Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Commun ; 15(1): 1722, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409240

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a WHO priority pathogen. Antibody-based medical countermeasures offer an important strategy to mitigate severe disease caused by CCHFV. Most efforts have focused on targeting the viral glycoproteins. However, glycoproteins are poorly conserved among viral strains. The CCHFV nucleocapsid protein (NP) is highly conserved between CCHFV strains. Here, we investigate the protective efficacy of a CCHFV monoclonal antibody targeting the NP. We find that an anti-NP monoclonal antibody (mAb-9D5) protected female mice against lethal CCHFV infection or resulted in a significant delay in mean time-to-death in mice that succumbed to disease compared to isotype control animals. Antibody protection is independent of Fc-receptor functionality and complement activity. The antibody bound NP from several CCHFV strains and exhibited robust cross-protection against the heterologous CCHFV strain Afg09-2990. Our work demonstrates that the NP is a viable target for antibody-based therapeutics, providing another direction for developing immunotherapeutics against CCHFV.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Feminino , Animais , Camundongos , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Anticorpos Monoclonais , Febre Hemorrágica da Crimeia/prevenção & controle , Glicoproteínas/metabolismo , Anticorpos Antivirais
2.
Cell Res ; 34(2): 140-150, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38182887

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-born zoonotic bunyavirus that causes severe hemorrhagic fever and death in humans. CCHFV enters the cell via clathrin-mediated endocytosis which is dependent on its surface glycoproteins. However, the cellular receptors that are required for CCHFV entry are unknown. Here we show that the low density lipoprotein receptor (LDLR) is an entry receptor for CCHFV. Genetic knockout of LDLR impairs viral infection in various CCHFV-susceptible human, monkey and mouse cells, which is restored upon reconstitution with ectopically-expressed LDLR. Mutagenesis studies indicate that the ligand binding domain (LBD) of LDLR is necessary for CCHFV infection. LDLR binds directly to CCHFV glycoprotein Gc with high affinity, which supports virus attachment and internalization into host cells. Consistently, a soluble sLDLR-Fc fusion protein or anti-LDLR blocking antibodies impair CCHFV infection into various susceptible cells. Furthermore, genetic knockout of LDLR or administration of an LDLR blocking antibody significantly reduces viral loads, pathological effects and death following CCHFV infection in mice. Our findings suggest that LDLR is an entry receptor for CCHFV and pharmacological targeting of LDLR may provide a strategy to prevent and treat Crimean-Congo hemorrhagic fever.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Receptores de LDL , Animais , Humanos , Camundongos , Endocitose , Glicoproteínas/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Febre Hemorrágica da Crimeia/prevenção & controle , Receptores de LDL/metabolismo , Internalização do Vírus
3.
Biotechnol Appl Biochem ; 71(2): 280-294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38054375

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is classified among top 10 priority pathogens by World Health Organization. CCHFV belongs to Bunyaviridae family and negative sense ssRNA genome composed of three RNA segments: L, M, and S. RNA viruses show higher mutation rate as compared to DNA viruses. To gain deeper understanding of impact of point mutations in CCHFV M and S segment, mutation profiling, homology modeling, and molecular dynamic (MD) simulation were performed. Structural glycoproteins (glycoprotein C [Gc] and glycoprotein N [Gn]) of CCHFV are important for host-virus interaction and genome packaging, whereas CCHFV nucleoprotein (NP) is crucial for viral replication. Hence, current study is focused on evaluation of eight mutations in structural glycoproteins (Gc: 7 and Gn: 1) of M segment and seven mutations in NP of S segment. All these mutations were highly frequent, with mutation frequency between 0.81 and 1.0 and found to be persistent in the recent strains of CCHFV. Solubility analysis predicted that selected point mutations reduce solubility of Gc protein and increase solubility of Gn and NP proteins. MD simulation study deciphered that A1046V and G1158E in Gc protein, I778T in Gn protein, and H195R in NP protein displayed large deviation and fluctuation, and affected intramolecular interactions. In conclusion, we observed that point mutations could impact structure, stability, and host-virus interaction of protein, and might lead to evolution of new strains for better survival and drug resistance.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Proteínas do Envelope Viral , Vírus da Febre Hemorrágica da Crimeia-Congo/química , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Mutação Puntual , Glicoproteínas/genética , Glicoproteínas/química , RNA
4.
Nat Commun ; 14(1): 7365, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963884

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a biosafety level-4 pathogen requiring urgent research and development efforts. The glycoproteins of CCHFV, Gn and Gc, are considered to play multiple roles in the viral life cycle by interactions with host cells; however, these interactions remain largely unclear to date. Here, we analyzed the cellular interactomes of CCHFV glycoproteins and identified 45 host proteins as high-confidence Gn/Gc interactors. These host molecules are involved in multiple cellular biological processes potentially associated with the physiological actions of the viral glycoproteins. Then, we elucidated the role of a representative cellular protein, HAX1. HAX1 interacts with Gn by its C-terminus, while its N-terminal region leads to mitochondrial localization. By the strong interaction, HAX1 sequestrates Gn to mitochondria, thus depriving Gn of its normal Golgi localization that is required for functional glycoprotein-mediated progeny virion packaging. Consistently, the inhibitory activity of HAX1 against viral packaging and hence propagation was further elucidated in the contexts of pseudotyped and authentic CCHFV infections in cellular and animal models. Together, the findings provide a systematic CCHFV Gn/Gc-cell protein-protein interaction map, but also unravel a HAX1/mitochondrion-associated host antiviral mechanism, which may facilitate further studies on CCHFV biology and therapeutic approaches.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Febre Hemorrágica da Crimeia/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo
5.
Biomark Med ; 17(11): 533-540, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37791843

RESUMO

Background: The aim of this study is to determine predictive parameters that can be used in the differential diagnosis of Crimean-Congo Hemorrhagic Fever (CCHF) and other diseases with similar clinical and laboratory findings. Materials & methods: In this study, epidemiological, clinical and laboratory parameters of 107 CCHF-positive and 71 CCHF-negative patients were compared. Results: Alanine amino transferase, aspartate aminotransferase, creatine kinase, lactate dehydrogenase, red blood cell, hemoglobin and hematocrit were significantly higher in CCHF-positive patients, whereas total and direct bilirubin, alkaline phosphatase, prothrombin time, international normalization ratio, white blood cell, C-reactive protein and procalcitonin were higher in CCHF-negative patients. In binary logistic regression analysis, an increase in activated partial thromboplastin time level was identified as an independent predictor of having CCHF, while alanine amino transferase, white blood cell and C-reactive protein elevations were identified as independent predictors of not having CCHF. Conclusion: In endemic areas where PCR and serological tests are delayed, knowing the predictive parameters may be of vital importance in the early diagnosis of CCHF.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Humanos , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/epidemiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Proteína C-Reativa/metabolismo , Diagnóstico Diferencial , Alanina Transaminase , Alanina
6.
PLoS One ; 16(11): e0260143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807939

RESUMO

The protein aggregation is one of the major challenges of the biotechnological industry, especially in the areas of development and commercialization of successful protein-based drug products. The inherent high aggregation tendency of proteins during various manufacturing processes, storage, and administration has significant impact upon the product quality, safety and efficacy. We have developed an interesting protein purification approach that separates the functionally active protein from inactive aggregates using a detergent concentration gradient. The C-terminally His tagged nucleocapsid protein of Crimean Congo Hemorrhagic fever virus (CCHFV) has high aggregation tendency and rapidly precipitates upon purification by NiNTA chromatography. Using the new purification approach reported here, the freshly purified protein by NiNTA chromatography was further processed using a detergent gradient. In this new purification approach the active protein is retained in the low detergent concentration zone while the inactive aggregates are promptly removed by their rapid migration to the high detergent concentration zone. The method prevented further aggregation and retained the RNA binding activity in the native protein despite numerous freeze thaw cycles. This simple approach prevents protein aggregation by rapidly separating the preformed early aggregates and creating the appropriate microenvironment for correctly folded proteins to retain their biological activity. It will be of potential importance to the biotechnological industry and other fields of protein biochemistry that routinely face the challenges of protein aggregation.


Assuntos
Detergentes/química , Proteínas do Nucleocapsídeo/isolamento & purificação , Agregados Proteicos/fisiologia , Biotecnologia , Cromatografia de Afinidade/métodos , Técnicas Genéticas , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Dobramento de Proteína , Proteínas/química , Proteínas/isolamento & purificação , RNA
7.
Sci Rep ; 10(1): 12378, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704046

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne pathogen causing a febrile illness in humans, which can progress to hemorrhagic manifestations, multi-organ failure, and death. Current mouse models of CCHFV infection reliably succumb to virus challenge but vary in their ability to reflect signs of disease similar to humans. In this study, we established a signal transducer and activator of transcription 2 (STAT2) knockout hamster model to expand the repertoire of animal models of CCHFV pathogenesis that can be used for therapeutic development. These hamsters demonstrated a systemic and lethal disease in response to infection. Hallmarks of human disease were observed including petechial rash, blood coagulation dysfunction, and various biochemistry and blood cell count abnormalities. Furthermore, we also demonstrated the utility of this model for anti-CCHFV therapeutic evaluation. The STAT2 knock-out hamster model of CCHFV infection may provide some further insights into clinical disease, viral pathogenesis, and pave the way for testing of potential drug and vaccine candidates.


Assuntos
Animais Geneticamente Modificados , Modelos Animais de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Febre Hemorrágica da Crimeia , Fator de Transcrição STAT2/deficiência , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Animais Geneticamente Modificados/virologia , Linhagem Celular , Cricetinae , Feminino , Técnicas de Inativação de Genes , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/genética , Febre Hemorrágica da Crimeia/metabolismo , Febre Hemorrágica da Crimeia/patologia , Masculino , Fator de Transcrição STAT2/metabolismo
8.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996434

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is the causative agent of the most widespread tick-borne viral infection in humans. CCHFV encodes a secreted glycoprotein (GP38) of unknown function that is the target of a protective antibody. Here, we present the crystal structure of GP38 at a resolution of 2.5 Å, which revealed a novel fold primarily consisting of a 3-helix bundle and a ß-sandwich. Sequence alignment and homology modeling showed distant homology between GP38 and the ectodomain of Gn (a structural glycoprotein in CCHFV), suggestive of a gene duplication event. Analysis of convalescent-phase sera showed high titers of GP38 antibodies indicating immunogenicity in humans during natural CCHFV infection. The only protective antibody for CCHFV in an adult mouse model reported to date, 13G8, bound GP38 with subnanomolar affinity and protected against heterologous CCHFV challenge in a STAT1-knockout mouse model. Our data strongly suggest that GP38 should be evaluated as a vaccine antigen and that its structure provides a foundation to investigate functions of this protein in the viral life cycle.IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is a priority pathogen that poses a high risk to public health. Due to the high morbidity and mortality rates associated with CCHFV infection, there is an urgent need to develop medical countermeasures for disease prevention and treatment. CCHFV GP38, a secreted glycoprotein of unknown function unique to the Nairoviridae family, was recently shown to be the target of a protective antibody against CCHFV. Here, we present the crystal structure of GP38, which revealed a novel fold with distant homology to another CCHFV glycoprotein that is suggestive of a gene duplication event. We also demonstrate that antibody 13G8 protects STAT1-knockout mice against heterologous CCHFV challenge using a clinical isolate from regions where CCHFV is endemic. Collectively, these data advance our understanding of GP38 structure and antigenicity and should facilitate future studies investigating its function.


Assuntos
Glicoproteínas/química , Glicoproteínas/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Animais , Anticorpos Antivirais/imunologia , Clonagem Molecular , Cristalografia por Raios X , Modelos Animais de Doenças , Feminino , Glicoproteínas/metabolismo , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/mortalidade , Febre Hemorrágica da Crimeia/prevenção & controle , Febre Hemorrágica da Crimeia/virologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Knockout , Modelos Moleculares , Conformação Proteica , Fator de Transcrição STAT1/genética , Análise de Sequência de Proteína
9.
Autophagy ; 16(10): 1858-1870, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31905032

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a virus that causes severe liver dysfunctions and hemorrhagic fever, with high mortality rate. Here, we show that CCHFV infection caused a massive lipidation of LC3 in hepatocytes. This lipidation was not dependent on ATG5, ATG7 or BECN1, and no signs for recruitment of the alternative ATG12-ATG3 pathway for lipidation was found. Both virus replication and protein synthesis were required for the lipidation of LC3. Despite an augmented transcription of SQSTM1, the amount of proteins did not show a massive and sustained increase in infected cells, indicating that degradation of SQSTM1 by macroautophagy/autophagy was still occurring. The genetic alteration of autophagy did not influence the production of CCHFV particles demonstrating that autophagy was not required for CCHFV replication. Thus, the results indicate that CCHFV multiplication imposes an overtly elevated level of LC3 mobilization that involves a possibly novel type of non-canonical lipidation. Abbreviations: BECN1: Beclin 1; CCHF: Crimean-Congo hemorrhagic fever; CCHFV: Crimean-Congo hemorrhagic fever virus; CHX: cycloheximide; ER: endoplasmic reticulum; GFP: green fluorescent protein; GP: glycoproteins; MAP1LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; n.i.: non-infected; NP: nucleoprotein; p.i.: post-infection; SQSTM1: sequestosome 1.


Assuntos
Autofagia , Células Epiteliais/virologia , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Febre Hemorrágica da Crimeia/virologia , Replicação Viral , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Chlorocebus aethiops , Células HeLa , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/metabolismo , Células Hep G2 , Hepatócitos/virologia , Humanos , Lipídeos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Biossíntese de Proteínas , Proteína Sequestossoma-1/metabolismo , Células Vero
10.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31292241

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a cause of severe hemorrhagic fever. Its tick reservoir and vector are widely distributed throughout Africa, Southern and Eastern Europe, the Middle East, and Asia. Serological evidence suggests that CCHFV can productively infect a wide variety of species, but only humans develop severe, sometimes fatal disease. The role of the host adaptive immunity in control or contribution to the severe pathology seen in CCHF cases is largely unknown. Studies of adaptive immune responses to CCHFV have been limited due to lack of suitable small animal models. Wild-type mice are resistant to CCHFV infection, and type I interferon-deficient mice typically develop a rapid-onset fatal disease prior to development of adaptive immune responses. We report here a mouse model in which type I interferon-deficient mice infected with a clinical isolate of CCHFV develop a severe inflammatory disease but ultimately recover. Recovery was coincident with development of CCHFV-specific B- and T-cell responses that were sustained for weeks postinfection. We also found that recovery from a primary CCHFV infection could protect against disease following homologous or heterologous reinfection. Together this model enables study of multiple aspects of CCHFV pathogenesis, including convalescence, an important aspect of CCHF disease that existing mouse models have been unsuitable for studying.IMPORTANCE The role of antibody or virus-specific T-cell responses in control of acute Crimean-Congo hemorrhagic fever virus infection is largely unclear. This is a critical gap in our understanding of CCHF, and investigation of convalescence following severe acute CCHF has been limited by the lack of suitable small animal models. We report here a mouse model of CCHF in which infected mice develop severe disease but ultimately recover. Although mice developed an inflammatory immune response along with severe liver and spleen pathology, these mice also developed CCHFV-specific B- and T-cell responses and were protected from reinfection. This model provides a valuable tool to investigate how host immune responses control acute CCHFV infection and how these responses may contribute to the severe disease seen in CCHFV-infected humans in order to develop therapeutic interventions that promote protective immune responses.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Interferon Tipo I/genética , Imunidade Adaptativa/imunologia , Animais , Convalescença , Modelos Animais de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/metabolismo , Febre Hemorrágica da Crimeia/virologia , Interferon Tipo I/metabolismo , Fígado/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/virologia
11.
Iran Biomed J ; 23(6): 379-87, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31104398

RESUMO

Background: Crimean-Congo hemorrhagic fever (CCHF) is an acute viral zoonotic disease, with a mortality rate of 30-50%. There is no approved vaccine or any specific antiviral treatment for CCHF; therefore, the rapid diagnosis seems to be crucial for both efficient supportive therapy and control of infection spread. In this study, the potency of recombinant nucleoprotein of virus expressed in prokaryotic system was investigated for diagnosis of the infection. Methods: The DNA sequence of complete nucleoprotein ORF was codon optimized based on E. coli codon usage and synthesized commercially. The gene was subcloned in pCA4 vector and expressed in E. coli BL21 (DE3). Refolding and simultaneous purification of nucleoprotein were performed using protein folding liquid chromatography method. The recombinant nucleoprotein was analyzed by Western blotting, ELISA, immunofluorescence assay, and circular dichroism. Forty eight human samples, in three IgM positive and three negative control groups, were evaluated using recombinant nucleoprotein in a capture ELISA setting. Serum from healthy individuals, those suspected to viral hemorrhagic fevers, and positive samples of Chikungunya and Dengue were considered as negative controls. Results: The existence and structure of recombinant nucleoprotein were verified and confirmed. Capture IgM ELISA detected all positive samples (sensitivity of 100%), but none of the 25 negative samples was detected as positive (specificity of 100%). The test also detected all the included genotypes of virus. Discussion: Our recombinant nucleoprotein can be used in IgM capture ELISA for easy and efficient detection of CCHF in any lab in endemic regions.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/virologia , Nucleoproteínas/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina M/metabolismo , Corpos de Inclusão/metabolismo , Nucleoproteínas/química , Nucleoproteínas/isolamento & purificação , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
12.
PLoS One ; 12(9): e0184935, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28922369

RESUMO

Crimean Congo hemorrhagic fever, a zoonotic viral disease, has high mortality rate in humans. There is currently no vaccine for Crimean Congo hemorrhagic fever virus (CCHFV) and chemical interventions are limited. The three negative sense genomic RNA segments of CCHFV are specifically encapsidated by the nucleocapsid protein into three ribonucleocapsids, which serve as templates for the viral RNA dependent RNA polymerase. Here we demonstrate that CCHFV nucleocapsid protein has two distinct binding modes for double and single strand RNA. In the double strand RNA binding mode, the nucleocapsid protein preferentially binds to the vRNA panhandle formed by the base pairing of complementary nucleotides at the 5' and 3' termini of viral genome. The CCHFV nucleocapsid protein does not have RNA helix unwinding activity and hence does not melt the duplex vRNA panhandle after binding. In the single strand RNA binding mode, the nucleocapsid protein does not discriminate between viral and non-viral RNA molecules. Binding of both vRNA panhandle and single strand RNA induce a conformational change in the nucleocapsid protein. Nucleocapsid protein remains in a unique conformational state due to simultaneously binding of structurally distinct vRNA panhandle and single strand RNA substrates. Although the role of dual RNA binding modes in the virus replication cycle is unknown, their involvement in the packaging of viral genome and regulation of CCHFV replication in conjunction with RdRp and host derived RNA regulators is highly likely.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo , RNA Viral , Proteínas de Ligação a RNA , Vírus da Febre Hemorrágica da Crimeia-Congo/química , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Ligação Proteica , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Cell Rep ; 20(10): 2396-2407, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877473

RESUMO

Antiviral responses are regulated by conjugation of ubiquitin (Ub) and interferon-stimulated gene 15 (ISG15) to proteins. Certain classes of viruses encode Ub- or ISG15-specific proteases belonging to the ovarian tumor (OTU) superfamily. Their activity is thought to suppress cellular immune responses, but studies demonstrating the function of viral OTU proteases during infection are lacking. Crimean-Congo hemorrhagic fever virus (CCHFV, family Nairoviridae) is a highly pathogenic human virus that encodes an OTU with both deubiquitinase and deISGylase activity as part of the viral RNA polymerase. We investigated CCHFV OTU function by inactivating protease catalytic activity or by selectively disrupting its deubiquitinase and deISGylase activity using reverse genetics. CCHFV OTU inactivation blocked viral replication independently of its RNA polymerase activity, while deubiquitinase activity proved critical for suppressing the interferon responses. Our findings provide insights into viral OTU functions and support the development of therapeutics and vaccines.


Assuntos
Citocinas/metabolismo , Enzimas Desubiquitinantes/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Neoplasias Ovarianas/imunologia , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Citocinas/genética , Enzimas Desubiquitinantes/genética , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Humanos , Neoplasias Ovarianas/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinas/genética , Replicação Viral/genética , Replicação Viral/fisiologia
14.
Arch Virol ; 162(7): 1951-1962, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28316015

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a major cause of tick-borne viral hemorrhagic disease in the world. Despite of its importance as a deadly pathogen, there is currently no licensed vaccine against CCHF disease. The attachment glycoprotein of CCHFV (Gn) is a potentially important target for protective antiviral immune responses. To characterize the expression of recombinant CCHFV Gn in an insect-cell-based system, we developed a gene expression system expressing the full-length coding sequence under a polyhedron promoter in Sf9 cells using recombinant baculovirus. Recombinant Gn was purified by affinity chromatography, and the immunoreactivity of the protein was evaluated using sera from patients with confirmed CCHF infection. Codon-optimized Gn was successfully expressed, and the product had the expected molecular weight for CCHFV Gn glycoprotein of 37 kDa. In time course studies, the optimum expression of Gn occurred between 36 and 48 hours postinfection. The immunoreactivity of the recombinant protein in Western blot assay against human sera was positive and was similar to the results obtained with the anti-V5 tag antibody. Additionally, mice were subjected to subcutaneous injection with recombinant Gn, and the cellular and humoral immune response was monitored. The results showed that recombinant Gn protein was highly immunogenic and could elicit high titers of antigen-specific antibodies. Induction of the inflammatory cytokine interferon-gamma and the regulatory cytokine IL-10 was also detected. In conclusion, a recombinant baculovirus harboring CCHFV Gn was constructed and expressed in Sf9 host cells for the first time, and it was demonstrated that this approach is a suitable expression system for producing immunogenic CCHFV Gn protein without any biosafety concerns.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Proteínas Virais/metabolismo , Animais , Baculoviridae/genética , Sequência de Bases , Códon , Citocinas/metabolismo , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Camundongos , Camundongos Endogâmicos BALB C , Células Sf9 , Baço/metabolismo , Proteínas Virais/genética
15.
J Virol ; 90(20): 9305-16, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27512070

RESUMO

UNLABELLED: The Nairovirus genus of the Bunyaviridae family contains serious human and animal pathogens classified within multiple serogroups and species. Of these serogroups, the Crimean-Congo hemorrhagic fever virus (CCHFV) serogroup comprises sole members CCHFV and Hazara virus (HAZV). CCHFV is an emerging zoonotic virus that causes often-fatal hemorrhagic fever in infected humans for which preventative or therapeutic strategies are not available. In contrast, HAZV is nonpathogenic to humans and thus represents an excellent model to study aspects of CCHFV biology under conditions of more-accessible biological containment. The three RNA segments that form the nairovirus genome are encapsidated by the viral nucleocapsid protein (N) to form ribonucleoprotein (RNP) complexes that are substrates for RNA synthesis and packaging into virus particles. We used quantitative proteomics to identify cellular interaction partners of CCHFV N and identified robust interactions with cellular chaperones. These interactions were validated using immunological methods, and the specific interaction between native CCHFV N and cellular chaperones of the HSP70 family was confirmed during live CCHFV infection. Using infectious HAZV, we showed for the first time that the nairovirus N-HSP70 association was maintained within both infected cells and virus particles, where N is assembled as RNPs. Reduction of active HSP70 levels in cells by the use of small-molecule inhibitors significantly reduced HAZV titers, and a model for chaperone function in the context of high genetic variability is proposed. These results suggest that chaperones of the HSP70 family are required for nairovirus replication and thus represent a genetically stable cellular therapeutic target for preventing nairovirus-mediated disease. IMPORTANCE: Nairoviruses compose a group of human and animal viruses that are transmitted by ticks and associated with serious or fatal disease. One member is Crimean-Congo hemorrhagic fever virus (CCHFV), which is responsible for fatal human disease and is recognized as an emerging threat within Europe in response to climate change. No preventative or therapeutic strategies against nairovirus-mediated disease are currently available. Here we show that the N protein of CCHFV and the related Hazara virus interact with a cellular protein, HSP70, during both the intracellular and extracellular stages of the virus life cycle. The use of inhibitors that block HSP70 function reduces virus titers by up to 1,000-fold, suggesting that this interaction is important within the context of the nairovirus life cycle and may represent a potent target for antinairovirus therapies against which the virus cannot easily develop resistance.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Nairovirus/genética , Nairovirus/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Replicação Viral/genética , Células A549 , Linhagem Celular , Linhagem Celular Tumoral , Mudança Climática , Europa (Continente) , Células HEK293 , Febre Hemorrágica da Crimeia/metabolismo , Febre Hemorrágica da Crimeia/virologia , Humanos , RNA/genética
16.
J Med Entomol ; 52(5): 1144-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26336221

RESUMO

Crimean-Congo Hemorrhagic Fever virus (CCHFV) is transmitted through the bite of an infected tick, or by direct contact with CCHFV-infected patients' blood or the products of infected livestock. In 2012, ticks were collected in eight regions of Lorestan Province, Iran. In total, 434 ticks were collected. Reverse transcriptase polymerase chain reaction was used for the detection of CCHFV RNA. Of 434 ticks, 419 (96.6%) ticks were from the family Ixodidae (hard ticks) and 15 (3.5%) ticks were from the family Argasidae (soft ticks). The presence of CCHFV RNA was detected in 29 (6.7%) of 434 ticks. The infected tick species include Hyalomma asiaticum (n = 7, 7.4%), Hyalomma anatolicum (n = 12, 13.2%), Hyalomma marginatum (n = 1, 16.7%), and Rhipicephalus sanguineus (n = 9, 4.3%). These empirical data demonstrated that the majority of CCHFV-positive ticks belonged to the Ixodidae. None of the Argasidae and Haemaphysalis sulcata species was infected with CCHFV. The phylogenetic analyses of the tick-derived CCHFV strains revealed that all 29 viral strains fell in clade IV (Asia 1). The most abundant species of tick collected in this study was R. sanguineus followed by different species of Hyalomma. Given the infection rate among collected ticks, H. marginatum was the most abundant infected tick species (16.7%) followed by H. anatolicum (13.2%), H. asiaticum (7.4%), and R. sanguineus (4.3%).


Assuntos
Argas/virologia , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Ixodidae/virologia , Animais , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Irã (Geográfico) , Masculino , Dados de Sequência Molecular , Filogenia , Filogeografia , Estações do Ano , Análise de Sequência de DNA , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
PLoS Pathog ; 11(5): e1004879, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25933376

RESUMO

Crimean Congo hemorrhagic fever virus (CCHFV) is a negative-strand RNA virus of the family Bunyaviridae (genus: Nairovirus). In humans, CCHFV causes fever, hemorrhage, severe thrombocytopenia, and high fatality. A major impediment in precisely determining the basis of CCHFV's high pathogenicity has been the lack of methodology to produce recombinant CCHFV. We developed a reverse genetics system based on transfecting plasmids into BSR-T7/5 and Huh7 cells. In our system, bacteriophage T7 RNA polymerase produced complementary RNA copies of the viral S, M, and L segments that were encapsidated with the support, in trans, of CCHFV nucleoprotein and L polymerase. The system was optimized to systematically recover high yields of infectious CCHFV. Additionally, we tested the ability of the system to produce specifically designed CCHFV mutants. The M segment encodes a polyprotein that is processed by host proprotein convertases (PCs), including the site-1 protease (S1P) and furin-like PCs. S1P and furin cleavages are necessary for producing the non-structural glycoprotein GP38, while S1P cleavage yields structural Gn. We studied the role of furin cleavage by rescuing a recombinant CCHFV encoding a virus glycoprotein precursor lacking a functional furin cleavage motif (RSKR mutated to ASKA). The ASKA mutation blocked glycoprotein precursor's maturation to GP38, and Gn precursor's maturation to Gn was slightly diminished. Furin cleavage was not essential for replication, as blocking furin cleavage resulted only in transient reduction of CCHFV titers, suggesting that either GP38 and/or decreased Gn maturation accounted for the reduced virion production. Our data demonstrate that nairoviruses can be produced by reverse genetics, and the utility of our system uncovered a function for furin cleavage. This viral rescue system could be further used to study the CCHFV replication cycle and facilitate the development of efficacious vaccines to counter this biological and public health threat.


Assuntos
Furina/metabolismo , Glicoproteínas/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Células Clonais , Cricetulus , Furina/genética , Glicoproteínas/química , Glicoproteínas/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Mesocricetus , Mutação , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Pró-Proteína Convertases/metabolismo , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/metabolismo , Especificidade por Substrato , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
18.
Eur Rev Med Pharmacol Sci ; 19(3): 461-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25720719

RESUMO

OBJECTIVE: The Crimean-Congo haemorrhagic fever virus (CCHFV), which is transmitted by the ticks of Hyalomma spp. in general and H. marginatumin particular, can cause severe disease in humans, with mortality rates of 3-30%. Other than from the bites of infected ticks, CCHFV can also be transmitted through contact with patients with the acute phase of infection or contact with blood or tissues from viraemic livestock.  Outbreaks of human cases of haemorrhagic manifestations have been documented since 1945 and described in parts of Africa, Asia, Eastern Europe and the Middle East and most recently India in 2011. In addition, serological evidence of the disease has been reported in some countries where no human cases were reported. As regional neighbours China and India have been affected by this virus, this study was conducted to determine the seroprevalence of CCHFV among Orang Asli population of Malaysia as the most at risk people who residing in the deep forests. PATIENTS AND METHODS: A total of 682 serum samples were collected from the Orang Asli population residing in eight states in peninsular Malaysia and analysed for the presence of anti-CCHFV immunoglobulin G (IgG) using a commercial enzyme-linked immunosorbent assay kit. RESULTS: The study subjects comprised 277 (40.6%) men and 405 (59.4%) women. However, anti-CCHFV IgG was detected in only one female serum sample (0.1%). The presence of anti-CCHFV IgG could not be correlated to age or sex from these findings. CONCLUSIONS: The results of this screening survey showed that the seroprevalence of the anti-CCHFV IgG among Malaysia's Orang Asli population is too low for detection or totally negative compared with that in neighbouring countries, such as India and China.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Febre Hemorrágica da Crimeia/sangue , Vigilância da População , Relatório de Pesquisa , Picadas de Carrapatos/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/etnologia , Humanos , Malásia/etnologia , Masculino , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Picadas de Carrapatos/diagnóstico , Picadas de Carrapatos/etnologia , Carrapatos , Adulto Jovem
19.
Epidemiol Infect ; 143(7): 1451-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25185583

RESUMO

A peptide library was used to screen for regions containing potential linear B-cell epitope sites in the glycoproteins and nucleoprotein of Crimean-Congo haemorrhagic fever virus (CCHFV) in an enzyme-linked immunosorbent assay (ELISA). The library consisted of 156 peptides, spanning the nucleoprotein and mature GN and GC proteins in a 19-mer with 9-mer overlap format. Using pooled serum samples from convalescent patients to screen the library, six peptides were identified as potential epitope sites. Further testing of these six peptides with individual patient sera identified two of these peptides as probable epitope sites, with peptide G1451-1469 reacting to 13/15 and peptide G1613-1631 to 14/15 human sera. These peptides are situated on the GC protein at amino acid positions 1451-1469 (relative to CCHFV isolate SPU103/97) (TCTGCYACSSGISCKVRIH) and 1613-1631 (FMFGWRILFCFKCCRRTRG). Identified peptides may have application in ELISA for diagnostic or serosurveillance purposes.


Assuntos
Epitopos de Linfócito B/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Nucleoproteínas/genética , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito B/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Humanos , Dados de Sequência Molecular , Nucleoproteínas/metabolismo , Alinhamento de Sequência , Proteínas do Envelope Viral/metabolismo
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 29(8): 838-41, 2013 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-23948410

RESUMO

OBJECTIVE: To express and purify the nucleoprotein (NP) from Xinjiang hemorrhagic fever virus(XHFV) strain BA88166 in E.coli, and prepare and identify its polyclonal antibody. METHODS: The cDNA of S gene segment of BA88166 strain was amplified by RT-PCR and cloned into prokaryotic expression vector pET-32a to generate a recombinant plasmid named pET-88166S. The pET-88166S was transformed into E.coli BL21 (DE3). The NP-His fusion protein was induced by IPTG, purified by Ni-NTA purification system, and analyzed by SDS-PAGE. To prepare the antiserum, New Zealand white rabbits were immunized with the purified NP-His protein. The titer and specificity of the antiserum to NP were analyzed by ELISA and Western blotting, respectively. RESULTS: Restriction endonuclease analysis and DNA sequencing showed that the prokaryotic xpression vector of pET-88166S was constructed successfully. NP-His fusion protein was expressed in E.coli BL21 (DE3) after IPTG induction and its relative molecular mass (Mr;) was about 66 000. ELISA and Western blotting showed that the titers of the antisera were above 1:25 600, and that the antisera can specifically bind with the entire and truncated NP protein of XHFV strain YL04057. CONCLUSION: NP-His fusion protein can be successfully expressed in E.coli and the specific anti-NP rabbit polyclonal antibody has been obtained, which will provide the basic information for the studies on the diagnosis, treatment and prevention of Xinjiang hemorrhagic fever.


Assuntos
Anticorpos/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Nucleoproteínas/imunologia , Animais , Anticorpos/genética , Especificidade de Anticorpos , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Nucleoproteínas/genética , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...