Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
Nucleic Acids Res ; 51(20): 11213-11224, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37823592

RESUMO

The presence of ATP is known to stimulate helicase activity of the Dengue Virus Non-structural protein 3 helicase (NS3h), and the presence of RNA stimulates NS3h ATPase activity, however this coupling is still mechanistically unclear. Here we use atomistic models and molecular dynamics simulations to evaluate the single-stranded RNA (ssRNA)-length dependence of the NS3h-ssRNA binding affinity and its modulation by bound ATP. Considering complexes with 7, 11, 16 and 26 nucleotides (nts), we observe that both the binding affinity and its modulation by bound ATP are augmented with increased ssRNA lengths. In models with at least 11 nts bound, the binding of ATP results in a shift from a tightly bound to a weakly bound state. We find that the weakly bound state persists during both the ADP-Pi- and ADP-bound stages of the catalytic cycle. We obtain the equilibrium association constants for NS3h binding to an ssRNA 10-mer in vitro, both in the absence and presence of ADP, which further support the alternation between tightly and weakly bound states during the catalytic cycle. The length of bound ssRNA is critical for understanding the NS3h-RNA interaction as well as how it is modulated during the catalytic cycle.


Assuntos
Vírus da Dengue , Proteínas não Estruturais Virais , Trifosfato de Adenosina , Vírus da Dengue/enzimologia , DNA Helicases/metabolismo , Nucleotídeos , RNA/química , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/química
2.
J Biol Chem ; 299(3): 102986, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754281

RESUMO

Dengue virus (DENV) is one of the most prevalent mosquito-transmitted human viruses that causes significant morbidity and mortality worldwide. To persist in the cell and consequently cause disease, DENV is evolved with mechanisms to suppress the induction of type I interferons by antagonizing cGAS-STING signaling. Using recombinant proteins and in vitro cleavage assays, we have shown that the DENV protease NS2B3 is capable of cleaving cGAS in the N-terminal region without disrupting the C-terminal catalytic center. This generates two major cleavage products: cleavage product N-terminal (CP-N) and cleavage product C-terminal (CP-C). We observed reduction in DNA-binding affinity of CP-C as compared to full-length cGAS. Reduction in DNA-binding affinity is also correlated with the decrease in enzymatic activity of CP-C. CP-N, on the other hand, has almost comparable DNA-binding ability as that of the full-length cGAS. In fact, CP-N competitively inhibits cyclic GMP-AMP production by both full-length cGAS and CP-C. We hypothesize that high DNA-binding affinity of CP-N enables it to sequester the DNA from CP-C and noncleaved full-length cGAS and thus reduces the rate of enzyme activation and cyclic GMP-AMP synthesis. Furthermore, we found that NS2B3 physically interacts with full-length cGAS and CP-C, laying the basis for their shuttling to and eventual degradation in the autophagosome. Overall, our study highlights a multifaceted and effective strategy by which an RNA virus antagonizes cGAS-STING signaling which may be useful for the design of antivirals targeting viral proteases.


Assuntos
Vírus da Dengue , Nucleotidiltransferases , Peptídeo Hidrolases , Humanos , Vírus da Dengue/enzimologia , Imunidade Inata , Nucleotidiltransferases/metabolismo , Peptídeo Hidrolases/metabolismo
3.
Molecules ; 27(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35807364

RESUMO

Dengue virus (DENV) is a danger to more than 400 million people in the world, and there is no specific treatment. Thus, there is an urgent need to develop an effective method to combat this pathology. NS2B/NS3 protease is an important biological target due it being necessary for viral replication and the fact that it promotes the spread of the infection. Thus, this study aimed to design DENV NS2B/NS3pro allosteric inhibitors from a matrix compound. The search was conducted using the Swiss Similarity tool. The compounds were subjected to molecular docking calculations, molecular dynamics simulations (MD) and free energy calculations. The molecular docking results showed that two compounds, ZINC000001680989 and ZINC000001679427, were promising and performed important hydrogen interactions with the Asn152, Leu149 and Ala164 residues, showing the same interactions obtained in the literature. In the MD, the results indicated that five residues, Lys74, Leu76, Asn152, Leu149 and Ala166, contribute to the stability of the ligand at the allosteric site for all of the simulated systems. Hydrophobic, electrostatic and van der Waals interactions had significant effects on binding affinity. Physicochemical properties, lipophilicity, water solubility, pharmacokinetics, druglikeness and medicinal chemistry were evaluated for four compounds that were more promising, showed negative indices for the potential penetration of the Blood Brain Barrier and expressed high human intestinal absorption, indicating a low risk of central nervous system depression or drowsiness as the the side effects. The compound ZINC000006694490 exhibited an alert with a plausible level of toxicity for the purine base chemical moiety, indicating hepatotoxicity and chromosome damage in vivo in mouse, rat and human organisms. All of the compounds selected in this study showed a synthetic accessibility (SA) score lower than 4, suggesting the ease of new syntheses. The results corroborate with other studies in the literature, and the computational approach used here can contribute to the discovery of new and potent anti-dengue agents.


Assuntos
Vírus da Dengue , Inibidores de Proteases , Proteínas não Estruturais Virais , Animais , Antivirais/química , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/enzimologia , Humanos , Camundongos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , RNA Helicases/antagonistas & inibidores , RNA Helicases/química , Ratos , Serina Endopeptidases/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
4.
Bioorg Med Chem ; 49: 116415, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601454

RESUMO

Dengue remains a disease of significant concern, responsible for nearly half of all arthropod-borne disease cases across the globe. Due to the lack of potent and targeted therapeutics, palliative treatment and the adoption of preventive measures remain the only available options. Compounding the problem further, the failure of the only dengue vaccine, Dengvaxia®, also delivered a significant blow to any hopes for the treatment of dengue fever. However, the success of Human Immuno-deficiency Virus (HIV) and Hepatitis C Virus (HCV) protease inhibitors in the past have continued to encourage researchers to investigate other viral protease targets. Dengue virus (DENV) NS2B-NS3 protease is an attractive target partly due to its role in polyprotein processing and also for being the most conserved domain in the viral genome. During the early days of the COVID-19 pandemic, a few cases of Dengue-COVID 19 co-infection were reported. In this review, we compared the substrate-peptide residue preferences and the residues lining the sub-pockets of the proteases of these two viruses and analyzed the significance of this similarity. Also, we attempted to abridge the developments in anti-dengue drug discovery in the last six years (2015-2020), focusing on critical discoveries that influenced the research.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Cisteína Endopeptidases/metabolismo , Vírus da Dengue/efeitos dos fármacos , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Proteases 3C de Coronavírus/metabolismo , Vírus da Dengue/enzimologia , Humanos , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , SARS-CoV-2/enzimologia
5.
J Mol Model ; 27(9): 247, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34386905

RESUMO

Among the diseases transmitted by vectors, there are those caused by viruses named arboviruses (arthropod-borne viruses). In past years, viruses transmitted by mosquitoes have been of relevance in global health, such as Chikungunya (CHIKV), Dengue (DENV), and Zika (ZIKV), which have Aedes aegypti as a common vector, thus raising the possibility of multi-infection. Previous reports have described the general structure of RNA-dependent RNA polymerases termed right-hand fold, which is conserved in positive single-stranded RNA viruses. Here, we report a comparison between sequences and the computational structure of RNA-dependent RNA polymerases from CHIKV, DENV, and ZIKV and the conserved sites to be considered for the design of an antiviral drug against the three viruses. We show that the sequential identity between consensus sequences from CHIKV and DENV is 8.1% and the similarity is 15.1%; the identity between CHIKV and ZIKV is 9.3%, and the similarity is 16.6%; and the identity between DENV and ZIKV is 68.6%, and the similarity is 79.2%. Nevertheless, the structural alignment shows that the root-mean-square deviation (RMSD) measurement value in general structure comparison between CHIKV RdRp and ZIKV RdRp was 1.248 Å, RMSD between CHIKV RdRp and DENV RdRp was 1.070 Å, and RMSD between ZIKV RdRp and DENV RdRp was 1.106 Å. Despite the low identity and similarity of CHIKV sequence with DENV and ZIKV, we show that A, B, C, and E motifs are structurally well conserved. These structural similarities offer a window into drug design against these arboviruses giving clues about critical target sites.


Assuntos
Vírus Chikungunya/química , Vírus da Dengue/enzimologia , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química , Zika virus/enzimologia , Motivos de Aminoácidos , Vírus Chikungunya/genética , Vírus da Dengue/genética , Humanos , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/terapia , RNA Polimerase Dependente de RNA/genética , Homologia Estrutural de Proteína , Proteínas não Estruturais Virais/genética , Zika virus/genética
6.
Eur J Med Chem ; 224: 113698, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34274831

RESUMO

Over recent years, many outbreaks caused by (re)emerging RNA viruses have been reported worldwide, including life-threatening Flaviviruses, such as Dengue (DENV) and Zika (ZIKV). Currently, there is only one licensed vaccine against Dengue, Dengvaxia®. However, its administration is not recommended for children under nine years. Still, there are no specific inhibitors available to treat these infectious diseases. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) is a metalloenzyme essential for viral replication, suggesting that it is a promising macromolecular target since it has no human homolog. Nowadays, several NS5 RdRp inhibitors have been reported, while none inhibitors are currently in clinical development. In this context, this review constitutes a comprehensive work focused on RdRp inhibitors from natural, synthetic, and even repurposing sources. Furthermore, their main aspects associated with the structure-activity relationship (SAR), proposed mechanisms of action, computational studies, and other topics will be discussed in detail.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Zika virus/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Vírus da Dengue/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade , Zika virus/enzimologia
7.
Curr Med Chem ; 28(37): 7767-7802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34212826

RESUMO

Dengue, the oldest and the most prevalent mosquito-borne illness, is caused by the dengue virus (DENV), from the family of Flaviviridae. It infects approximately 400 million individuals per annum, with approximately half of the global population residing in high-risk areas. The factors attributed to the geographic expansion of dengue, include urbanization, population density, modern means of transportation, international travels, habit modification, climate change, virus genetics, vector capacity, and poor vector control. Despite the significant progress made in the past against dengue, no effective antiviral therapy is currently available. Among the structural and non-structural proteins encoded by DENV genome, the NS2B-NS3 protease complex is amongst the extensively studied targets for the development of antiviral therapeutics owing to its multiple roles in virus life cycle. Furthermore, protease inhibitors were found to be successful in Hepatitis C Virus (HCV) and Human Immunodeficiency Virus (HIV). Likewise, several peptidic, peptide derived/peptidomimetic, and small molecules inhibitors have been identified as DENV protease inhibitors. Unfortunately, none of them have resulted in a clinically approved drug. Considering all the abovementioned facts, this review descriptively explains the molecular mechanism and therapeutic potential of DENV protease along with an up to date information on various competitive inhibitors reported against DENV protease. This review might be helpful for the researchers working in this area to understand the critical aspects of DENV protease that will help them develop effective and novel inhibitors against DENV to protect lives of millions of people worldwide.


Assuntos
Antivirais , Vírus da Dengue , Inibidores de Proteases , Animais , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/enzimologia , Humanos , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , Serina Endopeptidases , Proteínas não Estruturais Virais
8.
Eur J Med Chem ; 224: 113695, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34298282

RESUMO

The flavivirus genus of the Flaviviridae family comprises Dengue, Zika and West-Nile viruses which constitute unmet medical needs as neither appropriate antivirals nor safe vaccines are available. The dengue NS2BNS3 protease is one of the most promising validated targets for developing a dengue treatment however reported protease inhibitors suffer from toxicity and cellular inefficacy. Here we report SAR on our previously reported Zika-active carbazole scaffold, culminating prodrug compound SP-471P (EC50 1.10 µM, CC50 > 100 µM) that generates SP-471; one of the most potent, non-cytotoxic and cell-active protease inhibitors described in the dengue literature. In cell-based assays, SP-471P leads to inhibition of viral RNA replication and complete abolishment of infective viral particle production even when administered 6 h post-infection. Mechanistically, SP-471 appears to inhibit both normal intermolecular protease processes and intramolecular cleavage events at the NS2BNS3 junction, as well as at NS3 internal sites, all critical for virus replication. These render SP-471 a unique to date multimodal inhibitor of the dengue protease.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Oximas/farmacologia , Peptídeo Hidrolases/metabolismo , Pró-Fármacos/farmacologia , Inibidores de Proteases/farmacologia , Antivirais/síntese química , Antivirais/química , Vírus da Dengue/enzimologia , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oximas/síntese química , Oximas/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Relação Estrutura-Atividade
9.
ACS Appl Mater Interfaces ; 13(22): 25715-25726, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34036784

RESUMO

Dengue virus (DENV), an arbovirus transmitted by mosquitoes, causes infectious diseases such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Despite the dangers posed by DENV, there are no approved antiviral drugs for treatment of DENV infection. Considering the potential for a global dengue outbreak, rapid development of antiviral agents against DENV infections is crucial as a preemptive measure; thus, the selection of apparent drug targets, such as the viral enzymes involved in the viral life cycle, is recommended. Helicase, a potential drug target in DENV, is a crucial viral enzyme that unwinds double-stranded viral RNA, releasing single-stranded RNA genomes during viral replication. Therefore, an inhibitor of helicase activity could serve as a direct-acting antiviral agent. Here, we introduce an RNA helicase assay based on graphene oxide, which enables fluorescence-based analysis of RNA substrate-specific helicase enzyme activity. This assay demonstrated high reliability and ability for high-throughput screening, identifying a new helicase inhibitor candidate, micafungin (MCFG), from an FDA-approved drug library. As a direct-acting antiviral agent targeting RNA helicase, MCFG inhibits DENV proliferation in cells and an animal model. Notably, in vivo, MCFG treatment reduced viremia, inflammatory cytokine levels, and viral loads in several tissues and improved survival rates by up to 40% in a lethal mouse model. Therefore, we suggest MCFG as a potential direct-acting antiviral drug candidate.


Assuntos
Antivirais/farmacologia , Técnicas Biossensoriais/métodos , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Grafite/química , Micafungina/farmacologia , RNA Helicases/antagonistas & inibidores , Animais , Antifúngicos/farmacologia , Antivirais/química , Dengue/enzimologia , Dengue/virologia , Vírus da Dengue/enzimologia , Ensaios de Triagem em Larga Escala/métodos , Camundongos , Nanopartículas/química , Replicação Viral
10.
J Med Chem ; 64(8): 4567-4587, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33851839

RESUMO

The viral serine protease NS2B-NS3 is one of the promising targets for drug discovery against dengue virus and other flaviviruses. The molecular recognition preferences of the protease favor basic, positively charged moieties as substrates and inhibitors, which leads to pharmacokinetic liabilities and off-target interactions with host proteases such as thrombin. We here present the results of efforts that were aimed specifically at the discovery and development of noncharged, small-molecular inhibitors of the flaviviral proteases. A key factor in the discovery of these compounds was a cellular reporter gene assay for the dengue protease, the DENV2proHeLa system. Extensive structure-activity relationship explorations resulted in novel benzamide derivatives with submicromolar activities in viral replication assays (EC50 0.24 µM), selectivity against off-target proteases, and negligible cytotoxicity. This structural class has increased drug-likeness compared to most of the previously published active-site-directed flaviviral protease inhibitors and includes promising candidates for further preclinical development.


Assuntos
Vírus da Dengue/enzimologia , Inibidores de Proteases/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Vírus da Dengue/fisiologia , Estabilidade de Medicamentos , Genes Reporter , Células HeLa , Humanos , Microssomos Hepáticos , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Ratos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
11.
J Med Chem ; 64(5): 2777-2800, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33596380

RESUMO

Flaviviruses, including Zika, dengue, and West Nile viruses, are important human pathogens. The highly conserved NS2B-NS3 protease of Flavivirus is essential for viral replication and therefore a promising drug target. Through compound screening, followed by medicinal chemistry studies, a novel series of 2,5,6-trisubstituted pyrazine compounds are found to be potent, allosteric inhibitors of Zika virus protease (ZVpro) with IC50 values as low as 130 nM. Their structure-activity relationships are discussed. The ZVpro inhibitors also inhibit homologous proteases of dengue and West Nile viruses, and their inhibitory activities are correlated. The most potent compounds 47 and 103 potently inhibited Zika virus replication in cells with EC68 values of 300-600 nM and in a mouse model of Zika infection. These compounds represent novel pharmacological leads for drug development against Flavivirus infections.


Assuntos
Antivirais/uso terapêutico , Pirazinas/uso terapêutico , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/uso terapêutico , Proteínas Virais/metabolismo , Infecção por Zika virus/tratamento farmacológico , Regulação Alostérica/efeitos dos fármacos , Animais , Antivirais/síntese química , Linhagem Celular Tumoral , Vírus da Dengue/enzimologia , Humanos , Camundongos , Estrutura Molecular , Pirazinas/síntese química , Inibidores de Serina Proteinase/síntese química , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Vírus do Nilo Ocidental/enzimologia , Zika virus/enzimologia
12.
Virus Res ; 295: 198318, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33485995

RESUMO

Dengue virus NS3 is a prototypical DEx(H/D) helicase that binds and hydrolyzes NTP to translocate along and unwind double-stranded nucleic acids. NS3 and NS4B are essential components of the flavivirus replication complex. Evidences showed that NS4B interacted with NS3 and modulated the helicase activity of NS3. Despite important insights into structural, mechanistic, and cellular aspects of the NS3 function, there is still a gap in understanding how it coordinates the helicase activities within the replicase complex for efficient replication. Here, using the DENV2 as a model, we redefined the critical region of NS4B required for NS3 function by pull-down and MST assays. The FRET-based unwinding assay showed that NS3 would accelerate unwinding duplex nucleic acids in the presence of NS4B (51-83). The simulated NS3-NS4B complex models based on the rigid-body docking delineated the potential interaction sites located in the conserved motif within the core domain of NS3. Mutations in motif I (I190A) and motif III (P319L) of NS3 interfered with the unwinding activity stimulated by NS4B. Upon binding to the NS3 helicase, NS4B assisted NS3 to dissociate from single-stranded nucleic acid and enabled NS3 helicase to keep high activity at high ATP concentrations. These results suggest that NS4B probably serves as an essential cofactor for NS3 to coordinate the ATP cycles and nucleic acid binding during viral genome replication.


Assuntos
Vírus da Dengue , Proteínas de Membrana , Ácidos Nucleicos , RNA Helicases , Proteínas não Estruturais Virais , Trifosfato de Adenosina/metabolismo , Vírus da Dengue/enzimologia , Vírus da Dengue/genética , Proteínas de Membrana/metabolismo , Ácidos Nucleicos/metabolismo , Ligação Proteica , RNA Helicases/genética , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo
13.
J Ethnopharmacol ; 267: 113541, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152438

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: About 2.5 billion peoples are at risk of dengue virus and the majority of people, use traditional plant-based medicines to combat dengue. The whole plant of Andrographis paniculata used traditionally over past decades for health promotion. Andrographolide isolated from Andrographis paniculata is used as natural remedy for the treatment of various diseases in different parts of the world. Andrographolide has been reported to have antiviral activity against hepatitis B virus, hepatitis C virus, herpes simplex virus, influenza virus, chikungunya virus, dengue virus 2 and 4. AIM OF THE STUDY: The aim of the present study to isolate the andrographolide from the A. paniculata by supercritical fluid extraction technique and to characterize the isolated compound along with it anti-dengue activity against DENV-2 in vitro and in silico methods. MATERIALS AND METHODS: Supercritical extraction condition for A. paniculata was standardised to isolate andrographolide compound at definite temperature and pressure on the basis of previous study. The andrographolide was identified by using Ultraviolet-Visible Spectroscopy (UV-VIS), Fourier-Transform Infrared Spectroscopy (FT-IR) and High Performance Thin Layer Chromatography (HPTLC) and Proton Nuclear Magnetic Resonance (1HNMR). The maximum non-toxic dose of isolated andrographolide was detected by MTT assay using a micro plate reader at 595 nm. One hundred (100) copies/ml of the DENV-2 virus was used for antiviral assay in C6/36 cells lines and inhibition of virus due to andrographolide was determined by real-time PCR assay. The purity of isolated andrographolide was determined by Differential Scanning Calorimetry (DSC). The dengue NS5 receptor protein was docked with andrographolide and evaluated on the basis of the total energy and binding affinity score by Auto Dock (V4.2.6) software. RESULTS: Andrographolide, a diterpene lactone was isolated from the A. paniculata supercritical extract at 40 °C temperature and 15 Mpa pressure. UV spectrophotometer analysis revealed that the curve of andrographolide plant extract was overlapped with reference compound at 228 nm and the similar bands were detected from FT-IR spectroscopy analysis at 3315, 2917, 2849, 1673, 1462 and 1454 cm-1 in isolated and standard andrographolide. HPTLC analysis shows the retention factor (Rf) of A. paniculata extract at 0.74 ± 0.06 as similar to standard andrographolide Rf values. The purity of isolated andrographolide was 99.76%. The maximum non-toxic dose of isolated andrographolide was found as 15.62 µg/ml on the C6/36 cell line calculated by using MTT assay. The andrographolide showed the 97.23% anti-dengue activity against the dengue-2 virus in C6/36 cell lines. Results of molecular docking showed that the interaction between andrographolide and NS5 of dengue protein with the maximum binding energy as -7.35 kcal/mol. CONCLUSIONS: It is concluded that isolated andrographolide from the A. paniculata possess anti-dengue activity against dengue-2 virus as revealed from in vitro and in silico method. Due to lack of the vaccine and anti-viral agents, andrographolide extracted from A. paniculata play a major role to inhibit the dengue replication. Hence, it could be a source for drug design and help to reduce the dengue infection.


Assuntos
Andrographis , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/prevenção & controle , Diterpenos/farmacologia , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Aedes , Andrographis/química , Animais , Antivirais/química , Antivirais/isolamento & purificação , Linhagem Celular , Dengue/virologia , Vírus da Dengue/enzimologia , Vírus da Dengue/crescimento & desenvolvimento , Diterpenos/química , Diterpenos/isolamento & purificação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
14.
Antiviral Res ; 182: 104900, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32763315

RESUMO

Flavivirus is a genus of the Flaviviridae family which includes significant emerging and re-emerging human disease-causing arboviruses such as dengue and Zika viruses. Flaviviral non-structural protein 3 (NS3) protease-helicase plays essential roles in viral replication and is an attractive antiviral target. A construct which connects the cytoplasmic cofactor region of NS2B and NS3 protease with an artificial glycine-rich flexible linker has been widely used for structural, biochemical and drug-screening studies. The effect of this linker on the dynamics and enzymatic activity of the protease has been studied by several biochemical and NMR methods but the findings remained inconclusive. Here, we designed and carried out a comparative study of constructs of NS2B cofactor joined to the full length DENV4 NS3 in three different ways, namely bNS2B47NS3 (bivalent), eNS2B47NS3(enzymatically cleavable) and gNS2B47NS3 (glycine-rich linker). We report the crystal structures of linked and unlinked NS2B47-NS3 constructs in their free state and in complex with bovine pancreatic trypsin inhibitor (BPTI). These structures demonstrate that the NS2B cofactor predominantly adopts a closed conformation in complex with full-length NS3. The glycine-rich linker between NS2B and NS3 may promote the open conformation which interferes with protease activity. This negative impact on the enzyme structure and function is restricted to the protease activity as the ATPase activity is not affected in vitro.


Assuntos
Vírus da Dengue/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Cristalografia por Raios X , Vírus da Dengue/enzimologia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/química , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Replicação Viral
15.
J Nat Prod ; 83(8): 2330-2336, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32686414

RESUMO

Thirteen carneic acids were isolated from the fungal endophyte Phomopsis sp. SNB-LAP1-7-32. Their structures were identified by mass spectrometry and extensive one- and two-dimensional NMR spectroscopy and through comparison with data reported in the literature. Compounds 1-13 were investigated for their antipolymerase activities against DENV polymerase and Zika NS5. Five of them exhibited significant inhibition of dengue polymerase with IC50 values in the 10 to 20 µM range without cytotoxicity. None inhibited Zika virus NS5 protein.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/enzimologia , Inibidores Enzimáticos/farmacologia , Phomopsis/química , Policetídeos/farmacologia , Proteínas Virais/antagonistas & inibidores , Antivirais/química , Antivirais/isolamento & purificação , Linhagem Celular , Vírus da Dengue/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificação , Análise Espectral/métodos
16.
Cell Rep ; 32(1): 107859, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640225

RESUMO

Dengue virus (DENV) and Zika virus (ZIKV), members of the Flavivirus genus, rearrange endoplasmic reticulum membranes to induce invaginations known as vesicle packets (VPs), which are the assumed sites for viral RNA replication. Mechanistic information on VP biogenesis has so far been difficult to attain due to the necessity of studying their formation under conditions of viral replication, where perturbations reducing replication will inevitably impact VP formation. Here, we report a replication-independent expression system, designated pIRO (plasmid-induced replication organelle formation) that induces bona fide DENV and ZIKV VPs that are morphologically indistinguishable from those in infected cells. Using this system, we demonstrate that sequences in the 3' terminal RNA region of the DENV, but not the ZIKV genome, contribute to VP formation in a non-replicative manner. These results validate the pIRO system that opens avenues for mechanistically dissecting virus replication from membrane reorganization.


Assuntos
Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Genoma Viral , Organelas/metabolismo , Replicação Viral/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Linhagem Celular , DNA Polimerase Dirigida por DNA/metabolismo , Dengue/virologia , Vírus da Dengue/enzimologia , Vírus da Dengue/ultraestrutura , Humanos , Membranas , Conformação de Ácido Nucleico , Organelas/ultraestrutura , Plasmídeos/genética , Poliproteínas/metabolismo , RNA Viral/genética , Zika virus/genética
17.
ChemMedChem ; 15(15): 1439-1452, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32501637

RESUMO

A series of cyclic active-site-directed inhibitors of the NS2B-NS3 proteases from Zika (ZIKV), West Nile (WNV), and dengue-4 (DENV4) viruses has been designed. The most potent compounds contain a reversely incorporated d-lysine residue in the P1 position. Its side chain is connected to the P2 backbone, its α-amino group is converted into a guanidine to interact with the conserved Asp129 side chain in the S1 pocket, and its C terminus is connected to the P3 residue via different linker segments. The most potent compounds inhibit the ZIKV protease with Ki values <5 nM. Crystal structures of seven ZIKV protease inhibitor complexes were determined to support the inhibitor design. All the cyclic compounds possess high selectivity against trypsin-like serine proteases and furin-like proprotein convertases. Both WNV and DENV4 proteases are inhibited less efficiently. Nonetheless, similar structure-activity relationships were observed for these enzymes, thus suggesting their potential application as pan-flaviviral protease inhibitors.


Assuntos
Compostos Macrocíclicos/farmacologia , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Vírus da Dengue/enzimologia , Relação Dose-Resposta a Droga , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/enzimologia , Zika virus/enzimologia
18.
Biochim Biophys Acta Proteins Proteom ; 1868(8): 140441, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32371149

RESUMO

Dengue represents a substantial public health burden, particularly in low-resource countries. Non-structural protein 3 (NS3) is a multifunctional protein critical in the virus life cycle and has been identified as a promising anti-viral drug target. Despite recent crystallographic studies of the NS3 helicase domain, only subtle structural nucleotide-dependent differences have been identified, such that its coupled ATPase and helicase activities remain mechanistically unclear. Here we use molecular dynamics simulations to explore the nucleotide-dependent conformational landscape of the Dengue virus NS3 helicase and identify substantial changes in the protein flexibility during the ATP hydrolysis cycle. We relate these changes to the RNA-protein interactions and proposed translocation models for other monomeric helicases. Furthermore, we report a novel open-loop conformation with a likely escape route for Pi after hydrolysis, providing new insight into the conformational changes that underlie the ATPase activity of NS3.


Assuntos
Trifosfato de Adenosina/química , Vírus da Dengue/química , Fosfatos/química , Proteínas não Estruturais Virais/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Vírus da Dengue/enzimologia , Hidrólise , Simulação de Dinâmica Molecular , Fosfatos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/química , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Termodinâmica , Proteínas não Estruturais Virais/metabolismo
19.
BMC Mol Cell Biol ; 21(1): 38, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450796

RESUMO

BACKGROUND: Detailed structural knowledge of enzyme-inhibitor complexes trapped in intermediate state is the key for a fundamental understanding of reaction mechanisms taking place in enzymes and is indispensable as a structure-guided drug design tool. Solution state NMR uniquely allows the study of active sites of enzymes in equilibrium between different tautomeric forms. In this study 1H, 19F and 15 N NMR spectroscopy has been used to probe the interaction contacts of inhibitors locked in transition states of the catalytic triad of a serine protease. It was demonstrated on the serotype II Dengue virus NS2B:NS3pro serine protease and its mutants, H51N and S135A, in complex with high-affinity ligands containing trifluoromethyl ketone (tfk) and boronic groups in the C-terminal of tetra-peptides. RESULTS: Monitoring 19F resonances, shows that only one of the two isomers of the tfk tetra-peptide binds with NS2B:NS3pro and that access to the bulk of the active site is limited. Moreover, there were no bound water found in proximity of the active site for any of the ligands manifesting in a favorable condition for formation of low barrier hydrogen bonds (LBHB) in the catalytic triad. Based on this data we were able to identify a locked conformation of the protein active site. The data also indicates that the different parts of the binding site most likely act independently of each other. CONCLUSIONS: Our reported findings increases the knowledge of the detailed function of the catalytic triad in serine proteases and could facilitate the development of rational structure based inhibitors that can selectively target the NS3 protease of Dengue type II (DENV2) virus. In addition the results shows the usefulness of probing active sites using 19F NMR spectroscopy.


Assuntos
Vírus da Dengue/enzimologia , Espectroscopia de Ressonância Magnética , Serina Proteases/química , Inibidores de Serina Proteinase/química , Sítios de Ligação , Catálise , Domínio Catalítico/genética , Vírus da Dengue/genética , Flúor/química , Hidrogênio/química , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Isótopos de Nitrogênio/química , Conformação Proteica , Serina Proteases/genética , Proteínas não Estruturais Virais/química , Água/química
20.
Nucleic Acids Res ; 48(9): 5081-5093, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32313955

RESUMO

Flaviviruses, including dengue virus and Zika virus, contain a single-stranded positive sense RNA genome that encodes viral proteins essential for replication and also serves as the template for new genome synthesis. As these processes move in opposite directions along the genome, translation must be inhibited at a defined point following infection to clear the template of ribosomes to allow efficient replication. Here, we demonstrate in vitro and in cell-based assays that the viral RNA polymerase, NS5, inhibits translation of the viral genome. By reconstituting translation in vitro using highly purified components, we show that this translation block occurs at the initiation stage and that translation inhibition depends on NS5-RNA interaction, primarily through association with the 5' replication promoter region. This work supports a model whereby expression of a viral protein signals successful translation of the infecting genome, prompting a switch to a ribosome depleted replication-competent form.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Genoma Viral , Biossíntese de Proteínas , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Chlorocebus aethiops , Vírus da Dengue/enzimologia , Iniciação Traducional da Cadeia Peptídica , RNA Viral/química , Células Vero , Replicação Viral , Zika virus/enzimologia , Zika virus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...