Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(51): 27958-27974, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38104324

RESUMO

Lassa virus is a negative-strand RNA virus with only four structural proteins that causes periodic outbreaks in West Africa. The nucleoprotein (NP) encapsidates the viral genome, forming ribonucleoprotein complexes (RNPs) together with the viral RNA and the L protein. RNPs must be continuously restructured during viral genome replication and transcription. The Z protein is important for membrane recruitment of RNPs, viral particle assembly, and budding and has also been shown to interact with the L protein. However, the interaction of NP, viral RNA, and Z is poorly understood. Here, we characterize the interactions between Lassa virus NP, Z, and RNA using structural mass spectrometry. We identify the presence of RNA as the driver for the disassembly of ring-like NP trimers, a storage form, into monomers to subsequently form higher order RNA-bound NP assemblies. We locate the interaction site of Z and NP and demonstrate that while NP binds Z independently of the presence of RNA, this interaction is pH-dependent. These data improve our understanding of RNP assembly, recruitment, and release in Lassa virus.


Assuntos
Vírus Lassa , Ribonucleoproteínas , Vírus Lassa/genética , Vírus Lassa/metabolismo , Ribonucleoproteínas/química , Nucleoproteínas , Montagem de Vírus , RNA Viral/genética , RNA Viral/metabolismo
2.
Curr Top Microbiol Immunol ; 440: 147-164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37100973

RESUMO

Lassa virus (LASV) is the causative agent of Lassa fever, an often-fatal hemorrhagic fever that is endemic in West Africa. LASV virions are enveloped and contain two single-stranded RNA genome segments. Both segments are ambisense and encode two proteins. The nucleoprotein associates with viral RNAs forming ribonucleoprotein complexes. The glycoprotein complex mediates viral attachment and entry. The Zinc protein serves as the matrix protein. Large is a polymerase that catalyzes viral RNA transcription and replication. LASV virion entry occurs via a clathrin-independent endocytic pathway usually involving alpha-dystroglycan and lysosomal associated membrane protein 1 as surface and intracellular receptors, respectively. Advances in understanding LASV structural biology and replication have facilitated development of promising vaccine and drug candidates.


Assuntos
Febre Lassa , Vírus Lassa , Humanos , Vírus Lassa/genética , Vírus Lassa/metabolismo , Febre Lassa/prevenção & controle , Biologia , África Ocidental
3.
Nat Commun ; 13(1): 3617, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750689

RESUMO

α-Dystroglycan (α-DG) is uniquely modified on O-mannose sites by a repeating disaccharide (-Xylα1,3-GlcAß1,3-)n termed matriglycan, which is a receptor for laminin-G domain-containing proteins and employed by old-world arenaviruses for infection. Using chemoenzymatically synthesized matriglycans printed as a microarray, we demonstrate length-dependent binding to Laminin, Lassa virus GP1, and the clinically-important antibody IIH6. Utilizing an enzymatic engineering approach, an N-linked glycoprotein was converted into a IIH6-positive Laminin-binding glycoprotein. Engineering of the surface of cells deficient for either α-DG or O-mannosylation with matriglycans of sufficient length recovers infection with a Lassa-pseudovirus. Finally, free matriglycan in a dose and length dependent manner inhibits viral infection of wildtype cells. These results indicate that matriglycan alone is necessary and sufficient for IIH6 staining, Laminin and LASV GP1 binding, and Lassa-pseudovirus infection and support a model in which it is a tunable receptor for which increasing chain length enhances ligand-binding capacity.


Assuntos
Distroglicanas , Laminina , Distroglicanas/metabolismo , Glicoproteínas/metabolismo , Laminina/metabolismo , Vírus Lassa/metabolismo , Polissacarídeos/metabolismo
4.
Cell Rep ; 39(8): 110841, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613585

RESUMO

Lassa virus (LASV) is the etiologic agent of Lassa Fever, a hemorrhagic disease that is endemic to West Africa. During LASV infection, LASV glycoprotein (GP) engages with multiple host receptors for cell entry. Neutralizing antibodies against GP are rare and principally target quaternary epitopes displayed only on the metastable, pre-fusion conformation of GP. Currently, the structural features of the neutralizing GPC-A antibody competition group are understudied. Structures of two GPC-A antibodies presented here demonstrate that they bind the side of the pre-fusion GP trimer, bridging the GP1 and GP2 subunits. Complementary biochemical analyses indicate that antibody 25.10C, which is broadly specific, neutralizes by inhibiting binding of the endosomal receptor LAMP1 and also by blocking membrane fusion. The other GPC-A antibody, 36.1F, which is lineage-specific, prevents LAMP1 association only. These data illuminate a site of vulnerability on LASV GP and will guide efforts to elicit broadly reactive therapeutics and vaccines.


Assuntos
Febre Lassa , Vírus Lassa , Anticorpos Neutralizantes , Epitopos , Glicoproteínas/metabolismo , Humanos , Febre Lassa/prevenção & controle , Vírus Lassa/metabolismo , Proteínas do Envelope Viral
5.
Nature ; 603(7899): 174-179, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35173332

RESUMO

Lassa virus (LASV) is a human pathogen, causing substantial morbidity and mortality1,2. Similar to other Arenaviridae, it presents a class-I spike complex on its surface that facilitates cell entry. The virus's cellular receptor is matriglycan, a linear carbohydrate that is present on α-dystroglycan3,4, but the molecular mechanism that LASV uses to recognize this glycan is unknown. In addition, LASV and other arenaviruses have a unique signal peptide that forms an integral and functionally important part of the mature spike5-8; yet the structure, function and topology of the signal peptide in the membrane remain uncertain9-11. Here we solve the structure of a complete native LASV spike complex, finding that the signal peptide crosses the membrane once and that its amino terminus is located in the extracellular region. Together with a double-sided domain-switching mechanism, the signal peptide helps to stabilize the spike complex in its native conformation. This structure reveals that the LASV spike complex is preloaded with matriglycan, suggesting the mechanism of binding and rationalizing receptor recognition by α-dystroglycan-tropic arenaviruses. This discovery further informs us about the mechanism of viral egress and may facilitate the rational design of novel therapeutics that exploit this binding site.


Assuntos
Distroglicanas , Vírus Lassa , Receptores Virais , Proteínas do Envelope Viral , Distroglicanas/química , Distroglicanas/metabolismo , Humanos , Febre Lassa/virologia , Vírus Lassa/química , Vírus Lassa/metabolismo , Conformação Proteica , Sinais Direcionadores de Proteínas , Receptores Virais/química , Receptores Virais/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
6.
Viruses ; 13(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578260

RESUMO

Lassa fever virus (LASV) can cause life-threatening hemorrhagic fevers for which there are currently no vaccines or targeted treatments. The late Prof. Stefan Kunz, along with others, showed that the high-affinity host receptor for LASV, and other Old World and clade-C New World mammarenaviruses, is matriglycan-a linear repeating disaccharide of alternating xylose and glucuronic acid that is polymerized uniquely on α-dystroglycan by like-acetylglucosaminyltransferase-1 (LARGE1). Although α-dystroglycan is ubiquitously expressed, LASV preferentially infects vascular endothelia and professional phagocytic cells, which suggests that viral entry requires additional cell-specific factors. In this review, we highlight the work of Stefan Kunz detailing the molecular mechanism of LASV binding and discuss the requirements of receptors, such as tyrosine kinases, for internalization through apoptotic mimicry.


Assuntos
Distroglicanas/metabolismo , Ácido Glucurônico/química , Vírus Lassa/metabolismo , Polímeros/metabolismo , Ligação Viral , Xilose/química , Animais , Distroglicanas/química , Ácido Glucurônico/metabolismo , Humanos , Febre Lassa/virologia , Vírus Lassa/genética , Camundongos , Polímeros/química , Receptores Virais , Internalização do Vírus , Xilose/metabolismo
7.
Nat Microbiol ; 6(7): 921-931, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34127846

RESUMO

Zoonotic arenaviruses can lead to life-threating diseases in humans. These viruses encode a large (L) polymerase that transcribes and replicates the viral genome. At the late stage of replication, the multifunctional Z protein interacts with the L polymerase to shut down RNA synthesis and initiate virion assembly. However, the mechanism by which the Z protein regulates the activity of L polymerase is unclear. Here, we used cryo-electron microscopy to resolve the structures of both Lassa and Machupo virus L polymerases in complex with their cognate Z proteins, and viral RNA, to 3.1-3.9 Å resolutions. These structures reveal that Z protein binding induces conformational changes in two catalytic motifs of the L polymerase, and restrains their conformational dynamics to inhibit RNA synthesis, which is supported by hydrogen-deuterium exchange mass spectrometry analysis. Importantly, we show, by in vitro polymerase reactions, that Z proteins of Lassa and Machupo viruses can cross-inhibit their L polymerases, albeit with decreased inhibition efficiencies. This cross-reactivity results from a highly conserved determinant motif at the contacting interface, but is affected by other variable auxiliary motifs due to the divergent evolution of Old World and New World arenaviruses. These findings could provide promising targets for developing broad-spectrum antiviral drugs.


Assuntos
Arenavirus do Novo Mundo/química , Vírus Lassa/química , RNA Polimerase Dependente de RNA/química , Proteínas Virais/química , Motivos de Aminoácidos , Antivirais/farmacologia , Arenavirus do Novo Mundo/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Vírus Lassa/metabolismo , Mutação , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , RNA Viral/química , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
J Phys Chem B ; 125(8): 2089-2097, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33606939

RESUMO

An understanding of how an antiviral monoclonal antibody recognizes its target is vital for the development of neutralizing antibodies and vaccines. The extensive glycosylation of viral proteins almost certainly affects the antibody response, but the investigation of such effects is hampered by the huge range of structures and interactions of surface glycans through their inherent complexity and flexibility. Here, we built an atomistic model of a fully glycosylated envelope protein complex of the Lassa virus and performed molecular dynamics simulations to characterize the impact of surface glycans on the antibody response. The simulations attested to the variety of conformations and interactions of surface glycans. The results show that glycosylation nonuniformly shields the surface of the complex and only marginally affects protein dynamics. The glycans gather in distinct clusters through interaction with protein residues, and only a few regions are left accessible by an antibody. We successfully recovered known protein epitopes by integrating the simulation results with existing sequence- and structure-based epitope prediction methods. The results emphasize the rich structural environment of glycans and demonstrate that shielding is not merely envelopment by a uniform blanket of sugars. This work provides a molecular basis for integrating otherwise elusive structural properties of glycans into vaccine and neutralizing antibody developments.


Assuntos
Anticorpos Neutralizantes , Vírus Lassa , Epitopos , Glicosilação , Vírus Lassa/metabolismo , Polissacarídeos
9.
Biotechnol Bioeng ; 118(3): 1405-1410, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33241859

RESUMO

Lack of experimental human models hinders research on Lassa hemorrhagic fever and the development of treatment strategies. Here, we report the first chip-based model for Lassa hemorrhagic syndrome. The chip features a microvessel interfacing collagen network as a simple mimic for extracellular matrix, allowing for quantitative and real-time vascular integrity assessment. Luminal infusion of Lassa virus-like particles led to a dramatic increase in vascular permeability in a viral load-dependent manner. Using this platform, we showed that Fibrin-derived peptide FX06 can be used to suppress the vascular integrity loss. This simple chip-based model proved promising in the assessment of disease severity and provides an easy-to-use platform for future investigation of Lassa pathogenesis and drug development in a human-like setting.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Dispositivos Lab-On-A-Chip , Febre Lassa/metabolismo , Vírus Lassa/metabolismo , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Choque Hemorrágico/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Febre Lassa/patologia , Choque Hemorrágico/patologia , Choque Hemorrágico/virologia , Síndrome
10.
Viruses ; 12(7)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630688

RESUMO

Lassa virus (LASV) is the causative agent of Lassa hemorrhagic fever, a lethal disease endemic to Western Africa. LASV entry is mediated by the viral envelope glycoprotein (GP), a class I membrane fusogen and the sole viral surface antigen. Previous studies have identified components of the LASV entry pathway, including several cellular receptors and the requirement of endosomal acidification for infection. Here, we first demonstrate that incubation at a physiological temperature and pH consistent with the late endosome is sufficient to render pseudovirions, bearing LASV GP, non-infectious. Antibody binding indicates that this loss of infectivity is due to a conformational change in GP. Finally, we developed a single-particle fluorescence assay to directly visualize individual pseudovirions undergoing LASV GP-mediated lipid mixing with a supported planar bilayer. We report that exposure to endosomal pH at a physiologic temperature is sufficient to trigger GP-mediated lipid mixing. Furthermore, while a cellular receptor is not necessary to trigger lipid mixing, the presence of lysosomal-associated membrane protein 1 (LAMP1) increases the kinetics of lipid mixing at an endosomal pH. Furthermore, we find that LAMP1 permits robust lipid mixing under less acidic conditions than in its absence. These findings clarify our understanding of LASV GP-mediated fusion and the role of LAMP1 binding.


Assuntos
Ácidos , Vírus Lassa/metabolismo , Lipídeos/química , Proteínas de Membrana Lisossomal/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Chlorocebus aethiops , Endossomos/química , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Células Vero
11.
Nat Commun ; 11(1): 2688, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461612

RESUMO

Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (CoVs) are zoonotic pathogens with high fatality rates and pandemic potential. Vaccine development focuses on the principal target of the neutralizing humoral immune response, the spike (S) glycoprotein. Coronavirus S proteins are extensively glycosylated, encoding around 66-87 N-linked glycosylation sites per trimeric spike. Here, we reveal a specific area of high glycan density on MERS S that results in the formation of oligomannose-type glycan clusters, which were absent on SARS and HKU1 CoVs. We provide a comparison of the global glycan density of coronavirus spikes with other viral proteins including HIV-1 envelope, Lassa virus glycoprotein complex, and influenza hemagglutinin, where glycosylation plays a known role in shielding immunogenic epitopes. Overall, our data reveal how organisation of glycosylation across class I viral fusion proteins influence not only individual glycan compositions but also the immunological pressure across the protein surface.


Assuntos
Glicoproteínas/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio , Polissacarídeos , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas Virais de Fusão/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Microscopia Crioeletrônica , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Glicoproteínas/química , Glicoproteínas/ultraestrutura , Glicosilação , Células HEK293 , HIV-1/imunologia , HIV-1/metabolismo , Humanos , Evasão da Resposta Imune/fisiologia , Vírus Lassa/imunologia , Vírus Lassa/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Orthomyxoviridae/imunologia , Orthomyxoviridae/metabolismo , Polissacarídeos/química , Polissacarídeos/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/ultraestrutura , Proteínas Virais/química , Proteínas Virais/imunologia , Proteínas Virais/ultraestrutura
12.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32051278

RESUMO

The arenaviruses Lassa virus (LASV), Junín virus (JUNV), and Machupo virus (MACV) can cause severe and fatal diseases in humans. Although these pathogens are closely related, the host immune responses to these virus infections differ remarkably, with direct implications for viral pathogenesis. LASV infection is immunosuppressive, with a very low-level interferon response. In contrast, JUNV and MACV infections stimulate a robust interferon (IFN) response in a retinoic acid-inducible gene I (RIG-I)-dependent manner and readily activate protein kinase R (PKR), a known host double-stranded RNA (dsRNA) sensor. In response to infection with RNA viruses, host nonself RNA sensors recognize virus-derived dsRNA as danger signals and initiate innate immune responses. Arenavirus nucleoproteins (NPs) contain a highly conserved exoribonuclease (ExoN) motif, through which LASV NP has been shown to degrade virus-derived immunostimulatory dsRNA in biochemical assays. In this study, we for the first time present evidence that LASV restricts dsRNA accumulation during infection. Although JUNV and MACV NPs also have the ExoN motif, dsRNA readily accumulated in infected cells and often colocalized with dsRNA sensors. Moreover, LASV coinfection diminished the accumulation of dsRNA and the IFN response in JUNV-infected cells. The disruption of LASV NP ExoN with a mutation led to dsRNA accumulation and impaired LASV replication in minigenome systems. Importantly, both LASV NP and RNA polymerase L protein were required to diminish the accumulation of dsRNA and the IFN response in JUNV infection. For the first time, we discovered a collaboration between LASV NP ExoN and L protein in limiting dsRNA accumulation. Our new findings provide mechanistic insights into the differential host innate immune responses to highly pathogenic arenavirus infections.IMPORTANCE Arenavirus NPs contain a highly conserved DEDDh ExoN motif, through which LASV NP degrades virus-derived, immunostimulatory dsRNA in biochemical assays to eliminate the danger signal and inhibit the innate immune response. Nevertheless, the function of NP ExoN in arenavirus infection remains to be defined. In this study, we discovered that LASV potently restricts dsRNA accumulation during infection and minigenome replication. In contrast, although the NPs of JUNV and MACV also harbor the ExoN motif, dsRNA readily formed during JUNV and MACV infections, accompanied by IFN and PKR responses. Interestingly, LASV NP alone was not sufficient to limit dsRNA accumulation. Instead, both LASV NP and L protein were required to restrict immunostimulatory dsRNA accumulation. Our findings provide novel and important insights into the mechanism for the distinct innate immune response to these highly pathogenic arenaviruses and open new directions for future studies.


Assuntos
Arenavirus do Novo Mundo/imunologia , Vírus Junin/imunologia , Vírus Lassa/imunologia , Infecções por Arenaviridae/virologia , Arenavirus/genética , Arenavirus/imunologia , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Febre Lassa/imunologia , Vírus Lassa/metabolismo , Nucleoproteínas/metabolismo , RNA de Cadeia Dupla/imunologia , Replicação Viral , eIF-2 Quinase/metabolismo
13.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511384

RESUMO

Lassa virus (LASV) is the causative agent of a fatal hemorrhagic fever in humans. The glycoprotein (GP) of LASV mediates viral entry into host cells, and correct processing and modification of GP by host factors is a prerequisite for virus replication. Here, using an affinity purification-coupled mass spectrometry (AP-MS) strategy, 591 host proteins were identified as interactors of LASV GP. Gene ontology analysis was performed to functionally annotate these proteins, and the oligosaccharyltransferase (OST) complex was highly enriched. Functional studies conducted by using CRISPR-Cas9-mediated knockouts showed that STT3A and STT3B, the two catalytically active isoforms of the OST complex, are essential for the propagation of the recombinant arenavirus rLCMV/LASV glycoprotein precursor, mainly via affecting virus infectivity. Knockout of STT3B, but not STT3A, caused hypoglycosylation of LASV GP, indicating a preferential requirement of LASV for the STT3B-OST isoform. Furthermore, double knockout of magnesium transporter 1 (MAGT1) and tumor suppressor candidate 3 (TUSC3), two specific subunits of STT3B-OST, also caused hypoglycosylation of LASV GP and affected virus propagation. Site-directed mutagenesis analysis revealed that the oxidoreductase CXXC active-site motif of MAGT1 or TUSC3 is essential for the glycosylation of LASV GP. NGI-1, a small-molecule OST inhibitor, can effectively reduce virus infectivity without affecting cell viability. The STT3B-dependent N-glycosylation of GP is conserved among other arenaviruses, including both the Old World and New World groups. Our study provided a systematic view of LASV GP-host interactions and revealed the preferential requirement of STT3B for LASV GP N-glycosylation.IMPORTANCE Glycoproteins play vital roles in the arenavirus life cycle by facilitating virus entry and participating in the virus budding process. N-glycosylation of GPs is responsible for their proper functioning; however, little is known about the host factors on which the virus depends for this process. In this study, a comprehensive LASV GP interactome was characterized, and further study revealed that STT3B-dependent N-glycosylation was preferentially required by arenavirus GPs and critical for virus infectivity. The two specific thioredoxin subunits of STT3B-OST MAGT1 and TUSC3 were found to be essential for the N-glycosylation of viral GP. NGI-1, a small-molecule inhibitor of OST, also showed a robust inhibitory effect on arenavirus. Our study provides new insights into LASV GP-host interactions and extends the potential targets for the development of novel therapeutics against Lassa fever in the future.


Assuntos
Glicoproteínas/metabolismo , Hexosiltransferases/metabolismo , Febre Lassa/metabolismo , Vírus Lassa/metabolismo , Proteínas de Membrana/metabolismo , Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions , Linhagem Celular , Técnicas de Inativação de Genes , Glicosilação , Células HEK293 , Células HeLa , Hexosiltransferases/genética , Humanos , Vírus Lassa/genética , Vírus Lassa/patogenicidade , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso , Oxirredutases/metabolismo , Isoformas de Proteínas , Receptores de Superfície Celular , Proteínas Supressoras de Tumor/genética , Internalização do Vírus
14.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30700611

RESUMO

Antiviral therapies that impede virus entry are attractive because they act on the first phase of the infectious cycle. Drugs that target pathways common to multiple viruses are particularly desirable when laboratory-based viral identification may be challenging, e.g., in an outbreak setting. We are interested in identifying drugs that block both Ebola virus (EBOV) and Lassa virus (LASV), two unrelated but highly pathogenic hemorrhagic fever viruses that have caused outbreaks in similar regions in Africa and share features of virus entry: use of cell surface attachment factors, macropinocytosis, endosomal receptors, and low pH to trigger fusion in late endosomes. Toward this goal, we directly compared the potency of eight drugs known to block EBOV entry with their potency as inhibitors of LASV entry. Five drugs (amodiaquine, apilimod, arbidol, niclosamide, and zoniporide) showed roughly equivalent degrees of inhibition of LASV and EBOV glycoprotein (GP)-bearing pseudoviruses; three (clomiphene, sertraline, and toremifene) were more potent against EBOV. We then focused on arbidol, which is licensed abroad as an anti-influenza drug and exhibits activity against a diverse array of clinically relevant viruses. We found that arbidol inhibits infection by authentic LASV, inhibits LASV GP-mediated cell-cell fusion and virus-cell fusion, and, reminiscent of its activity on influenza virus hemagglutinin, stabilizes LASV GP to low-pH exposure. Our findings suggest that arbidol inhibits LASV fusion, which may partly involve blocking conformational changes in LASV GP. We discuss our findings in terms of the potential to develop a drug cocktail that could inhibit both LASV and EBOV.IMPORTANCE Lassa and Ebola viruses continue to cause severe outbreaks in humans, yet there are only limited therapeutic options to treat the deadly hemorrhagic fever diseases they cause. Because of overlapping geographic occurrences and similarities in mode of entry into cells, we seek a practical drug or drug cocktail that could be used to treat infections by both viruses. Toward this goal, we directly compared eight drugs, approved or in clinical testing, for the ability to block entry mediated by the glycoproteins of both viruses. We identified five drugs with approximately equal potencies against both. Among these, we investigated the modes of action of arbidol, a drug licensed abroad to treat influenza infections. We found, as shown for influenza virus, that arbidol blocks fusion mediated by the Lassa virus glycoprotein. Our findings encourage the development of a combination of approved drugs to treat both Lassa and Ebola virus diseases.


Assuntos
Antivirais/farmacologia , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/tratamento farmacológico , Indóis/farmacologia , Febre Lassa/tratamento farmacológico , Vírus Lassa/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cricetinae , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/patologia , Humanos , Febre Lassa/metabolismo , Febre Lassa/patologia , Células Vero , Internalização do Vírus/efeitos dos fármacos
15.
Chem Biol Drug Des ; 93(4): 544-555, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30536557

RESUMO

Lassa virus infection is clinically characterized by multiorgan failure in humans. Without an FDA-approved vaccine, ribavirin is the frontline drug for the treatment but with attendant toxicities. 6-Fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) is an emerging alternative drug with proven anti-Lassa virus activity in experimental model. One of the mechanisms of action is its incorporation into nascent single-strand RNA (ssRNA) which forms complex with Lassa nucleoprotein (LASV-NP). Here, using molecular dynamics simulation, the structural and electrostatics changes associated with LASV-NP-ssRNA complex have been studied when none, one, or four of its bases has been substituted with T-705. The results demonstrated that glycosidic torsion angle χ (O4'-C1'-N1-C2) rotated from high-anti- (-110° and -60°) to the syn- conformation (+30) with increased T-705 substitution. Similarly, increased T-705 substitution resulted in increased splaying (55°-70°), loss of ssRNA-LASV-NP H-bond interaction, increased water influx into the ssRNA-binding pocket, and decreased electrostatic potentials of ssRNA pocket. Furthermore, strong positively correlated motion observed between α6 residues (aa: 128-145) and its contact ssRNA bases (5-7) is weakened in Apo biosystem and transitioned into anticorrelated motions in ssRNA-bound LASV-NP biosystem. Finally, LASV genome may become more accessible to cellular ribonuclease access with T-705 incorporation due to loss of NP interaction.


Assuntos
Vírus Lassa/metabolismo , Nucleoproteínas/química , Nucleotídeos/química , RNA/química , Sítios de Ligação , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleoproteínas/metabolismo , RNA/metabolismo , Eletricidade Estática , Água/química , Água/metabolismo
16.
Curr Opin Virol ; 31: 52-58, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29843991

RESUMO

The structure of a prefusion arenavirus GPC was enigmatic for many years, owing to the metastable and non-covalent nature of the association between the receptor binding and fusion subunits. Recent engineering efforts to stabilize the glycoprotein of the Old World arenavirus Lassa in a native, yet cleaved state, allowed the first structure of any arenavirus prefusion GPC trimer to be determined. Comparison of this structure with the structures of other arenavirus glycoprotein subunits reveals surprising findings: that the receptor binding subunit, GP1, of Lassa virus is conformationally labile, while the GP1 subunit of New World arenaviruses is not, and that the arenavirus GPC adopts a trimeric state unlike other glycoproteins with similar fusion machinery. Structural analysis, combined with recent biochemical data regarding antibody epitopes and receptor binding requirements, provides a basis for rational vaccine design.


Assuntos
Epitopos/imunologia , Glicoproteínas/química , Glicoproteínas/metabolismo , Vírus Lassa/química , Arenavirus/metabolismo , Humanos , Vírus Lassa/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
17.
Methods Mol Biol ; 1604: 135-155, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28986830

RESUMO

Host cell entry is the first and most fundamental step of every virus infection and represents a major barrier for zoonotic transmission and viral emergence. Targeting viral entry appears further as a promising strategy for therapeutic intervention. Several cellular receptors have been identified for Lassa virus, including dystroglycan, TAM receptor tyrosine kinases, and C-type lectins. Upon receptor binding, LASV enters the host cell via a largely unknown clathrin- and dynamin-independent endocytotic pathway that delivers the virus to late endosomes, where fusion occurs after engagement of a second, intracellular receptor, the late endosomal/lysosomal resident protein LAMP1. Here, we describe a series of experimental approaches to investigate LASV cell entry and to test candidate inhibitors for their action at this early and decisive step of infection.


Assuntos
Endocitose/fisiologia , Vírus Lassa/fisiologia , Animais , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitose/genética , Endossomos/metabolismo , Humanos , Vírus Lassa/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Ligação Proteica , Internalização do Vírus
18.
Methods Mol Biol ; 1604: 169-178, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28986832

RESUMO

Arenaviruses, such as Lassa virus (LASV) and Pichindé virus (PICV), are enveloped viruses with a bi-segmented ambisense RNA genome. The large (L) genomic segment encodes the Z matrix protein and the L RNA-dependent RNA polymerase, whereas the small (S) genomic segment encodes the nucleoprotein (NP) and the glycoprotein precursor complex (GPC). GPC is processed by signal peptidase in the endoplasmic reticulum into the stable signal peptide (SSP) and GP1/GP2, which is further cleaved by the Golgi-resident subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) into the cellular receptor-recognition subunit GP1 and the transmembrane subunit GP2, which helps promote the membrane fusion reaction to allow virus entry into the cell. This article describes assays to assess PICV GPC expression, proteolytic processing, fusion function, and GPC-mediated virus-like particle (VLP) entry into cells under tissue-culture conditions.


Assuntos
Arenavirus/metabolismo , Bioensaio/métodos , Glicoproteínas/metabolismo , Animais , Arenavirus/genética , Glicoproteínas/genética , Humanos , Vírus Lassa/genética , Vírus Lassa/metabolismo , Vírus Pichinde/genética , Vírus Pichinde/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
19.
Methods Mol Biol ; 1604: 179-188, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28986833

RESUMO

We describe methods to express the nucleoprotein (NP) of Lassa fever virus (LASV) in E. coli, to purify and crystallize it using the sitting-drop vapor diffusion method. The crystals were screened using Rigaku micro-007 X-ray generator and a dataset was collected at a resolution of 2.36 Å. The crystals belong to space group P3, with the unit cell parameters a = b = 176.35 Å, c = 56.40 Å, α = ß = 90°, and γ = 120°. Using the X-ray diffraction method, we constructed a three-dimensional structure of the LASV NP that should aid in the development of novel therapeutic strategies against this virus, for which vaccine and effective treatment modalities are currently unavailable.


Assuntos
Febre Lassa/metabolismo , Febre Lassa/virologia , Vírus Lassa/metabolismo , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Arenavirus/genética , Arenavirus/metabolismo , Escherichia coli/metabolismo , Vírus Lassa/genética , Nucleoproteínas/genética , Proteínas Virais/metabolismo , Difração de Raios X
20.
J Virol ; 91(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28679759

RESUMO

Lassa virus (LASV) is an enveloped RNA virus endemic to West Africa and responsible for severe cases of hemorrhagic fever. Virus entry is mediated by the glycoprotein complex consisting of a stable-signal peptide, a receptor-binding subunit, GP1, and a viral-host membrane fusion subunit, GP2. Several cellular receptors can interact with the GP1 subunit and mediate viral entry, including alpha-dystroglycan (αDG) and lysosome-associated membrane protein 1 (LAMP1). In order to define the regions within GP1 that interact with the cellular receptors, we implemented insertional mutagenesis, carbohydrate shielding, and alanine scanning mutagenesis. Eighty GP constructs were engineered and evaluated for GP1-GP2 processing, surface expression, and the ability to mediate cell-to-cell fusion after low-pH exposure. To examine virus-to-cell entry, 49 constructs were incorporated onto vesicular stomatitis virus (VSV) pseudoparticles and transduction efficiencies were monitored in HAP1 and HAP1-ΔDAG1 cells that differentially produce the αDG cell surface receptor. Seven constructs retained efficient transduction in HAP1-ΔDAG1 cells yet poorly transduced HAP1 cells, suggesting that they are involved in αDG utilization. Residues H141, N146, F147, and Y150 cluster at the predicted central core of the trimeric interface and are important for GP-αDG interaction. Additionally, H92A-H93A, 150HA, 172HA, and 230HA displayed reduced transduction in both HAP1 and HAP1-ΔDAG1 cells, despite efficient cell-to-cell fusion activity. These mutations may interfere with interactions with the endosomal receptor LAMP1 or interfere at another stage in entry that is common to both cell lines. Insight gained from these data can aid in the development of more-effective entry inhibitors by blocking receptor interactions.IMPORTANCE Countries in which Lassa virus is endemic, such as Nigeria, Sierra Leone, Guinea, and Liberia, usually experience a seasonal outbreak of the virus from December to March. Currently, there is neither a preventative vaccine nor a therapeutic available to effectively treat severe Lassa fever. One way to thwart virus infection is to inhibit interaction with cellular receptors. It is known that the GP1 subunit of the Lassa glycoprotein complex plays a critical role in receptor recognition. Our results highlight a region within the Lassa virus GP1 protein that interacts with the cellular receptor alpha-dystroglycan. This information may be used for future development of new Lassa virus antivirals.


Assuntos
Distroglicanas/metabolismo , Vírus Lassa/genética , Vírus Lassa/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Análise Mutacional de DNA , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução Genética , Vesiculovirus/genética , Vesiculovirus/fisiologia , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...