolismo , Biomarcadores , Células Epiteliais/metabolismo , Inflamação/metabolismo , Estudos Prospectivos , Estudos Retrospectivos , RNA Mensageiro/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
5.
Respir Res ; 23(1): 305, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352422

RESUMO

BACKGROUND: The club cell secretory protein (CC16) has anti-inflammatory and antioxidant effects and is a potential early biomarker of lung damage. The CC16 single nucleotide polymorphism (SNP) rs3741240 risk allele (A) has been inconsistently linked to asthma; other tagging SNPs in the gene have not been explored. The aim was to determine whether CC16 tagging polymorphisms are associated with adult asthma, asthma subtypes or asthma control in the Agricultural Lung Health Study (ALHS). METHODS: The ALHS is an asthma case-control study nested in the Agricultural Health Study cohort. Asthma cases were individuals with current doctor diagnosed asthma, likely undiagnosed asthma, or asthma-COPD overlap defined by questionnaire. We also examined asthma subtypes and asthma control. Five CC16 tagging SNPs were imputed to 1000 Genomes Integrated phase 1 reference panel. Logistic regression was used to estimate associations between CC16 SNPs and asthma outcomes adjusted for covariates. RESULTS: The sample included 1120 asthma cases and 1926 controls of European ancestry, with a mean age of 63 years. The frequency of the risk genotype (AA) for rs3741240 was 12.5% (n = 382). CC16 rs3741240 was not associated with adult asthma outcomes. A tagging SNP in the CC16 gene, rs12270961 was associated with uncontrolled asthma (n = 208, ORadj= 1.4, 95% CI 1.0, 1.9; p = 0.03). CONCLUSION: This study, the largest study to investigate associations between CC16 tagging SNPs and asthma phenotypes in adults, did not confirm an association of rs3741240 with adult asthma. A tagging SNP in CC16 suggests a potential relationship with asthma control.


Assuntos
Asma , Uteroglobina , Humanos , Asma/diagnóstico , Asma/epidemiologia , Asma/genética , Estudos de Casos e Controles , Pulmão , Polimorfismo de Nucleotídeo Único/genética , Uteroglobina/genética , Adulto
6.
J Cyst Fibros ; 21(5): 811-820, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35367162

RESUMO

BACKGROUND: Club cell secretory protein (CC16) exerts anti-inflammatory functions in lung disease. We sought to determine the relation of serum CC16 deficits and genetic variants that control serum CC16 to lung function among children with cystic fibrosis (CF). METHODS: We used longitudinal data from CF children (EPIC Study) with no positive cultures for Pseudomonas aeruginosa prior to enrollment. Circulating levels of CC16 and an inflammatory score (generated from CRP, SAA, calprotectin, G-CSF) were compared between participants with the lowest and highest FEV1 levels in adolescence (LLF and HLF groups, respectively; N = 130-per-group). Single nucleotide variants (SNVs) in the SCGB1A1, EHF-APIP loci were tested for association with circulating CC16 and with decline of FEV1 and FEV1/FVC% predicted levels between ages 7-16 using mixed models. RESULTS: Compared with the HLF group, the LLF group had lower levels of CC16 (geometric means: 8.2 vs 6.5 ng/ml, respectively; p = 0.0002) and higher levels of the normalized inflammatory score (-0.21 vs 0.21, p = 0.0007). Participants in the lowest CC16 and highest inflammation tertile had the highest odds for having LLF (p<0.0001 for comparison with participants in the highest CC16 and lowest inflammation tertile). Among seven SNVs associated with circulating CC16, the top SNV rs3741240 was associated with decline of FEV1/FVC and, marginally, FEV1 (p = 0.003 and 0.025, respectively; N = 611 participants, 20,801 lung function observations). CONCLUSIONS: Serum CC16 deficits are strongly associated with severity of CF lung disease and their effects are additive with systemic inflammation. The rs3741240 A allele is associated with low circulating CC16 and, possibly, accelerated lung function decline in CF.


Assuntos
Fibrose Cística , Uteroglobina , Adolescente , Criança , Fator Estimulador de Colônias de Granulócitos , Humanos , Inflamação/metabolismo , Complexo Antígeno L1 Leucocitário , Pulmão , Nucleotídeos/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
7.
Environ Res ; 212(Pt B): 113272, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35439460

RESUMO

Particular matter (PM) exposure is a big hazard for public health, especially for children. Serum CC16 is a well-known biomarker of respiratory health. Urinary CC16 (U-CC16) can be a noninvasive alternative, albeit requiring adequate adjustment for renal handling. Moreover, the SNP CC16 G38A influences CC16 levels. This study aimed to monitor the effect of short-term PM exposure on CC16 levels, measured noninvasively in schoolchildren, using an integrative approach. We used a selection of urine and buccal DNA samples from 86 children stored in an existing biobank. Using a multiple reaction monitoring method, we measured U-CC16, as well as RBP4 (retinol binding protein 4) and ß2M (beta-2-microglobulin), required for adjustment. Buccal DNA samples were used for CC16 G38A genotyping. Linear mixed-effects models were used to find relevant associations between U-CC16 and previously obtained data from recent daily PM ≤ 2.5 or 10 µm exposure (PM2.5, PM10) modeled at the child's residence. Our study showed that exposure to low PM at the child's residence (median levels 18.9 µg/m³ (PM2.5) and 23.6 µg/m³ (PM10)) one day before sampling had an effect on the covariates-adjusted U-CC16 levels. This effect was dependent on the CC16 G38A genotype, due to its strong interaction with the association between PM levels and covariates-adjusted U-CC16 (P = 0.024 (PM2.5); P = 0.061 (PM10)). Only children carrying the 38GG genotype showed an increase of covariates-adjusted U-CC16, measured 24h after exposure, with increasing PM2.5 and PM10 (ß = 0.332; 95% CI: 0.110 to 0.554 and ß = 0.372; 95% CI: 0.101 to 0.643, respectively). To the best of our knowledge, this is the first study using an integrative approach to investigate short-term PM exposure of children, using urine to detect early signs of pulmonary damage, and taking into account important determinants such as the genetic background and adequate adjustment of the measured biomarker in urine.


Assuntos
Poluentes Atmosféricos , Pulmão , Material Particulado , Uteroglobina , Poluentes Atmosféricos/toxicidade , Biomarcadores , Criança , Exposição Ambiental/efeitos adversos , Genótipo , Humanos , Inflamação , Pulmão/patologia , Material Particulado/toxicidade , Proteínas Plasmáticas de Ligação ao Retinol , Uteroglobina/genética , Uteroglobina/urina
8.
Int J Mol Sci ; 22(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34768890

RESUMO

Gram-negative (G-) bacteria are the leading cause of hospital-acquired pneumonia in the United States. The devastating damage caused by G- bacteria results from the imbalance of bactericidal effects and overwhelming inflammation. Despite decades of research, the underlying mechanisms by which runaway inflammation is developed remain incompletely understood. Clara Cell Protein 16 (CC16), also known as uteroglobin, is the major protein secreted by Clara cells and the most abundant protein in bronchoalveolar lavage fluid (BALF). However, the regulation and functions of CC16 during G- bacterial infection are unknown. In this study, we aimed to assess the regulation of CC16 in response to Klebsiella pneumoniae (K. pneu) and to investigate the role of CC16 in bronchial epithelial cells. After K. pneu infection, we found that CC16 mRNA expression was significantly decreased in bronchial epithelial cells. Our data also showed that K. pneu infection upregulated cytokine and chemokine genes, including IL-1ß, IL-6, and IL-8 in BEAS-2B cells. Endogenously overexpressed CC16 in BEAS-2B cells provided an anti-inflammatory effect by reducing these markers. We also observed that endogenous CC16 can repress NF-κB reporter activity. In contrast, the recombinant CC16 (rCC16) did not show an anti-inflammatory effect in K. pneu-infected cells or suppression of NF-κB promoter activity. Moreover, the overexpression of CC16 reduced reactive oxygen species (ROS) levels and protected BEAS-2B cells from K. pneu-induced apoptosis.


Assuntos
Inflamação/metabolismo , Pneumonia Bacteriana/metabolismo , Uteroglobina , Apoptose , Brônquios/citologia , Brônquios/microbiologia , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Imunidade Inata , Klebsiella pneumoniae , Pulmão/microbiologia , Pulmão/patologia , NF-kappa B/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
9.
Cell Cycle ; 20(18): 1923-1934, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34437822

RESUMO

This study examined the potential roles of CC10 (Clara cell 10-kD protein) and ILC2s (type 2 innate lymphoid cells) in allergic rhinitis (AR). After ovalbumin was used to construct the AR model, microarray analysis was performed to reveal the key differentially expressed genes. The phenotypic changes of nasal mucosa were examined by H&E staining. Western blot analysis, qRT-PCR, ELISA and immunohistochemistry were performed to identify the levels of cytokines. The lineage markers (CD127 and CD117) of ILC2s were detected using immunofluorescence. The microarray analysis and qRT-PCR results showed that CC10 overexpression inhibited the expression of A20, BAFF, and IL-4 R in vivo. Also, CC10 overexpression was found to ameliorate the damage of nasal mucosa in AR mice. Investigations revealed that the ILC2s were activated in AR mice and AR patients with high levels of IgE, IgG1, IL-4, IL-5, IL-13, IL-25, and IL-33. Moreover, CD127+ was found to activate ILC2s. However, CC10 overexpression suppressed the activation of ILC2s. In conclusion, this research suggested that CC10 could suppress the activation of ILC2s to attenuate the damage of nasal mucosa and that CD127+ may be a biomarker of the activation of ILC2s in AR mice and AR patients.


Assuntos
Imunidade Inata , Linfócitos/imunologia , Rinite Alérgica/imunologia , Rinite Alérgica/metabolismo , Transdução de Sinais/genética , Uteroglobina/metabolismo , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Células HEK293 , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Ovalbumina/efeitos adversos , Rinite Alérgica/induzido quimicamente , Transdução de Sinais/imunologia , Transfecção , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Uteroglobina/genética
10.
Aging (Albany NY) ; 13(15): 19442-19459, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34339391

RESUMO

CC16 is almost exclusively expressed in non-ciliated epithelial Clara cells, and widely used as a Clara cell marker. Diesel exhaust particles (DEPs), the fine particulate matters produced by diesel engines, cause or exacerbate airway-related diseases. Our previous study documented that DEP inhibits the CC16 expression in the immortalized mouse Clara cell line through methylation of C/EBPα promoter. However, the molecular mechanism by which DEP regulates CC16 secretion is unclear. Here, we isolated CC16 containing Clara cells (CC16+) from human distal lung, and found that DEP inhibited CC16 secretion from CC16+ cells via methylation of C/EBPα and inhibition of Munc18b transcription. CC16+ cell conditioned media containing different concentrations of CC16 was prepared and used for culture of airway epithelial cells BEAS-2B with no expression of CC16. A positive correlation was observed between CC16 level and DEP-induced autophagy activity, and a negative correlation between CC16 level and DEP-induced pro-inflammatory cytokine TNF-α, IL-6, and IL-8 level, suggesting that CC16 might mitigate DEP-induced inflammation via promoting autophagy in BEAS-2B cells. This result was further confirmed by adding recombinant CC16 to BEAS-2B cells exposed to DEP. Moreover, CC16 level was significantly increased when CC16+ cells were cultured in BEAS-2B cell conditioned medium containing TNF-α or the normal medium supplemented with recombinant TNF-α, suggesting that TNF-α induced CC16 production and secretion from CC16+ cells. Collectively, these data point that CC16 and TNF-α form a negative feedback loop, and this negative feedback loop between Clara cells and normal airway epithelial cells protects against DEP exposure-induced inflammation.


Assuntos
Células Epiteliais/metabolismo , Inflamação/induzido quimicamente , Exposição por Inalação/efeitos adversos , Pneumonia/induzido quimicamente , Emissões de Veículos/toxicidade , Animais , Citocinas/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Pneumonia/metabolismo , Pneumonia/patologia , Regiões Promotoras Genéticas , Ratos , Análise de Célula Única , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
11.
J Immunol Res ; 2021: 6647753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575362

RESUMO

BACKGROUND: Recently, identification of immunosuppressive polymorphonuclear leukocytes (PMNL) that were traditionally described as proinflammatory cells emerged in the field of posttraumatic immunity. To understand their local and remote distribution after trauma, PMNL-subsets and the impact of immunomodulatory Club Cell protein (CC)16 that correlates with pulmonary complications were assessed. METHODS: C57BL/6N mice were divided into three groups, receiving isolated blunt chest trauma (TxT), undergoing TxT followed by cecal ligation and puncture (CLP, TxT + CLP) after 24 h, or sham undergoing analgosedation (n = 18/group). Further, each group was subdivided into three groups receiving either no treatment (ctrl) or intratracheal neutralization of CC16 by application of anti-CC16-antibody or application of an unspecific IgG control antibody (n = 6/group). Treatment was set at the time point after TxT. Analyses followed 6 h post-CLP. PMNL were characterized via expression of CD11b, CD16, CD45, CD62L, and Ly6G by flow cytometry in bone marrow (BM), blood, spleen, lung, liver, and bronchoalveolar and peritoneal lavage fluid (BALF and PL). Apoptosis was assessed by activated (cleaved) caspase-3. Results from untreated ctrl and IgG-treated mice were statistically comparable between all corresponding sham, TxT, and TxT + CLP groups. RESULTS: Immature (CD16dimCD62Lbright) PMNL increased significantly in BM, circulation, and spleen after TxT vs. sham and were significantly attenuated in the lungs, BALF, PL, and liver. Classical-shaped (CD16brightCD62Lbright) PMNL increased after TxT vs. sham in peripheral tissue and were significantly attenuated in circulation, proposing a trauma-induced migration of mature or peripheral differentiation of circulating immature PMNL. Immunosuppressive (CD16brightCD62Ldim) PMNL decreased significantly in the lungs and spleen, while they systemically increased after TxT vs. sham. CLP in the TxT + CLP group reduced immunosuppressive PMNL in PL and increased their circulatory rate vs. isolated TxT, showing local reduction in affected tissue and their increase in nonaffected tissue. CC16 neutralization enhanced the fraction of immunosuppressive PMNL following TxT vs. sham and decreased caspase-3 in the lungs post-CLP in the TxT + CLP group, while apoptotic cells in the liver diminished post-TxT. Posttraumatic CC16 neutralization promotes the subset of immunosuppressive PMNL and antagonizes their posttraumatic distribution. CONCLUSION: Since CC16 affects both the distribution of PMNL subsets and apoptosis in tissues after trauma, it may constitute as a novel target to beneficially shape the posttraumatic tissue microenvironment and homeostasis to improving outcomes.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Selectinas/metabolismo , Sepse/complicações , Uteroglobina/genética , Lesão Pulmonar Aguda/patologia , Animais , Biomarcadores , Modelos Animais de Doenças , Imuno-Histoquímica , Imunofenotipagem , Masculino , Camundongos , Infiltração de Neutrófilos/imunologia , Neutrófilos/patologia , Sepse/etiologia , Traumatismos Torácicos/complicações , Uteroglobina/metabolismo
12.
PLoS One ; 15(9): e0237529, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32941426

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic fibrotic lung disease with an irreversible decline of lung function. "Bronchiolization", characterized by ectopic appearance of airway epithelial cells in the alveolar regions, is one of the characteristic features in the IPF lung. Based on the knowledge that club cells are the major epithelial secretory cells in human small airways, and their major secretory product uteroglobin (SCGB1A1) is significantly increased in both serum and epithelial lining fluid of IPF lung, we hypothesize that human airway club cells contribute to the pathogenesis of IPF. By assessing the transcriptomes of the single cells from human lung of control donors and IPF patients, we identified two SCGB1A1+ club cell subpopulations, highly expressing MUC5B, a significant genetic risk factor strongly associated with IPF, and SCGB3A2, a marker heterogeneously expressed in the club cells, respectively. Interestingly, the cellular proportion of SCGB1A1+MUC5B+ club cells was significantly increased in IPF patients, and this club cell subpopulation highly expressed genes related to mucous production and immune cell chemotaxis. In contrast, though the cellular proportion did not change, the molecular phenotype of the SCGB1A1+SCGB3A2high club cell subpopulation was significantly altered in IPF lung, with increased expression of mucins, cytokine and extracellular matrix genes. The single cell transcriptomic analysis reveals the cellular and molecular heterogeneity of club cells, and provide novel insights into the biological functions of club cells in the pathogenesis of IPF.


Assuntos
Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Transcriptoma , Bronquíolos/citologia , Bronquíolos/patologia , Humanos , Fibrose Pulmonar Idiopática/genética , Pulmão/citologia , Mucosa Respiratória/citologia , Mucosa Respiratória/patologia , Secretoglobinas/genética , Análise de Célula Única , Uteroglobina/genética
13.
Immun Inflamm Dis ; 8(4): 497-505, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32762031

RESUMO

BACKGROUND: Studies that investigated the association between the CC16 A38G polymorphism and the risk of asthma yielded conflicting results. The aim of this study among schoolchildren was to assess the relationships of CC16 A38G polymorphism with aeroallergen sensitization and fractional exhaled nitric oxide (FeNO), two outcomes predicting asthma later in life. METHODS: The study included 139 children (72 boys), median age of 7.7. Information on each child's health, lifestyle, and environment was collected through a questionnaire completed by their parents. CC16 genotypes were determined using urinary DNA. We measured FeNO, the CC16 protein in urine and nasal lavage fluid and aeroallergen-specific immunoglobulin E in nasal mucosa fluid. RESULTS: Children with the homozygous mutant CC16 38AA genotype had higher odds of increased FeNO (>30 ppb) compared with their peers with the wild-type genotype 38GG (OR, 9.85; 95% CI, 2.09-46.4; P = .004). This association was female gender specific (P = .002) not being observed in boys (P = .40). It was also independent of allergic sensitization, which yet emerged as the strongest predictor of FeNO along with the use of bleach for house cleaning. Children with the CC16 38AA genotype had lower covariates-adjusted urinary CC16 levels than those with 38GG (median, µg/L, 1.17 vs 2.08, P = .02). CONCLUSION: Our study suggests that the CC16 38AA allele promotes airway inflammation as measured by FeNO through a gender-dependent association. Deficient levels of CC16 in the deep lung, measured noninvasively in urine, as a possible proxy for serum CC16, might underlie this promoting effect.


Assuntos
Óxido Nítrico/metabolismo , Uteroglobina/genética , Criança , Expiração , Feminino , Genótipo , Humanos , Masculino , Instituições Acadêmicas
14.
Am J Respir Cell Mol Biol ; 63(4): 490-501, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32551854

RESUMO

Telomere dysfunction is associated with multiple fibrotic lung processes, including chronic lung allograft dysfunction (CLAD)-the major limitation to long-term survival following lung transplantation. Although shorter donor telomere lengths are associated with an increased risk of CLAD, it is unknown whether short telomeres are a cause or consequence of CLAD pathology. Our objective was to test whether telomere dysfunction contributes to the pathologic changes observed in CLAD. Histopathologic and molecular analysis of human CLAD lungs demonstrated shortened telomeres in lung epithelial cells quantified by teloFISH, increased numbers of surfactant protein C immunoreactive type II alveolar epithelial cells, and increased expression of senescence markers (ß-galactosidase, p16, p53, and p21) in lung epithelial cells. TRF1F/F (telomere repeat binding factor 1 flox/flox) mice were crossed with tamoxifen-inducible SCGB1a1-cre mice to generate SCGB1a1-creTRF1F/F mice. Following 9 months of tamoxifen-induced deletion of TRF1 in club cells, mice developed mixed obstructive and restrictive lung physiology, small airway obliteration on microcomputed tomography, a fourfold decrease in telomere length in airway epithelial cells, collagen deposition around bronchioles and adjacent lung parenchyma, increased type II aveolar epithelial cell numbers, expression of senescence-associated ß-galactosidase in epithelial cells, and decreased SCGB1a1 expression in airway epithelial cells. These findings demonstrate that telomere dysfunction isolated to airway epithelial cells leads to airway-centric lung remodeling and fibrosis similar to that observed in patients with CLAD and suggest that lung epithelial cell telomere dysfunction may be a molecular driver of CLAD.


Assuntos
Aloenxertos/patologia , Células Epiteliais Alveolares/patologia , Pulmão/fisiologia , Telômero/genética , Aloenxertos/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Biomarcadores/metabolismo , Senescência Celular/genética , Humanos , Pulmão/metabolismo , Transplante de Pulmão/métodos , Camundongos , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Uteroglobina/genética , Uteroglobina/metabolismo
15.
Indian J Med Res ; 151(4): 319-325, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32461395

RESUMO

Background & objectives: Clinically silicosis is diagnosed by chest X-ray showing specific opacities along with history of silica dust exposure. Diagnosis is invariably made at an advanced or end stage when it is irreversible. Moreover, silicosis patients are susceptible to develop tuberculosis. Therefore, a suitable biomarker for early detection of silicosis is needed. This study evaluated the suitability of club cell protein (CC16) as a biomarker for early detection of silicosis. Methods: This pilot study included 121 individuals from X-ray-confirmed/advanced silicosis, moderate silica dust-exposed workers and healthy controls from western India. CC16 levels were quantified in serum samples through ELISA. Sensitivity and specificity of CC16 values at different cut-off points were calculated in both non-smokers and smokers. Results: Serum CC16 level was significantly (P <0.01) decreased in X-ray confirmed advanced silicosis patients (4.7±3.07 ng/ml) followed by moderately exposed workers (10.2±1.77 ng/ml) as compared to healthy non-exposed individuals (16.7±3.81 ng/ml). Tobacco smoking also caused a significant decrease of serum CC16 concentration in both healthy (10.2±1.12 ng/ml) and advanced silicosis workers (2.6±2.28 ng/ml) compared to non-smokers. Sensitivity and specificity of CC16 values were also found to be ≥83 per cent for screening all categories of individuals. Interpretation & conclusions: Because of high sensitivity and specificity, serum CC16 could be used as predictive biomarker for suspicion and early detection of silicosis, which would help in reducing/delaying premature deaths caused by silicosis. It would also control silicotuberculosis additionally.


Assuntos
Silicose , Uteroglobina/genética , Biomarcadores , Humanos , Índia , Projetos Piloto , Proteínas , Silicose/diagnóstico por imagem
16.
Int Immunopharmacol ; 83: 106327, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32172202

RESUMO

Respiratory syncytial virus (RSV) is the most common viral pathogen causing acute lower respiratory tract infections (LRTI) in infants. Airway epithelial cells, including Club cells, are primary targets of RSV infection. The "Club cell 10-kDa protein" (CC10), produced mainly by Club cells, possesses anti-inflammatory and immunoregulatory properties that are relevant in infection, injury, and allergic reactions. However, its role in the RSV infection is not fully understood. In the clinic, we found that levels of CC10 in the nasopharyngeal aspirates (NPA) of infants, hospitalized with RSV bronchiolitis, were significantly lower than those without LRTI, and were also negatively correlated with the severity of the disease. In BALB/c mice, the CC10 levels in the bronchoalveolar lavage fluid (BALF) were also decreased at the 5th day after infection. When recombinant CC10 was administrated in the mice, RSV-induced airway inflammation and airway hyperresponsiveness (AHR) were alleviated. Similarly, inhibition of cytosolic phospholipase A2 (cPLA2) or cyclooxygenase 2 (COX2), which is a downstream signaling molecule for cPLA2, both alleviated RSV-induced airway inflammation and AHR. Administration of CC10 reduced the phosphorylation of cPLA2 and protein levels of COX-2 in mouse lungs, resulting from infection, thus providing a molecular mechanism for previous reports that CC10 plays a protective role, partly through inhibiting the activity of cPLA2. We conclude that CC10 inhibits the cPLA2/COX2 pathway to alleviate RSV-induced lung airway inflammation and AHR.


Assuntos
Pulmão/patologia , Nasofaringe/metabolismo , Pneumonia Viral/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sinciciais Respiratórios/fisiologia , Uteroglobina/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Lactente , Camundongos , Camundongos Endogâmicos BALB C , Fosfolipases A2 Citosólicas/metabolismo , Hipersensibilidade Respiratória , Transdução de Sinais , Uteroglobina/genética
17.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L888-L899, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32130032

RESUMO

We have previously demonstrated that upregulation of Sonic hedgehog (SHH) expression in allergic airway epithelia essentially contributes to the goblet cell metaplasia and mucous hypersecretion. However, the mechanism underlying the upregulation of SHH expression remains completely unknown. In cultured human airway epithelial cells, IL-4/IL-13 but not IL-5 robustly induces the mRNA and protein expression of SHH and in turn activates SHH signaling by promoting the JAK/STAT6-controlling transcription of SHH gene. Moreover, intratracheal instillation of IL-4 and/or IL-13 robustly activates STAT6 and concomitantly upregulates SHH expression in mouse airway epithelia, whereas, in Club cell 10-kDa protein (CC10)-positive airway epithelial cells of children with asthma, activated STAT6 closely correlates with the increased expression of SHH and high activity of SHH signaling. Finally, intratracheal inhibition of STAT6 by AS-1517499 significantly diminished the allergen-induced upregulation of SHH expression, goblet cell phenotypes, and airway hyperresponsiveness, in an ovalbumin- or house dust mite-induced mouse model with allergic airway inflammation,. Together, upregulation of SHH expression by IL-4/IL-13-induced JAK/STAT6 signaling contributes to allergic airway epithelial remodeling, and this study thus provides insight into how morphogen signaling is coordinated with Th2 cytokine pathways to regulate tissue remodeling in chronic airway diseases.


Assuntos
Asma/genética , Proteínas Hedgehog/genética , Interleucina-13/genética , Interleucina-4/genética , Mucosa Respiratória/imunologia , Animais , Antiasmáticos/farmacologia , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/patologia , Linhagem Celular , Criança , Feminino , Regulação da Expressão Gênica , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/imunologia , Células Caliciformes/patologia , Proteínas Hedgehog/imunologia , Humanos , Interleucina-13/imunologia , Interleucina-13/farmacologia , Interleucina-4/imunologia , Interleucina-4/farmacologia , Interleucina-5/genética , Interleucina-5/imunologia , Janus Quinases/genética , Janus Quinases/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/administração & dosagem , Cultura Primária de Células , Pirimidinas/farmacologia , Pyroglyphidae/química , Pyroglyphidae/imunologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Fator de Transcrição STAT6/antagonistas & inibidores , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/imunologia , Transdução de Sinais , Transcrição Gênica , Uteroglobina/genética , Uteroglobina/imunologia
18.
J Biomol Tech ; 31(1): 27-35, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32042275

RESUMO

Genetic epidemiology requires an appropriate approach to measure genetic variation within the population. The aim of this study was to evaluate the characteristics and genotyping results of DNA extracted from 2 human DNA sources, selected for their rapid and noninvasive sampling, and the use of simple and standardized protocols that are essential for large-scale epidemiologic studies. Saliva and urine samples were collected at the same day from 20 subjects aged 9-10 yr. Genomic DNA was extracted using commercial kits. Quantitative and qualitative evaluation was done by assessing the yield, the purity, and integrity of the extracted DNA. As a proof-of-concept, genotyping was performed targeting CC16 A38G and uteroglobin-related protein 1 (UGRP1)-112G/A. Saliva was found to provide the highest yield and concentration of total DNA extracted. Salivary DNA showed higher purity and a significantly less degraded state compared to urinary DNA. Consequently, the salivary DNA gave better genotyping results than urinary DNA. Therefore, if the choice exists, saliva is the preferred noninvasive matrix for genotyping purposes in large-scale genetic epidemiologic studies. Only in particular cases using urine could nevertheless be considered useful, although specific limitations need to be taken into account.


Assuntos
DNA/urina , Técnicas de Genotipagem/métodos , Epidemiologia Molecular/métodos , Saliva/metabolismo , Manejo de Espécimes/métodos , Biomarcadores/análise , Biomarcadores/urina , Líquidos Corporais , Criança , DNA/análise , DNA/genética , DNA/isolamento & purificação , Feminino , Genótipo , Humanos , Masculino , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Secretoglobinas/genética , Uteroglobina/genética
19.
Ecotoxicol Environ Saf ; 183: 109500, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31450033

RESUMO

Exposure to diesel engine exhaust (DEE) impairs lung function. But the underlying mechanisms are still not fully understood. The aim of this study was to investigate the effects of long-term DEE exposure on lung inflammation and the underlying mechanisms. Sprague-Dawley male rats were exposed to DEE with 3 mg/m3 of diesel exhaust particles (DEP) for 12 weeks. Then urine, blood, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for the determination of biochemistry indexes, DNA methylation status, and histological changes in the lung. The results showed that the metabolites of polycyclic aromatic hydrocarbons (PAHs) 2-hydroxyphenanthrene (2-OHPh) and 9-OHPh, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), and malondialdehyde (MDA) level were higher in urine of DEE-exposed rats than control group. The level of proinflammatory cytokines IL-8, IL-6, and TNF-α was significantly higher in serum (1.8, 3.5, and nearly 1.0-fold increase, respectively), BALF (2.2, 3.8, and 2.0-fold increase, respectively) and lung tissues (3.5, 4.3, and 2.4-fold increase, respectively) of DEE-exposed rats than control group. While the level of clara cell secretory protein (CC16) and pulmonary surfactant protein D (SP-D) with anti-inflammatory property was obviously lower in serum (reduction of 29% and 38%, respectively), BALF (reduction of 50% and 46%, respectively) and lung tissues (reduction of 50% and 55%, respectively) of DEE-exposed rats than control group. Exposure to DEE also resulted in significant increases in total white blood cell (WBC), neutrophil, eosinophil, and lymphocyte number in BALF. Airway inflammation and remolding were apparent in DEE group. The methylation level of CCAAT/enhancer-binding protein alpha (C/EBPα) promoter was markedly increased (about 3.2-fold increase), and its mRNA and protein expression were significantly decreased (about 62% and 68% decrease, respectively) in the lungs of DEE-exposed rats compared with the group. Further, cell experiments were performed to investigate the relationship between C/EBPα and CC16, and CC16 function under DEP conditions. The results showed that DEP inhibited CC16 expression via methylation of C/EBPα promoter, and the increase of CC16 level significantly relieved the proinflammatory effects caused by DEP exposure. In conclusion, our data indicated that long-term exposure to DEE can cause lung inflammation, at least in part via methylation of C/EBPα promoter, and inhibition of CC16 expression.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/genética , Exposição por Inalação/efeitos adversos , Pneumonia/induzido quimicamente , Emissões de Veículos/toxicidade , Animais , Citocinas/metabolismo , Metilação de DNA/efeitos dos fármacos , Masculino , Pneumonia/metabolismo , Pneumonia/patologia , Hidrocarbonetos Policíclicos Aromáticos/urina , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Uteroglobina/genética , Uteroglobina/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 317(4): L456-L463, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31322430

RESUMO

SCGB1A1 (secretoglobin family 1A member 1) is an important protein for multiple pulmonary diseases, especially asthma, chronic obstructive pulmonary disease, and lung cancer. One single-nucleotide polymorphism (SNP) at 5'-untranslated region of SCGB1A1, rs3741240, has been suggested to be associated with reduced protein expression and further asthma susceptibility. However, it was still unclear whether there were other cis-regulatory elements for SCGB1A1 that might further contribute to pulmonary diseases. Allele-specific expression (ASE) is a novel approach to identify the functional region in human genome. In the present study, we measured ASE on rs3741240 in lung tissues and observed a consistent excess of G allele over A (P < 10-6), which indicated that this SNP or the one(s) in linkage disequilibrium (LD) could regulate SCGB1A1 expression. By analyzing 1000 Genomes Project data for Chinese, one SNP locating ~10.2 kb away and downstream of SCGB1A1, rs2509956, was identified to be in strong LD with rs3741240. Reporter gene assay confirmed that both SNPs could regulate gene expression in the lung cell. By chromosome conformation capture, it was verified that the region surrounding rs2509956 could interact with SCGB1A1 promoter region and act as an enhancer. Through chromatin immunoprecipitation and overexpression assay, the related transcription factor RELA (RELA proto-oncogene, NF-kB subunit) was recognized to bind the region spanning rs2509956. Our work identified a novel long-distance cis-regulatory SNP for SCGB1A1, which might contribute to multiple pulmonary diseases.


Assuntos
Asma/genética , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Doença Pulmonar Obstrutiva Crônica/genética , Fator de Transcrição RelA/genética , Uteroglobina/genética , Alelos , Asma/metabolismo , Asma/patologia , Biologia Computacional/métodos , Expressão Gênica , Genes Reporter , Predisposição Genética para Doença , Genoma Humano , Humanos , Luciferases/genética , Luciferases/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Proto-Oncogene Mas , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Fator de Transcrição RelA/metabolismo , Uteroglobina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...