Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Microb Pathog ; 190: 106638, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574829

RESUMO

Autophagy plays an important role in the lifecycle of viruses. However, there is currently a lack of systematic research on the relationship between Infectious Bronchitis Virus (IBV) and autophagy. This study aims to investigate the impact of IBV on autophagy and the role of autophagy in viral replication. We observed that IBV infection increased the expression of microtubule-associated protein 1 light chain 3, a marker of autophagy, decreased the expression of sequestosome 1, and led to elevated intracellular LC3 puncta levels. These findings suggest that IBV infection activates the autophagic process in cells. To investigate the impact of autophagy on the replication of IBV, we utilized rapamycin as an autophagy activator and 3-methyladenine as an autophagy inhibitor. Our results indicate that IBV promotes viral replication by inducing autophagy. Further investigation revealed that IBV induces autophagosome formation by inhibiting the mTOR-ULK1 pathway and activating the activity of vacuolar protein sorting 34 (VPS34), autophagy-related gene 14, and the Beclin-1 complex. VPS34 plays a crucial role in this process, as inhibiting VPS34 protein activity enhances cell proliferation after IBV infection. Additionally, inhibiting VPS34 significantly improves the survival rate of IBV-infected chicks, suppresses IBV replication in the kidney, and alleviates tracheal, lung, and kidney damage caused by IBV infection. In summary, IBV infection can induce autophagy by modulating the mTOR/ULK1 signaling pathway and activating the VPS34 complex, while autophagy serves to promote virus replication.


Assuntos
Autofagia , Galinhas , Classe III de Fosfatidilinositol 3-Quinases , Vírus da Bronquite Infecciosa , Replicação Viral , Vírus da Bronquite Infecciosa/fisiologia , Animais , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Galinhas/virologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Sirolimo/farmacologia , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Linhagem Celular , Doenças das Aves Domésticas/virologia , Autofagossomos/metabolismo , Autofagossomos/virologia , Chlorocebus aethiops , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética
2.
Viruses ; 16(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675946

RESUMO

Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host-pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea.


Assuntos
Galinhas , Infecções por Coronavirus , Perfilação da Expressão Gênica , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Traqueia , Animais , Traqueia/virologia , Traqueia/imunologia , Galinhas/virologia , Vírus da Bronquite Infecciosa/fisiologia , Vírus da Bronquite Infecciosa/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/genética , Células Epiteliais/virologia , Células Epiteliais/imunologia , Transcriptoma , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Replicação Viral , Organismos Livres de Patógenos Específicos
3.
Viruses ; 15(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38140526

RESUMO

Infectious bronchitis virus (IBV) is an avian coronavirus that causes a disease in chickens known as infectious bronchitis (IB). The pathogenesis of IBV and the host immune responses against it depend on multiple factors such as the IBV variant, breed and age of the chicken, and the environment provided by the management. Since there is limited knowledge about the influence of the sex of chickens in the pathogenesis of IBV, in this study we aim to compare IBV pathogenesis and host immune responses in young male and female chickens. One-week-old specific pathogen-free (SPF) White Leghorn male and female chickens were infected with Canadian Delmarva (DMV)/1639 IBV variant at a dose of 1 × 106 embryo infectious dose (EID)50 by the oculo-nasal route while maintaining uninfected controls, and these chickens were euthanized and sampled 4- and 11-days post-infection (dpi). No significant difference was observed between the infected male and female chickens in IBV shedding, IBV genome load in the trachea, lung, kidney, bursa of Fabricius (BF), thymus, spleen, and cecal tonsils (CT), and IBV-induced lesion in all the examined tissues at both 4 and 11 dpi. In addition, there was no significant difference in the percentage of IBV immune-positive area observed between the infected male and female chickens in all tissues except for the kidney, which expressed an increased level of IBV antigen in infected males compared with females at both 4 and 11 dpi. The percentage of B lymphocytes was not significantly different between infected male and female chickens in all the examined tissues. The percentage of CD8+ T cells was not significantly different between infected male and female chickens in all the examined tissues except in the trachea at 11 dpi, where female chickens had higher recruitment when compared with male chickens. Overall, although most of the findings of this study suggest that the sex of chickens does not play a significant role in the pathogenesis of IBV and the host immune response in young chickens, marginal differences in viral replication and host responses could be observed to indicate that IBV-induced infection in male chickens is more severe.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Masculino , Feminino , Galinhas , Vírus da Bronquite Infecciosa/fisiologia , Canadá , Traqueia , Imunidade
4.
Viruses ; 15(6)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37376546

RESUMO

The S2 subunit serves a crucial role in infectious bronchitis virus (IBV) infection, particularly in facilitating membrane fusion. Using reverse genetic techniques, mutant strains of the S2 locus exhibited substantially different syncytium-forming abilities in chick embryonic kidney cells. To determine the precise formation mechanism of syncytium, we demonstrated the co-ordinated role of Abl2 and its mediated cytoskeletal regulatory pathway within the S2 subunit. Using a combination of fluorescence quantification, RNA silencing, and protein profiling techniques, the functional role of S2 subunits in IBV-infected cells was exhaustively determined. Our findings imply that Abl2 is not the primary cytoskeletal regulator, the viral S2 component is involved in indirect regulation, and the three different viral strains activate various cytoskeletal regulatory pathways through Abl2. CRK, CRKL, ABI1, NCKAP1, and ENAH also play a role in cytoskeleton regulation. Our research provides a point of reference for the development of an intracellular regulatory network for the S2 subunit and a foundation for the rational design of antiviral drug targets against Abl2.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Vírus da Bronquite Infecciosa/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Galinhas , Células Gigantes
5.
Front Cell Infect Microbiol ; 12: 945865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909955

RESUMO

Stress in poultry can lead to changes in body metabolism and immunity, which can increase susceptibility to infectious diseases. However, knowledge regarding chicken responses to viral infection under stress is limited. Dexamethasone (Dex) is a synthetic glucocorticoid similar to that secreted by animals under stress conditions, and has been widely used to induce stress in chickens. Herein, we established a stress model in 7-day-old chickens injected with Dex to elucidate the effects of stress on IBV replication in the kidneys. The metabolic changes, immune status and growth of the chickens under stress conditions were comprehensively evaluated. Furthermore, the metabolic profile, weight gain, viral load, serum cholesterol levels, cytokines and peripheral blood lymphocyte ratio were compared in chickens treated with Dex and infected with IBV. An LC-MS/MS-based metabolomics method was used to examine differentially enriched metabolites in the kidneys. A total of 113 metabolites whose abundance was altered after Dex treatment were identified, most of which were lipids and lipid-like molecules. The principal metabolic alterations in chicken kidneys caused by IBV infection included fatty acid, valine, leucine and isoleucine metabolism. Dex treatment before and after IBV infection mainly affected the host's tryptophan, phenylalanine, amino sugar and nucleotide sugar metabolism. In addition, Dex led to up-regulation of serum cholesterol levels and renal viral load in chickens, and to the inhibition of weight gain, peripheral blood lymphocytes and IL-6 production. We also confirmed that the exogenous cholesterol in DF-1 cells promoted the replication of IBV. However, whether the increase in viral load in kidney tissue is associated with the up-regulation of cholesterol levels induced by Dex must be demonstrated in future experiments. In conclusion, chick growth and immune function were significantly inhibited by Dex. Host cholesterol metabolism and the response to IBV infection are regulated by Dex. This study provides valuable insights into the molecular regulatory mechanisms in poultry stress, and should support further research on the intrinsic link between cholesterol metabolism and IBV replication under stress conditions.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Galinhas , Cromatografia Líquida , Dexametasona/farmacologia , Vírus da Bronquite Infecciosa/fisiologia , Rim , Espectrometria de Massas em Tandem , Aumento de Peso
6.
Virology ; 575: 1-9, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987078

RESUMO

Coronavirus infection of cells differentially regulates the expression of host genes and their related pathways. In this study, we present the transcriptomic profile of cells infected with gammacoronavirus infectious bronchitis virus (IBV). In IBV-infected human non-small cell lung carcinoma cells (H1299 cells), a total of 1162 differentially expressed genes (DEGs), including 984 upregulated and 178 downregulated genes, was identified. These DEGs were mainly enriched in MAPK and Wnt signaling pathways, and 5 out of the 10 top upregulated genes in all transcripts were immediate-early response genes (IEGs). In addition, the induction of 11 transcripts was validated in IBV-infected H1299 and Vero cells by RT-qPCR. The accuracy, reliability and genericity of the transcriptomic data were demonstrated by functional characterization of these IEGs in cells infected with different coronaviruses in our previous publications. This study provides a reliable transcriptomic profile of host genes and pathways regulated by coronavirus infection.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Animais , Galinhas/genética , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Humanos , Vírus da Bronquite Infecciosa/fisiologia , Reprodutibilidade dos Testes , Transdução de Sinais , Transcriptoma , Células Vero
7.
Vet Microbiol ; 272: 109499, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35835006

RESUMO

Respiratory viral infections are among the major causes of disease in poultry. While viral dual infections are known to occur, viral interference in chicken airways is mechanistically hardly understood. The effects of infectious bronchitis virus (IBV) infection on tissue morphology, sialic acid (sia) expression and susceptibility of the chicken trachea for superinfection with IBV or avian influenza virus (AIV) were studied. In vivo, tracheal epithelium of chickens infected with IBV QX showed marked inflammatory cell infiltration and loss of cilia and goblet cells five days post inoculation. Plant lectin staining indicated that sialic acids redistributed from the apical membrane of the ciliated epithelium and the goblet cell cytoplasm to the basement membrane region of the epithelium. After administration of recombinant viral attachment proteins to slides of infected tissue, retained binding of AIV hemagglutinin, absence of binding of the receptor binding domain (RBD) of IBV M41 and partial reduction of IBV QX RBD were observed. Adult chicken trachea rings were used as ex vivo model to study the effects of IBV QX-induced pathological changes and receptor redistribution on secondary viral infection. AIV H9N2 infection after primary IBV infection was delayed; however, final viral loads reached similar levels as in previously uninfected trachea rings. In contrast, IBV M41 superinfection resulted in 1000-fold lower viral titers over the course of 48 h. In conclusion, epithelial changes in the chicken trachea after viral infection coincide with redistribution and likely specific downregulation of viral receptors, with the extend of subsequent viral interference dependent on viral species.


Assuntos
Coinfecção , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Vírus da Influenza A Subtipo H9N2 , Doenças das Aves Domésticas , Superinfecção , Animais , Galinhas , Coinfecção/veterinária , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/fisiologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Superinfecção/veterinária , Traqueia
8.
Viruses ; 14(5)2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35632786

RESUMO

Coronaviruses (CoVs) are RNA viruses that can infect a wide range of animals, including humans, and cause severe respiratory and gastrointestinal disease. The Gammacoronavirus avian infectious bronchitis virus (IBV) causes acute and contagious diseases in chickens, leading to severe economic losses. Nonstructural protein 14 (Nsp14) is a nonstructural protein encoded by the CoV genome. This protein has a regulatory role in viral virulence and replication. However, the function and mechanism of IBV Nsp14 in regulating the host's innate immune response remain unclear. Here we report that IBV Nsp14 was a JAK-STAT signaling pathway antagonist in chicken macrophage (HD11) cells. In these cells, Nsp14 protein overexpression blocked IBV suppression induced by exogenous chIFN-γ treatment. Meanwhile, Nsp14 remarkably reduced interferon-gamma-activated sequence (GAS) promoter activation and chIFN-γ-induced interferon-stimulated gene expression. Nsp14 impaired the nuclear translocation of chSTAT1. Furthermore, Nsp14 interacted with Janus kinase 1 (JAK1) to degrade JAK1 via the autophagy pathway, thereby preventing the activation of the JAK-STAT signaling pathway and facilitating viral replication. These results indicated a novel mechanism by which IBV inhibits the host antiviral response and provide new insights into the selection of antiviral targets against CoV.


Assuntos
Vírus da Bronquite Infecciosa , Animais , Antivirais/farmacologia , Galinhas , Vírus da Bronquite Infecciosa/fisiologia , Janus Quinase 1/genética , Transdução de Sinais
9.
J Virol ; 96(12): e0068622, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35638780

RESUMO

Infectious bronchitis virus (IBV), a γ-coronavirus, causes the economically important poultry disease infectious bronchitis. Cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation. Previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. Here, we aimed to delineate the molecular mechanisms regulating the SG response to pathogenic IBV strain infection. We found that most chicken embryo kidney (CEK) cells formed no SGs during IBV infection and IBV replication inhibited arsenite-induced SG formation. This inhibition was not caused by changes in the integrity or abundance of SG proteins during infection. IBV nonstructural protein 15 (Nsp15) endoribonuclease activity suppressed SG formation. Regardless of whether Nsp15 was expressed alone, with recombinant viral infection with Newcastle disease virus as a vector, or with EndoU-deficient IBV, the Nsp15 endoribonuclease activity was the main factor inhibiting SG formation. Importantly, uridine-specific endoribonuclease (EndoU)-deficient IBV infection induced colocalization of IBV N protein/dsRNA and SG-associated protein TIA1 in infected cells. Additionally, overexpressing TIA1 in CEK cells suppressed IBV replication and may be a potential antiviral factor for impairing viral replication. These data provide a novel foundation for future investigations of the mechanisms by which coronavirus endoribonuclease activity affects viral replication. IMPORTANCE Endoribonuclease is conserved in coronaviruses and affects viral replication and pathogenicity. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal, and reproductive systems, causing millions of dollars in lost revenue to the poultry industry worldwide annually. Mutating the viral endoribonuclease poly(U) resulted in SG formation, and TIA1 protein colocalized with the viral N protein and dsRNA, thus damaging IBV replication. These results suggest a new antiviral target design strategy for coronaviruses.


Assuntos
Infecções por Coronavirus , Endorribonucleases , Vírus da Bronquite Infecciosa , Grânulos de Estresse , Replicação Viral , Animais , Antivirais/farmacologia , Embrião de Galinha , Galinhas , Infecções por Coronavirus/veterinária , Endorribonucleases/genética , Vírus da Bronquite Infecciosa/enzimologia , Vírus da Bronquite Infecciosa/fisiologia , Doenças das Aves Domésticas/virologia , RNA de Cadeia Dupla
10.
Int Immunopharmacol ; 108: 108764, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35421804

RESUMO

The prevalence of avian infectious bronchitis virus (IBV) is still one of causes inducing severe losses of production in the poultry industry worldwide. Vaccination does not completely prevent IBV infection and spread due to immune failure and viral mutations. ForsythiaeFructus and its compounds have been widely used in a lot of prescriptions of the traditional Chinese medicine for a long history, and it is well-known as safety and efficiency in heat-clearing and detoxifying. This study aims to investigate the anti-IBV activity and mechanism of phillygenin. The results showed that phillygenin inhibited IBV replication by disturbing multiple stages of the virus life cycle, including viral adsorption, invasion, internalization, and release in Vero cells. After being treated with 100, 125 and 150 µg/mL phillygenin, the expression of G3BP1 was significantly increased and the phosphorylation of PKR/eIF2α was activated, which increased stress granule, thereby triggering the antiviral response in Vero cells. The anti-virus activity of PHI was decreased when G3BP1 was interfered by si-RNA, and G3BP1 was down-regulated when PKR/eIF2α was interfered by si-RNA. In conclusion, our findings indicate that phillygenin activates PKR/eIF2α pathway and induces stress granule formation to exert anti-IBV, which holds promise to develop into a novel anti-IBV drug. Further study in vivo is needed to explore phillygenin as a potential and effective drug to prevent IB in poultry.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Chlorocebus aethiops , DNA Helicases/metabolismo , DNA Helicases/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/farmacologia , Vírus da Bronquite Infecciosa/fisiologia , Lignanas , Proteínas de Ligação a Poli-ADP-Ribose , RNA , RNA Helicases/metabolismo , RNA Helicases/farmacologia , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Células Vero
11.
Viruses ; 13(12)2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34960757

RESUMO

Infectious bronchitis virus (IBV) infection causes significant economic losses to various sectors of the poultry industry worldwide. Over the past few years, the incidence of false layer syndrome in Eastern Canadian layer flocks has been associated with the increased prevalence of the IBV Delmarva (DMV)/1639 strain. In this study, 1-day-old specific-pathogen-free (SPF) hens were infected with the Canadian DMV/1639 strain and observed until 16 weeks of age in order to determine if the IBV DMV/1639 strain is causing false layer syndrome. Early after infection, the virus showed a wide tissue distribution with characteristic gross and histopathological lesions in the respiratory tract and kidney. Around 60-70% of the infected hens demonstrated continuous cloacal viral shedding until the end of the experiment (at 16 weeks) which was associated with high IBV genome loads detected in the cecal tonsils. The experiment confirmed the field observations that the Canadian DMV/1639 strain is highly pathogenic to the female reproductive tract causing marked cystic lesions in the oviduct. Moreover, significant histopathological damage was observed in the ovary. Our study provides a detailed description of the pathological consequences of the IBV DMV/1639 strain circulating in an important poultry production sector.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/fisiologia , Vírus da Bronquite Infecciosa/patogenicidade , Oviductos/virologia , Doenças das Aves Domésticas/virologia , Animais , Galinhas , Infecções por Coronavirus/patologia , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Feminino , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/isolamento & purificação , Oviductos/patologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/fisiopatologia , Reprodução , Organismos Livres de Patógenos Específicos , Virulência
12.
Avian Dis ; 65(3): 364-372, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34427409

RESUMO

We previously reported that recombinant Newcastle disease virus LaSota (rLS) expressing infectious bronchitis virus (IBV) Arkansas (Ark)-type trimeric spike (S) ectodomain (Se; rLS/ArkSe) provides suboptimal protection against IBV challenge. We have now developed rLS expressing chicken granulocyte-macrophage colony-stimulating factor (GMCSF) and IBV Ark Se in an attempt to enhance vaccine effectiveness. In the current study, we first compared protection conferred by vaccination with rLS/ArkSe and rLS/ArkSe.GMCSF. Vaccinated chickens were challenged with virulent Ark, and protection was determined by clinical signs, viral load, and tracheal histomorphometry. Results showed that coexpression of GMCSF and the Se from rLS significantly reduced tracheal viral load and tracheal lesions compared with chickens vaccinated with rLS/ArkSe. In a second experiment, we evaluated enhancement of cross-protection of a Massachusetts (Mass) attenuated vaccine by priming or boosting with rLS/ArkSe.GMCSF. Vaccinated chickens were challenged with Ark, and protection was evaluated. Results show that priming or boosting with the recombinant virus significantly increased cross-protection conferred by Mass against Ark virulent challenge. Greater reductions of viral loads in both trachea and lachrymal fluids were observed in chickens primed with rLS/ArkSe.GMCSF and boosted with Mass. Consistently, Ark Se antibody levels measured with recombinant Ark Se protein-coated ELISA plates 14 days after boost were significantly higher in these chickens. Unexpectedly, the inverse vaccination scheme, that is, priming with Mass and boosting with the recombinant vaccine, proved somewhat less effective. We concluded that a prime and boost strategy by using rLS/ArkSe.GMCSF and the worldwide ubiquitous Mass attenuated vaccine provides enhanced cross-protection. Thus, rLS/GMCSF coexpressing the Se of regionally relevant IBV serotypes could be used in combination with live Mass to protect against regionally circulating IBV variant strains.


Protección incrementada por el virus recombinante de la enfermedad de Newcastle que expresa el ectodominio de la espícula del virus de la bronquitis infecciosa y el factor estimulante de colonias de granulocitos y macrófagos del pollo. Anteriormente se reportó que la cepa LaSota recombinante del virus de la enfermedad de Newcastle (rLS) que expresa el ectodominio de la espícula trimérica (S) de tipo Arkansas (Ark) del virus de la bronquitis infecciosa (IBV) (Se; rLS/ArkSe) proporciona una protección subóptima contra la exposición al virus de la bronquitis infecciosa. Ahora se ha desarrollado hemos desarrollado una cepa LaSota recombinante (rLS) que expresa el factor estimulante de colonias de granulocitos y macrófagos de pollo (GMCSF) y la espícula del virus de bronquitis Arkansas en un intento para mejorar la efectividad de la vacuna. En el estudio actual, primero se comparó la protección conferida por la vacunación con los virus rLS/ArkSe y rLS/ArkSe.GMCSF. Los pollos vacunados se desafiaron con un virus Arkansas virulento y la protección se determinó mediante los signos clínicos, la carga viral y la histomorfometría de la tráquea. Los resultados mostraron que la coexpresión del factor estimulante de colonias de granulocitos y macrófagos de pollo y la espícula de la cepa recombinante LaSota redujo significativamente la carga viral traqueal y las lesiones traqueales en comparación con los pollos vacunados con el virus rLS/ArkSe. En un segundo experimento, se evaluó el incremento en la protección cruzada por una vacuna atenuada de Massachusetts (Mass) mediante la primovacunación o la vacunación de refuerzo con rLS/ArkSe.GMCSF. Los pollos vacunados fueron desafiados con el virus Arkansas y se evaluó la protección. Los resultados mostraron que la primovacunación o la vacunación de refuerzo con el virus recombinante aumentó significativamente la protección cruzada conferida por el virus Massachusetts contra el desafío virulento con el virus Arkansas. Se observaron mayores reducciones de las cargas virales en los fluidos traqueales y lagrimales en pollos primovacunadoss con rLS/ArkSe.GMCSF y con vacunación de refuerzo con Massachusetts. De manera consistente, los niveles de anticuerpos Ark Se medidos con placas de ELISA recubiertas con proteína Ark Se recombinante a los 14 días después del refuerzo fueron significativamente más altos en estos pollos. De manera inesperada, el esquema de vacunación inverso, es decir, la primovacunación con Massachusetts y el refuerzo con la vacuna recombinante, resultó menos efectivo. Se concluye que una estrategia de primovacunación y refuerzo mediante el uso de rLS/ArkSe.GMCSF y la vacuna atenuada con Massachusetts usada en todo el mundo proporciona una protección cruzada aumentada. Por tanto, el virus rLS/GMCSF que coexpresa la proteína de la espícula de los serotipos regionales relevantes de bronquitis infecciosa podría usarse en combinación con una vacuna viva Massachusetts para proteger contra cepas variantes del virus de la bronquitis infecciosa que circulan regionalmente.


Assuntos
Infecções por Coronavirus/veterinária , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Vírus da Bronquite Infecciosa/imunologia , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/prevenção & controle , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Antivirais/imunologia , Galinhas/genética , Galinhas/imunologia , Galinhas/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Proteção Cruzada , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Vírus da Bronquite Infecciosa/química , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/fisiologia , Vírus da Doença de Newcastle/metabolismo , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Traqueia/imunologia , Traqueia/virologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Carga Viral
13.
Viruses ; 13(8)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34452342

RESUMO

Infectious bronchitis virus (IBV) induces respiratory and urogenital disease in chickens. Although IBV replicates in the gastrointestinal tract, enteric lesions are uncommon. We have reported a case of runting-stunting syndrome in commercial broilers from which an IBV variant was isolated from the intestines. The isolate, CalEnt, demonstrated an enteric tissue tropism in chicken embryos and SPF chickens experimentally. Here, we determined the full genome of CalEnt and compared it to other IBV strains, in addition to comparing the pathobiology of CalEnt and M41 in commercial broilers. Despite the high whole-genome identity to other IBV strains, CalEnt is rather unique in its nucleotide composition. The S gene phylogenetic analyses showed great similarity between CalEnt and Cal 99. Clinically, vent staining was slightly more frequent in CalEnt-infected birds than those challenged with M41. Furthermore, IBV IHC detection was more evident and the viral shedding in feces was overall higher with the CalEnt challenge compared with M41. Despite underlying intestinal lesions caused by coccidiosis and salmonellosis vaccination, microscopic lesions in CalEnt-infected chickens were more severe than in M41-infected chickens or controls, supporting the enteric tropism of CalEnt. Further studies in SPF chickens are needed to determine the pathogenesis of the virus, its molecular mechanisms for the enteric tropism, and its influence in intestinal health.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/fisiologia , Intestinos/virologia , Doenças das Aves Domésticas/virologia , Tropismo Viral , Animais , Galinhas , Infecções por Coronavirus/economia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Genoma Viral , Vírus da Bronquite Infecciosa/isolamento & purificação , Vírus da Bronquite Infecciosa/patogenicidade , Intestinos/patologia , Doenças das Aves Domésticas/economia , Doenças das Aves Domésticas/patologia , Eliminação de Partículas Virais
14.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424155

RESUMO

Infectious bronchitis virus (IBV) is an economically important coronavirus, causing damaging losses to the poultry industry worldwide as the causative agent of infectious bronchitis. The coronavirus spike (S) glycoprotein is a large type I membrane protein protruding from the surface of the virion, which facilitates attachment and entry into host cells. The IBV S protein is cleaved into two subunits, S1 and S2, the latter of which has been identified as a determinant of cellular tropism. Recent studies expressing coronavirus S proteins in mammalian and insect cells have identified a high level of glycosylation on the protein's surface. Here we used IBV propagated in embryonated hens' eggs to explore the glycan profile of viruses derived from infection in cells of the natural host, chickens. We identified multiple glycan types on the surface of the protein and found a strain-specific dependence on complex glycans for recognition of the S2 subunit by a monoclonal antibody in vitro, with no effect on viral replication following the chemical inhibition of complex glycosylation. Virus neutralization by monoclonal or polyclonal antibodies was not affected. Following analysis of predicted glycosylation sites for the S protein of four IBV strains, we confirmed glycosylation at 18 sites by mass spectrometry for the pathogenic laboratory strain M41-CK. Further characterization revealed heterogeneity among the glycans present at six of these sites, indicating a difference in the glycan profile of individual S proteins on the IBV virion. These results demonstrate a non-specific role for complex glycans in IBV replication, with an indication of an involvement in antibody recognition but not neutralisation.


Assuntos
Coronavirus/fisiologia , Polissacarídeos/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Alcaloides/química , Alcaloides/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Cromatografia Líquida , Biologia Computacional/métodos , Coronavirus/efeitos dos fármacos , Infecções por Coronavirus/veterinária , Regulação Viral da Expressão Gênica , Glicosilação/efeitos dos fármacos , Vírus da Bronquite Infecciosa/fisiologia , Modelos Moleculares , Conformação Molecular , Peso Molecular , Testes de Neutralização , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos/química , Doenças das Aves Domésticas/virologia , Transporte Proteico , Espectrometria de Massas por Ionização por Electrospray , Glicoproteína da Espícula de Coronavírus/genética , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
15.
Avian Pathol ; 50(4): 295-310, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34126817

RESUMO

Infectious bronchitis virus (IBV) was first isolated in Australia in 1962. Ongoing surveillance and characterization of Australian IBVs have shown that they have evolved separately from strains found throughout the rest of the world, resulting in the evolution of a range of unique strains and changes in the dominant wild-type strains, affecting tissue tropism, pathogenicity, antigenicity, and gene arrangement. Between 1961 and 1976 highly nephropathogenic genotype GI-5 and GI-6 strains, causing mortalities of 40% to 100%, predominated, while strains causing mainly respiratory disease, with lower mortality rates, have predominated since then. Since 1988, viruses belonging to two distinct and novel genotypes, GIII and GV, have been detected. The genome organization of the GIII strains has not been seen in any other gammacoronavirus. Mutations that emerged soon after the introduction of vaccination, incursion of strains with a novel lineage from unknown sources, recombination between IBVs from different genetic lineages, and gene translocations and deletions have contributed to an increasingly complex IBV population. These processes and the consequences of this variation for the biology of these viruses provide an insight into the evolution of endemic coronaviruses during their control by vaccination and may provide a better understanding of the potential for evolution of other coronaviruses, including SARS-CoV-2. Furthermore, the continuing capacity of attenuated IBV vaccines developed over 40 years ago to provide protection against viruses in the same genetic lineage provides some assurance that coronavirus vaccines developed to control other coronaviruses may continue to be effective for an extended period.


Assuntos
Evolução Biológica , Galinhas , Infecções por Coronaviridae/veterinária , Vírus da Bronquite Infecciosa/fisiologia , Doenças das Aves Domésticas/virologia , Animais , Variação Antigênica , Austrália/epidemiologia , Infecções por Coronaviridae/epidemiologia , Infecções por Coronaviridae/prevenção & controle , Infecções por Coronaviridae/virologia , Evolução Molecular , Variação Genética , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/imunologia , Fenótipo , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais
16.
Infect Genet Evol ; 93: 104980, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34182190

RESUMO

This study demonstrates that infectious bronchitis virus (IBV) strain M41, which is pathogenic for chickens, is nonpathogenic for pheasants. However, M41 replicated in the respiratory tracts of most inoculated pheasants and the virus was shed from their respiratory tracts in the early stages of infection (4 and 8 dpc). Similarly, the attenuated IBV H120 vaccine strain also replicated and the virus was shed from their respiratory tracts of most inoculated pheasants, whereas the pheasant coronavirus (PhCoV) I0623/17 replicated in the respiratory tracts of all challenged pheasants, which then shed virus for a long period of time. Strain M41 also replicated in selected tissues of the inoculated pheasants, including the lung, kidney, proventriculus, and cecal tonsil, although the viral titers were very low. Therefore, it was important to establish whether the H120 vaccine, which has a limited replication capacity in pheasants, induces a protective immune response to both "homologous" M41 and "heterologous" I0623/17 challenge. Vaccination with H120 induced humoral responses, and the replication of M41 was reduced or restricted in the tissues of the H120-vaccinated pheasants compared with its replication in unvaccinated birds. This implies that partial protection was conferred on pheasants by vaccination with the H120 vaccine. Prolonged viral replication and a large number of birds shedding virus into the respiratory tract were also observed in the unvaccinated pheasants after inoculation with M41. However, only limited protection against challenge with PhCoV I0623/17 was conferred on pheasants vaccinated with H120, largely because the replication of H120 in pheasants was limited, thus, limiting the immune responses induced by it. The low amino acid identity of the S1 subunit of the S proteins of H120 and I0623/17 might also account, at least in part, for the poor cross-protective immunity induced by H120. These results suggest that further work is required to rationally design vaccines that confer effective protection against PhCoV infection in commercial pheasant stocks.


Assuntos
Infecções por Coronavirus/veterinária , Galliformes , Vírus da Bronquite Infecciosa/fisiologia , Vacinas Virais/farmacologia , Animais , Anticorpos Neutralizantes/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/patogenicidade , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Atenuadas/farmacologia
17.
Arch Virol ; 166(8): 2291-2298, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34089367

RESUMO

Infectious bronchitis virus (IBV), an avian coronavirus, is highly contagious. Chickens with IBV infection develop acute pathogenesis in multiple organs, including the respiratory and urogenital tracts. Frequent recombination in the spike (S) glycoprotein gene has made vaccine strategies ineffective. To understand IBV pathogenesis, we analyzed the genetic distance between Korean IBV isolates and other coronaviruses, including SARS-CoV-2. To obtain comprehensive information about early immune responses such as innate cytokine production and associated immune regulation during IBV infection, we infected primary chicken embryonic kidney cells and performed transcriptome analysis. We observed that the functional pathways of innate immunity are regulated and confirmed expression of genes that coordinate early immune responses. Understanding the immune profile of the host cell may assist in vaccine development.


Assuntos
Vírus da Bronquite Infecciosa/fisiologia , Animais , Células Cultivadas , Galinhas , Infecções por Coronavirus/virologia , Citocinas/genética , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/isolamento & purificação , Rim/citologia , Filogenia , República da Coreia , Glicoproteína da Espícula de Coronavírus/genética
18.
Arch Virol ; 166(8): 2173-2185, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34037855

RESUMO

Infectious bronchitis virus (IBV) is the only coronavirus known to infect poultry. The replication and pathogenesis of IBV are poorly understood, mainly because of the unavailability of a robust cell culture system. Here, we report that an active ubiquitin proteasome system (UPS) is necessary for efficient replication of IBV in Vero cells. Synthesis of IBV-specific RNA as well as viral protein is hampered in the presence of chemical inhibitors specific for the UPS. Like other coronaviruses, IBV encodes a papain-like protease (PLpro) that exhibits in vitro deubiquitinase activity in addition to proteolytically processing the replicase polyprotein. Our results show that the IBV PLpro enzyme inhibits the synthesis of interferon beta (IFNß) in infected chicken embryonic fibroblast (DF-1) cells and that this activity is enhanced in the presence of melanoma differentiation-associated protein 5 (MDA5) and TANK binding kinase 1 (TBK1). IBV PLpro, when overexpressed in DF-1 cells, deubiquitinates MDA5 and TBK1. Both of these proteins, along with other adapter molecules such as MAVS, IKKε, and IRF3, form a signaling cascade for the synthesis of IFNß. Ubiquitination of MDA5 and TBK1 is essential for their activation, and their deubiquitination by IBV PLpro renders them unable to participate in antiviral signaling. This study shows for the first time that there is cross-talk between the UPS and the innate immune response during IBV infection and that the deubiquitinase activity of IBV PLpro is involved in its activity as an IFN antagonist. This insight will be useful for designing better antivirals targeting the catalytic activity of the IBV PLpro enzyme.


Assuntos
Imunidade Inata , Vírus da Bronquite Infecciosa/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Replicação Viral , Animais , Linhagem Celular , Galinhas , Chlorocebus aethiops , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Enzimas Desubiquitinantes/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferon beta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Células Vero
19.
Vet Res ; 52(1): 14, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509253

RESUMO

Infectious bronchitis virus (IBV) is a pathogenic coronavirus with high morbidity and mortality in chicken breeding. Macrophages with normal biofunctions are essential for host immune responses. In this study, the HD11 chicken macrophage cell line and chicken peripheral blood mononuclear cell-derived macrophages (PBMCs-Mφ) were infected with IBV at multiplicity of infection (MOI) of 10. The dynamic changes of their biofunctions, including cell viability, pathogen elimination function, phagocytic ability, and gene expressions of related proteins/mediators in innate and acquired immunity, inflammation, autophagy and apoptosis were analyzed. Results showed that IBV infection decreased chicken macrophage viability and phagocytic ability, and increased pathogen elimination function. Moreover, IBV augmented the gene expressions of most related proteins in macrophages involved in multiple host bioprocesses, and the dynamic changes of gene expressions had a close relationship with virus replication. Among them, MHCII, Fc receptor, TLR3, IFN-α, CCL4, MIF, IL-1ß, IL-6, and iNOS showed significantly higher expressions in IBV-infected cells. However, TLR7, MyD88, MDA5, IFN-γ, MHCII, Fc receptor, MARCO, CD36, MIF, XCL1, CXCL12, TNF-α, iNOS, and IL-10 showed early decreased expressions. Overall, chicken macrophages play an important role in host innate and acquired immune responses to resist IBV infection, despite early damage or suppression. Moreover, the IBV-induced autophagy and apoptosis might participate in the virus-host cell interaction which is attributed to the biological process.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Vírus da Bronquite Infecciosa/fisiologia , Leucócitos Mononucleares/virologia , Macrófagos/virologia , Imunidade Adaptativa , Animais , Apoptose , Autofagia , Linhagem Celular , Sobrevivência Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Galinhas , Efeito Citopatogênico Viral , DNA Complementar/genética , Citometria de Fluxo/veterinária , Imunidade Inata , Inflamação , Interferons/metabolismo , Leucócitos Mononucleares/fisiologia , Macrófagos/fisiologia , Óxido Nítrico/análise , Fagocitose , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Organismos Livres de Patógenos Específicos
20.
Vet Res ; 52(1): 7, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431056

RESUMO

Elucidating virus-cell interactions is fundamental to understanding viral replication and identifying targets for therapeutic control of viral infection. The extracellular signal-regulated kinase (ERK) pathway has been shown to regulate pathogenesis during many viral infections, but its role during coronavirus infection is undetermined. Infectious bronchitis virus is the representative strain of Gammacoronavirus, which causes acute and highly contagious diseases in the poultry farm. In this study, we investigated the role of ERK1/2 signaling pathway in IBV infection. We found that IBV infection activated ERK1/2 signaling and the up-regulation of phosphatase DUSP6 formed a negative regulation loop. Pharmacological inhibition of MEK1/2-ERK1/2 signaling suppressed the expression of DUSP6, promoted cell death, and restricted virus replication. In contrast, suppression of DUSP6 by chemical inhibitor or siRNA increased the phosphorylation of ERK1/2, protected cells from apoptosis, and facilitated IBV replication. Overexpression of DUSP6 decreased the level of phospho-ERK1/2, promoted apoptosis, while dominant negative mutant DUSP6-DN lost the regulation function on ERK1/2 signaling and apoptosis. In conclusion, these data suggest that MEK-ERK1/2 signaling pathway facilitates IBV infection, probably by promoting cell survival; meanwhile, induction of DUSP6 forms a negative regulation loop to restrict ERK1/2 signaling, correlated with increased apoptosis and reduced viral load. Consequently, components of the ERK pathway, such as MEK1/2 and DUSP6, represent excellent targets for the development of antiviral drugs.


Assuntos
Apoptose/fisiologia , Fosfatases de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Vírus da Bronquite Infecciosa/fisiologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Animais , Butadienos/farmacologia , Linhagem Celular , Galinhas , Chlorocebus aethiops , Fosfatases de Especificidade Dupla/antagonistas & inibidores , Fosfatases de Especificidade Dupla/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/antagonistas & inibidores , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Nitrilas/farmacologia , Regulação para Cima , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...