Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Emerg Infect Dis ; 30(5): 847-853, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666566

RESUMO

Crimean-Congo hemorrhagic fever (CCHF), caused by CCHF virus, is a tickborne disease that can cause a range of illness outcomes, from asymptomatic infection to fatal viral hemorrhagic fever; the disease has been described in >30 countries. We conducted a literature review to provide an overview of the virology, pathogenesis, and pathology of CCHF for clinicians. The virus life cycle and molecular interactions are complex and not fully described. Although pathogenesis and immunobiology are not yet fully understood, it is clear that multiple processes contribute to viral entry, replication, and pathological damage. Limited autopsy reports describe multiorgan involvement with extravasation and hemorrhages. Advanced understanding of CCHF virus pathogenesis and immunology will improve patient care and accelerate the development of medical countermeasures for CCHF.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/virologia , Febre Hemorrágica da Crimeia/patologia , Humanos , Animais , Carrapatos/virologia , Replicação Viral
2.
J Virol ; 98(3): e0169823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38358288

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne virus of the Orthonairovirus genus, persistently infects tick cells. It has been reported to establish persistent infection in non-human primates, but virological analysis has not yet been performed in human cells. Here, we investigated whether and how nairoviruses persistently infect human cells using Hazara orthonairovirus (HAZV), a surrogate model for CCHFV. We established a human cell line that was persistently infected with HAZV. Surprisingly, virions of persistently infected HAZV (HAZVpi) were not observed in the culture supernatants. There were five mutations (mut1, mut2, mut3, mut4, and mut5) in L protein of HAZVpi. Mutations in L protein of HAZVpi contribute to non-detection of virion in the supernatants. Lmut4 was found to cause low viral growth rate, despite its high polymerase activity. The low growth rate was restored by Lmut2, Lmut3, and Lmut5. The polymerase activity of Lmut1 was extremely low, and recombinant HAZV carrying Lmut1 (rHAZV/Lmut1) was not released into the supernatants. However, genomes of rHAZV/Lmut1 were retained in the infected cells. All mutations (Lmut1-5) found in L protein of HAZVpi were required for experimental reproduction of HAZVpi, and only Lmut1 and Lmut4 were insufficient. We demonstrated that point mutations in viral polymerase contribute to the establishment of persistent HAZV infection. Furthermore, innate immunity was found to be suppressed in HAZVpi-infected cells, which also potentially contributes to viral persistence. This is the first presentation of a possible mechanism behind how nairoviruses establish persistent infection in human cells. IMPORTANCE: We investigated whether and how nairoviruses persistently infect human cells, using Hazara orthonairovirus (HAZV), a surrogate model for Crimean-Congo hemorrhagic fever virus. We established a human cell line that was persistently infected with HAZV. Five mutations were found in L protein of persistently infected HAZV (HAZVpi): mut1, mut2, mut3, mut4, and mut5. Among them, Lmut1 and Lmut4 restricted viral growth by low polymerase activity and low growth rate, respectively, leading to inhibition of viral overgrowth. The restriction of viral growth caused by Lmut1 and Lmut4 was compensated by other mutations, including Lmut2, Lmut3, and Lmut5. Each of the mutations found in L protein of HAZVpi was concluded to cooperatively modulate viral growth, which facilitates the establishment of persistent infection. Suppression of innate immunity also potentially contributes to virus persistence. This is the first presentation of a possible mechanism behind how nairoviruses establish persistent infection in human cells.


Assuntos
Infecções por Bunyaviridae , Nairovirus , Animais , Humanos , Linhagem Celular , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/virologia , Mutação , Nairovirus/genética , Infecção Persistente , Infecções por Bunyaviridae/virologia
3.
EBioMedicine ; 97: 104839, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866114

RESUMO

BACKGROUND: Crimean-Congo haemorrhagic fever (CCHF) is a serious viral hemorrhagic fever caused by the CCHF virus (CCHFV). Spread by the bites of infected ticks or handling of viremic livestock, human disease is characterized by a non-specific febrile illness that can rapidly progress to fatal hemorrhagic disease. No vaccines or antivirals are available. Case fatality rates can vary but can be higher than 30%, although sub-clinical infections are often unrecognized and unreported. Yet, while most humans infected with CCHFV will survive the infection, often with little-to-no symptoms, the host responses that control the infection are unknown. METHODS: Here we investigated the role of cellular immunity in control of CCHFV infection in an immunocompetent mouse model. FINDINGS: We found that CD8+ T-cells are crucial for efficient control of the acute infection and rapidly acquired CCHFV-specific antiviral effector functions such as production of antiviral cytokines and degranulating in response to CCHFV peptides. We further identified the minimal CD8+ T-cell epitopes in the viral Gc proteins and that infection of mice lacking IFNγ resulted in worsened disease and higher viral loads. INTERPRETATION: Together our data suggest that CD8+ T-cells are important for control of acute CCHFV infection likely through production of antiviral cytokines. FUNDING: This work was supported by the Intramural Research Program of the NIH.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Humanos , Camundongos , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/tratamento farmacológico , Linfócitos T CD8-Positivos , Antivirais/uso terapêutico , Citocinas
4.
mBio ; 14(5): e0154923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37671888

RESUMO

IMPORTANCE: Assessments of viral stability on surfaces or in body fluids under different environmental conditions and/or temperatures are often performed, as they are key to understanding the routes and parameters of viral transmission and to providing clues on the epidemiology of infections. However, for most viruses, the mechanisms of inactivation vs stability of viral particles remain poorly defined. Although they are structurally diverse, with different compositions, sizes, and shapes, enveloped viruses are generally less stable than non-enveloped viruses, pointing out the role of envelopes themselves in virus lability. In this report, we investigated the properties of hepatitis C virus (HCV) particles with regards to their stability. We found that, compared to alternative enveloped viruses such as Dengue virus (DENV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), hepatitis delta virus (HDV), and Crimean-Congo hemorrhagic fever virus (CCHFV) that infect the liver, HCV particles are intrinsically labile. We determined the mechanisms that drastically alter their specific infectivity through oxidation of their lipids, and we highlighted that they are protected from lipid oxidation by secreted cellular proteins, which can protect their membrane fusion capacity and overall infectivity.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Hepatite C , Humanos , Hepacivirus , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Hepatite C/metabolismo
5.
Microb Pathog ; 177: 106054, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36882130

RESUMO

Crimean-Congo hemorrhagic fever is a serious vector-borne zoonotic viral infection which leads to severe illness and fatalities in people living in endemic regions and becoming infected sporadically. Hyalomma ticks are responsible for the transmission of the virus which belongs to the family Nairoviridae. This disease spreads through ticks bite, infected tissues, or blood of viremic animals, and from infected humans to others. Serological studies also indicate the presence of the virus in various domestic and wild animals to be a risk factor for the transmission of the disease. Crimean-Congo hemorrhagic fever virus elicits many immune responses during the infection including inflammatory, innate, and adaptive immune responses. The development of an effective vaccine could be a promising method for the control and prevention of disease in endemic areas. The purpose of this review is to highlight the importance of CCHF, its mode of transmission, the interaction of the virus with the hosts and ticks, immunopathogenesis, and advances in immunization.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Carrapatos , Vacinas , Animais , Humanos , Febre Hemorrágica da Crimeia/prevenção & controle , Febre Hemorrágica da Crimeia/epidemiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Animais Selvagens
6.
Front Public Health ; 11: 1093817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778537

RESUMO

Crimean-Congo Hemorrhagic Fever (CCHF) is one of the most important vector-borne diseases of zoonotic potential that can be acquired following the bite of the Hyalomma species of ticks. It is a highly prevalent disease in Asia and the Middle East. The risk factors of this disease are contact with infected tissue, blood, patient, or livestock in the acute viremic phase, infected tick bites, or the manual removal of ticks. The disease is clinically described as progressive hemorrhages, fever, and pain in musculature. Biochemical tests reveal elevated levels of creatinine phosphokinase, alanine transaminase, aspartate aminotransferase, and lactate dehydrogenase. Clotting time is prolonged in pro-thrombin tests, and pathogenesis is mostly related to the disruption of the epithelium during viral replication and indirectly by secreting cytotoxic molecules. These molecules cause endothelial activation and result in the loss of function. Supportive therapy is given through blood or plasma infusions to treat or manage the patients. According to the most advanced studies, CCHF can be treated by Ribavirin, which is an antiviral drug that shows excellent results in preventing the disease. Health-care staff are more prone to infection. The hemorrhagic phase represents a high risk for accidental exposures. This literature review presents a comprehensive overview of the viral epidemiology, zoonotic perspectives, and significant risk factors of CCHF in various Middle East and Asian countries. Furthermore, the pathophysiology and preventive strategies of CCHF have also been discussed as well as legislation and policies regarding public outreach programs, research, and development aimed at infection prevention and control that are required at a global level.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Carrapatos , Animais , Humanos , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/tratamento farmacológico , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Oriente Médio/epidemiologia , Ásia/epidemiologia , Antivirais/uso terapêutico
7.
Viruses ; 14(10)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36298785

RESUMO

Dugbe orthonairovirus (DUGV) is a tick-borne arbovirus within the order Bunyavirales. Although displaying mild pathogenic potential, DUGV is genetically related to the Crimean-Congo hemorrhagic fever virus (CCHFV), another orthonairovirus that causes severe liver dysfunction and hemorrhagic fever with a high mortality rate in humans. As we previously observed that CCHFV infection could massively recruit and lipidate MAP1LC3 (LC3), a core factor involved in the autophagic degradation of cytosolic components, we asked whether DUGV infection also substantially impacts the autophagy machinery in epithelial cells. We observed that DUGV infection does impose LC3 lipidation in cultured hepatocytes. DUGV infection also caused an upregulation of the MAP1LC3 and SQSTM1/p62 transcript levels, which were, however, more moderate than those seen during CCHFV infection. In contrast, unlike during CCHFV infection, the modulation of core autophagy factors could influence both LC3 lipidation and viral particle production: the silencing of ATG5 and/or ATG7 diminished the induction of LC3 lipidation and slightly upregulated the level of infectious DUGV particle production. Overall, the results are compatible with the notion that in epithelial cells infected with DUGV in vitro, the autophagy machinery may be recruited to exert a certain level of restriction on viral replication. Thus, the relationship between DUGV infection and autophagy in epithelial cells appears to present both similarities and distinctions with that seen during CCHFV infection.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Vírus da Doença do Carneiro de Nairobi , Humanos , Proteína Sequestossoma-1 , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Autofagia , Proteínas , Hepatócitos
8.
Antiviral Res ; 200: 105276, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35278582

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) belongs to the genus Orthonairovirus and is the causative agent of a viral hemorrhagic disease with a case fatality rate of 30%. However, limited studies have been conducted to explore antiviral compounds specific to CCHFV. In this study, we developed a minigenome system of orthonairoviruses, CCHFV and Hazara virus to analyze viral replication and screened an FDA-approved compound library. The transfection of the minigenome components induced marked increase in luciferase expression, indicating the sufficient replication and translation of reporter RNA. Compound library screening identified 14 candidate compounds that significantly decreased luciferase activity. Some of the compounds also inhibited the replication of the infectious Hazara virus. The mechanism of inhibition by tigecycline was further analyzed, and a decrease in the interaction between the viral N protein and RNA by tigecycline was observed. This work provides a basis for validation using animal models and the design of chemical derivatives with stronger activity in future studies on the development of an antiviral against CCHFV.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Antivirais/farmacologia , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/tratamento farmacológico , Febre Hemorrágica da Crimeia/prevenção & controle , Nucleoproteínas , RNA , Tigeciclina/farmacologia
9.
Science ; 375(6576): 104-109, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34793197

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-borne zoonotic virus, with a 30% case fatality rate in humans. Structural information is lacking in regard to the CCHFV membrane fusion glycoprotein Gc­the main target of the host neutralizing antibody response­as well as antibody­mediated neutralization mechanisms. We describe the structure of prefusion Gc bound to the antigen-binding fragments (Fabs) of two neutralizing antibodies that display synergy when combined, as well as the structure of trimeric, postfusion Gc. The structures show the two Fabs acting in concert to block membrane fusion, with one targeting the fusion loops and the other blocking Gc trimer formation. The structures also revealed the neutralization mechanism of previously reported antibodies against CCHFV, providing the molecular underpinnings essential for developing CCHFV­specific medical countermeasures for epidemic preparedness.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Testes de Neutralização , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus
10.
PLoS Negl Trop Dis ; 15(8): e0009718, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34460819

RESUMO

BACKGROUND: Thirty-four CCHF cases (17 fatal; 17 survived) were confirmed from Gujarat state, India during the year 2019. We aimed to find out the viral load, antibody kinetics, cytokine profile and phylogenetic analysis between fatal and non- fatal cases. METHODS: Thirty four cases were included in this study. Blood and urine samples were collected from all the cases on the day of admission to hospital. Non-fatal cases were followed weekly for understanding the profile of viral kinetics, anti-CCHFV IgM and IgG antibodies. We also quantified the cytokines in both fatal and non-fatal cases. For epidemiological correlation, livestock were screened for anti-CCHF IgG antibodies and the tick pool specimens were tested by real time RT-PCR. Virus isolation was attempted on tick pools and human specimens and phylogenetic analysis performed on human and ticks complete genome sequences. RESULTS: CCHF cases were detected throughout year in 2019 with the peak in August. Out of 34 cases, eight secondary CCHF cases were reported. Cases were predominantly detected in males and in 19-45 years age group (55.88%). The persistence of viremia was observed till 76th POD (post onset date) in one case whereas anti-CCHFV IgM and IgG was detected amongst these cases from the 2nd and 20th POD respectively. Positivity observed amongst livestock and tick pools were was 21.57% and 7.4% respectively. The cytokine analysis revealed a significant increase in the level of serum IL-6, IL-10 and IFN-γ during the acute phase of the infection, but interestingly IL-10 lowered to normal upon clearance of the virus in the clinically recovered case. Fatal cases had high viral RNA copy numbers. Bleeding from one or two mucosal sites was significantly associated with fatality (OR-16.47;p-0.0034 at 95% CI). We could do CCHF virus isolation from two cases. Phylogenetic analysis revealed circulation of re-assortment of Asian-West African genotypes in humans and ticks. CONCLUSIONS: The persistence of CCHF viral RNA was detected till 76th POD in one of the survivors. The circulation of a re-assortment Asian-West African genotype in a CCHF case is also reported first time from India.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/virologia , Filogenia , Adolescente , Adulto , Idoso , Animais , Anticorpos Antivirais/sangue , Citocinas/sangue , Feminino , Genótipo , Vírus da Febre Hemorrágica da Crimeia-Congo/classificação , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/sangue , Febre Hemorrágica da Crimeia/epidemiologia , Humanos , Imunidade Humoral , Índia/epidemiologia , Gado/sangue , Gado/virologia , Masculino , Pessoa de Meia-Idade , RNA Viral/genética , Carrapatos/virologia , Carga Viral , Adulto Jovem
11.
Med Sci (Paris) ; 37(2): 135-140, 2021 Feb.
Artigo em Francês | MEDLINE | ID: mdl-33591256

RESUMO

The Crimean-Congo hemorrhagic fever virus (CCHFV) is the etiological agent of a severe hemorrhagic fever affecting Africa, Asia and southern Europe. Climate changes of recent decades have recently led to a rise in the distribution of this virus. Still few scientific data are available on the biology of its vector, the tick, or its own biology, but the proven presence of human infections observed in Spain and animals with positive serology in Corsica should focus our attention on this pathogen. This review takes stock of the epidemiologic evolution of CCHF in Europe, notably in France.


TITLE: La fièvre hémorragique de Crimée-Congo, une future problématique de santé en France ? ABSTRACT: Le virus de la fièvre hémorragique de Crimée-Congo (CCHFV) est l'agent étiologique d'une fièvre hémorragique grave affectant l'Afrique, l'Asie et le sud de l'Europe. Les modifications climatiques de ces dernières décennies induisent depuis peu une remontée de l'aire de distribution de ce virus. Encore peu de données scientifiques sont disponibles sur les interactions avec son vecteur, la tique, ou sur sa biologie propre. Cependant, la présence avérée d'infections humaines en Espagne et des sérologies positives dans le cheptel corse pourraient bien concentrer l'attention sur ce pathogène. Cette revue fait le point sur l'évolution des connaissances éco-épidémiologiques de ce virus, notamment en Europe et plus particulièrement en France.


Assuntos
Febre Hemorrágica da Crimeia/epidemiologia , Animais , Europa (Continente)/epidemiologia , França/epidemiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/virologia , Humanos , Estudos Soroepidemiológicos
12.
Elife ; 102021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33416494

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a severe tick-borne febrile illness with wide geographic distribution. CCHF is caused by infection with the Crimean-Congo hemorrhagic fever virus (CCHFV) and case fatality rates can be as high as 30%. Despite causing severe disease in humans, our understanding of the host and viral determinants of CCHFV pathogenesis are limited. A major limitation in the investigation of CCHF has been the lack of suitable small animal models. Wild-type mice are resistant to clinical isolates of CCHFV and consequently, mice must be deficient in type I interferon responses to study the more severe aspects of CCHFV. We report here a mouse-adapted variant of CCHFV that recapitulates in adult, immunocompetent mice the severe CCHF observed in humans. This mouse-adapted variant of CCHFV significantly improves our ability to study host and viral determinants of CCHFV-induced disease in a highly tractable mouse model.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/imunologia , Animais , Modelos Animais de Doenças , Feminino , Interferon Tipo I/deficiência , Masculino , Camundongos
13.
Cells ; 11(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35011568

RESUMO

Dromedaries are an important livestock, used as beasts of burden and for meat and milk production. However, they can act as an intermediate source or vector for transmitting zoonotic viruses to humans, such as the Middle East respiratory syndrome coronavirus (MERS-CoV) or Crimean-Congo hemorrhagic fever virus (CCHFV). After several outbreaks of CCHFV in the Arabian Peninsula, recent studies have demonstrated that CCHFV is endemic in dromedaries and camel ticks in the United Arab Emirates (UAE). There is no apparent disease in dromedaries after the bite of infected ticks; in contrast, fever, myalgia, lymphadenopathy, and petechial hemorrhaging are common symptoms in humans, with a case fatality ratio of up to 40%. We used the in-solution hybridization capture of 100 annotated immune genes to genotype 121 dromedaries from the UAE tested for seropositivity to CCHFV. Through univariate linear regression analysis, we identified two candidate genes belonging to the innate immune system: FCAR and CLEC2B. These genes have important functions in the host defense against viral infections and in stimulating natural killer cells, respectively. This study opens doors for future research into immune defense mechanisms in an enzootic host against an important zoonotic disease.


Assuntos
Camelus/imunologia , Infecções por Coronavirus/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/imunologia , Imunidade Inata/imunologia , Zoonoses/imunologia , Animais , Camelus/genética , Camelus/virologia , Embrião de Galinha , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Predisposição Genética para Doença/genética , Genótipo , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/genética , Febre Hemorrágica da Crimeia/virologia , Humanos , Imunidade Inata/genética , Fatores de Risco , Infestações por Carrapato/imunologia , Infestações por Carrapato/parasitologia , Carrapatos/imunologia , Carrapatos/fisiologia , Carrapatos/virologia , Emirados Árabes Unidos , Zoonoses/genética , Zoonoses/virologia
14.
Viruses ; 12(12)2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322045

RESUMO

Recent RNA virus outbreaks such as Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ebola virus (EBOV) have caused worldwide health emergencies highlighting the urgent need for new antiviral strategies. Targeting host cell pathways supporting viral replication is an attractive approach for development of antiviral compounds, especially with new, unexplored viruses where knowledge of virus biology is limited. Here, we present a strategy to identify host-targeted small molecule inhibitors using an image-based phenotypic antiviral screening assay followed by extensive target identification efforts revealing altered cellular pathways upon antiviral compound treatment. The newly discovered antiviral compounds showed broad-range antiviral activity against pathogenic RNA viruses such as SARS-CoV-2, EBOV and Crimean-Congo hemorrhagic fever virus (CCHFV). Target identification of the antiviral compounds by thermal protein profiling revealed major effects on proteostasis pathways and disturbance in interactions between cellular HSP70 complex and viral proteins, illustrating the supportive role of HSP70 on many RNA viruses across virus families. Collectively, this strategy identifies new small molecule inhibitors with broad antiviral activity against pathogenic RNA viruses, but also uncovers novel virus biology urgently needed for design of new antiviral therapies.


Assuntos
Antivirais/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Vírus de RNA/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/efeitos dos fármacos , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Humanos , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica , Proteoma/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais/metabolismo
15.
Molecules ; 25(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297527

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is one of the prioritized diseases of the World Health Organization, considering its potential to create a public health emergency and, more importantly, the absence of efficacious drugs and/or vaccines for treatment. The highly pathogenic characteristic of CCHFV restricts research to BSL-4 laboratories, which complicates effective research and developmental strategies. In consideration of antiviral therapies, RNA interference can be used to suppress viral replication by targeting viral genes. RNA interference uses small interfering RNAs (siRNAs) to silence genes. The aim of our study was to design and test siRNAs in vitro that inhibit CCHFV replication and can serve as a basis for further antiviral therapies. A549 cells were infected with CCHFV after transfection with the siRNAs. Following 72 h, nucleic acid from the supernatant was extracted for RT Droplet Digital PCR analysis. Among the investigated siRNAs we identified effective candidates against all three segments of the CCHF genome. Consequently, blocking any segment of CCHFV leads to changes in the virus copy number that indicates an antiviral effect of the siRNAs. In summary, we demonstrated the ability of specific siRNAs to inhibit CCHFV replication in vitro. This promising result can be integrated into future anti-CCHFV therapy developments.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Replicação Viral , Linhagem Celular , Células Cultivadas , Efeito Citopatogênico Viral , Relação Dose-Resposta a Droga , Humanos , RNA Interferente Pequeno/administração & dosagem , Reação em Cadeia da Polimerase em Tempo Real
16.
PLoS Pathog ; 16(9): e1008850, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32956404

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne orthonairovirus that has become a serious threat to the public health. CCHFV has a single-stranded, tripartite RNA genome composed of L, M, and S segments. Cleavage of the M polyprotein precursor generates the two envelope glycoproteins (GPs) as well as three secreted nonstructural proteins GP38 and GP85 or GP160, representing GP38 only or GP38 linked to a mucin-like protein (MLD), and a double-membrane-spanning protein called NSm. Here, we examined the relevance of each M-segment non-structural proteins in virus assembly, egress and infectivity using a well-established CCHFV virus-like-particle system (tc-VLP). Deletion of MLD protein had no impact on infectivity although it reduced by 60% incorporation of GPs into particles. Additional deletion of GP38 abolished production of infectious tc-VLPs. The loss of infectivity was associated with impaired Gc maturation and exclusion from the Golgi, showing that Gn is not sufficient to target CCHFV GPs to the site of assembly. Consistent with this, efficient complementation was achieved in cells expressing MLD-GP38 in trans with increased levels of preGc to Gc conversion, co-targeting to the Golgi, resulting in particle incorporation and restored infectivity. Contrastingly, a MLD-GP38 variant retained in the ER allowed preGc cleavage but failed to rescue miss-localization or infectivity. NSm deletion, conversely, did not affect trafficking of Gc but interfered with Gc processing, particle formation and secretion. NSm expression affected N-glycosylation of different viral proteins most likely due to increased speed of trafficking through the secretory pathway. This highlights a potential role of NSm in overcoming Golgi retention and facilitating CCHFV egress. Thus, deletions of GP38 or NSm demonstrate their important role on CCHFV particle production and infectivity. GP85 is an essential viral factor for preGc cleavage, trafficking and Gc incorporation into particles, whereas NSm protein is involved in CCHFV assembly and virion secretion.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Proteínas Estruturais Virais , Montagem de Vírus , Linhagem Celular Tumoral , Deleção de Genes , Humanos , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo
17.
PLoS Negl Trop Dis ; 14(6): e0008283, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32497085

RESUMO

BACKGROUND: The Crimean-Congo hemorrhagic fever virus (CCHFV) is a segmented negative-sense RNA virus that can cause severe human disease. The World Health Organization (WHO) has listed CCHFVas a priority pathogen with an urgent need for enhanced research activities to develop effective countermeasures. Here we adopted a biochemical approach that targets the viral RNA-dependent RNA polymerase (RdRp). The CCHFV RdRp activity is part of a multifunctional L protein that is unusually large with a molecular weight of ~450 kDa. The CCHFV L-protein also contains an ovarian tumor (OTU) domain that exhibits deubiquitinating (DUB) activity, which was shown to interfere with innate immune responses and viral replication. We report on the expression, characterization and inhibition of the CCHFV full-length L-protein and studied both RNA synthesis and DUB activity. METHODOLOGY/PRINCIPLE FINDINGS: Recombinant full-length CCHFV L protein was expressed in insect cells and purified to near homogeneity using affinity chromatography. RdRp activity was monitored with model primer/templates during elongation in the presence of divalent metal ions. We observed a 14-mer full length RNA product as well as the expected shorter products when omitting certain nucleotides from the reaction mixture. The D2517N mutation of the putative active site rendered the enzyme inactive. Inhibition of RNA synthesis was studies with the broad-spectrum antivirals ribavirin and favipiravir that mimic nucleotide substrates. The triphosphate form of these compounds act like ATP or GTP; however, incorporation of ATP or GTP is markedly favored over the inhibitors. We also studied the effects of bona fide nucleotide analogues 2'-deoxy-2'-fluoro-CTP (FdC) and 2'-deoxy-2'-amino-CTP and demonstrate increased inhibitory effects due to higher rates of incorporation. We further show that the CCHFV L full-length protein and the isolated OTU domain cleave Lys48- and Lys63-linked polyubiqutin chains. Moreover, the ubiquitin analogue CC.4 inhibits the CCHFV-associated DUB activity of the full-length L protein and the isolated DUB domain to a similar extent. Inhibition of DUB activity does not affect elongation of RNA synthesis, and inhibition of RNA synthesis does not affect DUB activity. Both domains are functionally independent under these conditions. CONCLUSIONS/SIGNIFICANCE: The requirements for high biosafety measures hamper drug discovery and development efforts with infectious CCHFV. The availability of full-length CCHFV L-protein provides an important tool in this regard. High-throughput screening (HTS) campaigns are now feasible. The same enzyme preparations can be employed to identify novel polymerase and DUB inhibitors.


Assuntos
RNA Polimerases Dirigidas por DNA/fisiologia , Enzimas Desubiquitinantes/fisiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Replicação Viral/efeitos dos fármacos , Amidas/farmacologia , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/virologia , Humanos , Mutação , Estrutura Terciária de Proteína , Pirazinas/farmacologia , RNA Viral , Ribavirina/farmacologia
18.
PLoS Negl Trop Dis ; 14(6): e0008364, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32492018

RESUMO

Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) is one of the most widespread medically important arboviruses, causing human infections that result in mortality rates of up to 60%. We describe the selection of a high-affinity small protein (Affimer-NP) that binds specifically to the nucleoprotein (NP) of CCHFV. We demonstrate the interference of Affimer-NP in the RNA-binding function of CCHFV NP using fluorescence anisotropy, and its inhibitory effects on CCHFV gene expression in mammalian cells using a mini-genome system. Solution of the crystallographic structure of the complex formed by these two molecules at 2.84 Å resolution revealed the structural basis for this interference, with the Affimer-NP binding site positioned at the critical NP oligomerization interface. Finally, we validate the in vitro application of Affimer-NP for the development of enzyme-linked immunosorbent and lateral flow assays, presenting the first published point-of-care format test able to detect recombinant CCHFV NP in spiked human and animal sera.


Assuntos
Colorimetria/métodos , Testes Diagnósticos de Rotina/métodos , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/virologia , Replicação Viral , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Humanos , Imunoglobulina G/sangue , Modelos Moleculares , Nucleoproteínas/química , Nucleoproteínas/genética , Conformação Proteica
19.
Ticks Tick Borne Dis ; 11(4): 101417, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32222359

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is an emerging tick-borne viral disease caused by the orthonairovirus CCHF virus (CCHFV). Ticks of the genus Hyalomma are the viral reservoir and they represent the main vector transmitting the virus to their hosts during blood feeding. However, how CCHFV replicates in its natural arthropod host cells and the nature of virus/host interactions are still largely unknown. With the aim of developing tools for use in this field, we identified and validated expression of four candidate endogenous control tick genes in a Hyalomma anatolicum-derived cell line. These genes will be useful for normalization of viral/cellular transcripts in infection/expression studies or as internal controls in molecular epidemiology surveys of pathogens transmitted by Hyalomma ticks.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Ixodidae/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Linhagem Celular/metabolismo , Linhagem Celular/virologia , Interações entre Hospedeiro e Microrganismos , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Reação em Cadeia da Polimerase em Tempo Real/veterinária
20.
Ticks Tick Borne Dis ; 11(3): 101382, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32008996

RESUMO

The species identification of tick vectors of Crimean-Congo hemorrhagic fever virus (CCHFV), especially Hyalomma (H.) species, is a prerequisite to understand the eco-epidemiology of this disease and to reveal vector and virus reservoir species. However, the morphologic species discrimination can be difficult for damaged or blood-fed ticks and in case of species intercrosses. Therefore, we used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and restriction fragment length polymorphism (RFLP) analysis to distinguish the most common Hyalomma species from sub-Saharan Africa (H. truncatum, H. rufipes and H. dromedarii). Within the last years, MALDI-TOF MS analysis based on tick leg proteins has been shown to be a reliable method to distinguish several tick species. For this purpose, a reference spectral library of several European, American and African tick species was established. In this study, six different Hyalomma species were tested, all of which were all clearly distinguishable by mass spectrometric analyses. Moreover, MALDI TOF- MS was able to confirm morphologic findings where sequencing provided ambiguous results. In addition, a polymerase chain reaction (PCR) based on the CO1 gene amplification of ticks has been developed for the unequivocal species identification by amplicon sequencing and specific restriction endonuclease cleavage pattern analysis. RFLP proved to be a feasible auxiliary discrimination tool for selected Hyalomma species when access to sequencing methods is not available, as for instance during field studies.


Assuntos
Vetores Aracnídeos/classificação , Reservatórios de Doenças/classificação , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Ixodidae/classificação , Espectrometria de Massas/veterinária , Reação em Cadeia da Polimerase/veterinária , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária , África Subsaariana , Animais , Vetores Aracnídeos/virologia , Reservatórios de Doenças/virologia , Febre Hemorrágica da Crimeia/transmissão , Ixodidae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...