Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.294
Filtrar
1.
Sci Rep ; 14(1): 10660, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724525

RESUMO

Influenza Like Illness (ILI) and Severe Acute Respiratory Infection (SARI) cases are more prone to Influenza and SARS-CoV-2 infection. Accordingly, we genetically characterized Influenza and SARS-CoV-2 in 633 ILI and SARI cases by rRT-PCR and WGS. ILI and SARI cases showed H1N1pdm09 prevalence of 20.9% and 23.2% respectively. 135 (21.3%) H1N1pdm09 and 23 (3.6%) H3N2 and 5 coinfection (0.78%) of H1N1pdm09 and SARS-CoV-2 were detected. Phylogenetic analysis revealed H1N1pdm09 resemblance to clade 6B.1A.5a.2 and their genetic relatedness to InfA/Perth/34/2020, InfA/Victoria/88/2020 and InfA/Victoria/2570/2019. Pan 24 HA and 26 NA nonsynonymous mutations and novel HA (G6D, Y7F, Y78H, P212L, G339R, T508K and S523T) and NA (S229A) mutations were observed. S74R, N129D, N156K, S162N, K163Q and S164T alter HA Cb and Sa antibody recognizing site. Similarly, M19T, V13T substitution and multiple mutations in transmembrane and NA head domain drive antigenic drift. SARS-CoV-2 strains genetically characterized to Omicron BA.2.75 lineage containing thirty nonsynonymous spike mutations exhibited enhanced virulence and transmission rates. Coinfection although detected very minimal, the mutational changes in H1N1pdm09 and SARS-CoV-2 virus infected individuals could alter antibody receptor binding sites, allowing the viruses to escape immune response resulting in better adaptability and transmission. Thus continuous genomic surveillance is required to tackle any future outbreak.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Filogenia , SARS-CoV-2 , Humanos , Vírus da Influenza A Subtipo H1N1/genética , SARS-CoV-2/genética , Influenza Humana/virologia , Influenza Humana/epidemiologia , COVID-19/virologia , COVID-19/epidemiologia , Adulto , Pessoa de Meia-Idade , Masculino , Feminino , Adolescente , Adulto Jovem , Genoma Viral/genética , Idoso , Coinfecção/virologia , Coinfecção/epidemiologia , Criança , Pré-Escolar , Síndrome Respiratória Aguda Grave/virologia , Síndrome Respiratória Aguda Grave/epidemiologia , Mutação , Lactente
2.
Sci Rep ; 14(1): 10436, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714669

RESUMO

Influenza (sometimes referred to as "flu") is a contagious viral infection of the airways in the lungs that affects a significant portion of the world's population. Clinical symptoms of influenza virus infections can range widely, from severe pneumonia to moderate or even asymptomatic sickness. If left untreated, influenza can have more severe effects on the heart, brain, and lungs than on the respiratory tract and can necessitate hospitalization. This study was aimed to investigate and characterize all types of influenza cases prevailing in Nepal and to analyze seasonal occurrence of Influenza in Nepal in the year 2019. A cross sectional, retrospective and descriptive study was carried out at National Influenza Center (NIC), National Public Health Laboratory Kathmandu Nepal for the period of one year (Jan-Dec 2019). A total of 3606 throat swab samples from various age groups and sexes were processed at the NIC. The specimens were primarily stored at 4 °C and processed using ABI 7500 RT PCR system for the identification of Influenza virus types and subtypes. Data accessed for research purpose were retrieved from National Influenza Centre (NIC) on 1st Jan 2020. Of the total 3606 patients suspected of having influenza infection, influenza viruses were isolated from 1213 (33.6%) patients with male predominance. The highest number of infection was caused by Influenza A/Pdm09 strain 739 (60.9%) followed by Influenza B 304 (25.1%) and Influenza A/H3 169 (13.9%) and most remarkable finding of this study was the detection of H5N1 in human which is the first ever case of such infection in human from Nepal. Similar to other tropical nations, influenza viruses were detected year-round in various geographical locations of Nepal. The influenza virus type and subtypes that were in circulation in Nepal were comparable to vaccine candidate viruses, which the currently available influenza vaccine may prevent.


Assuntos
Influenza Humana , Humanos , Nepal/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Feminino , Masculino , Criança , Adulto , Adolescente , Pessoa de Meia-Idade , Pré-Escolar , Lactente , Estudos Retrospectivos , Adulto Jovem , Estudos Transversais , Idoso , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Estações do Ano , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação
3.
J Med Virol ; 96(5): e29657, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727035

RESUMO

The H1N1pdm09 virus has been a persistent threat to public health since the 2009 pandemic. Particularly, since the relaxation of COVID-19 pandemic mitigation measures, the influenza virus and SARS-CoV-2 have been concurrently prevalent worldwide. To determine the antigenic evolution pattern of H1N1pdm09 and develop preventive countermeasures, we collected influenza sequence data and immunological data to establish a new antigenic evolution analysis framework. A machine learning model (XGBoost, accuracy = 0.86, area under the receiver operating characteristic curve = 0.89) was constructed using epitopes, physicochemical properties, receptor binding sites, and glycosylation sites as features to predict the antigenic similarity relationships between influenza strains. An antigenic correlation network was constructed, and the Markov clustering algorithm was used to identify antigenic clusters. Subsequently, the antigenic evolution pattern of H1N1pdm09 was analyzed at the global and regional scales across three continents. We found that H1N1pdm09 evolved into around five antigenic clusters between 2009 and 2023 and that their antigenic evolution trajectories were characterized by cocirculation of multiple clusters, low-level persistence of former dominant clusters, and local heterogeneity of cluster circulations. Furthermore, compared with the seasonal H1N1 virus, the potential cluster-transition determining sites of H1N1pdm09 were restricted to epitopes Sa and Sb. This study demonstrated the effectiveness of machine learning methods for characterizing antigenic evolution of viruses, developed a specific model to rapidly identify H1N1pdm09 antigenic variants, and elucidated their evolutionary patterns. Our findings may provide valuable support for the implementation of effective surveillance strategies and targeted prevention efforts to mitigate the impact of H1N1pdm09.


Assuntos
Antígenos Virais , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Influenza Humana/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Aprendizado de Máquina , Evolução Molecular , Epitopos/genética , Epitopos/imunologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , COVID-19/imunologia , Pandemias/prevenção & controle , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia
5.
Emerg Microbes Infect ; 13(1): 2337673, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38572517

RESUMO

Influenza A viruses (IAVs) pose a persistent potential threat to human health because of the spillover from avian and swine infections. Extensive surveillance was performed in 12 cities of Guangxi, China, during 2018 and 2023. A total of 2540 samples (including 2353 nasal swabs and 187 lung tissues) were collected from 18 pig farms with outbreaks of respiratory disease. From these, 192 IAV-positive samples and 19 genomic sequences were obtained. We found that the H1 and H3 swine influenza A viruses (swIAVs) of multiple lineages and genotypes have continued to co-circulate during that time in this region. Genomic analysis revealed the Eurasian avian-like H1N1 swIAVs (G4) still remained predominant in pig populations. Strikingly, the novel multiple H3N2 genotypes were found to have been generated through the repeated introduction of the early H3N2 North American triple reassortant viruses (TR H3N2 lineage) that emerged in USA and Canada in 1998 and 2005, respectively. Notably, when the matrix gene segment derived from the H9N2 avian influenza virus was introduced into endemic swIAVs, this produced a novel quadruple reassortant H1N2 swIAV that could pose a potential risk for zoonotic infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , China/epidemiologia , Doenças dos Suínos/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Influenza Humana/epidemiologia , Vírus Reordenados/genética , Filogenia
6.
Viruses ; 16(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675967

RESUMO

Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV infections. Eight nasal swab collections were obtained from 135 two-week-old suckling piglets from four farms every other week from March to September 2013. Oral fluid samples were collected from the same group of nursery piglets. IAV RNA was detected in 1.64% and 31.01% of individual nasal swabs and oral fluids, respectively. H1N2 was detected most often, with sporadic detection of H1N1 and H3N2. Whole-genome sequences of IAV isolated from suckling piglets revealed an H1 hemagglutinin (HA) from the 1B.2.2.2 clade and N2 neuraminidase (NA) from the 2002A clade. The internal gene constellation of the endemic H1N2 was TTTTPT with a pandemic lineage matrix. The HA gene had 97.59% and 97.52% nucleotide and amino acid identities, respectively, to the H1 1B.2.2.2 used in the farm-specific vaccine. A similar H1 1B.2.2.2 was detected in the downstream nursery. These data demonstrate the low frequency of IAV detection in suckling piglets and downstream nurseries from farms with endemic infections in spite of using farm-specific IAV vaccines in sows.


Assuntos
Fazendas , Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Filogenia , Doenças dos Suínos , Animais , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/epidemiologia , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/classificação , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Animais Lactentes , Vacinação/veterinária , Doenças Endêmicas/veterinária , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , RNA Viral/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H1N2/isolamento & purificação , Vírus da Influenza A Subtipo H1N2/imunologia , Genoma Viral
7.
Anal Bioanal Chem ; 416(13): 3195-3203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613682

RESUMO

We propose a sensitive H1N1 virus fluorescence biosensor based on ligation-transcription and CRISPR/Cas13a-assisted cascade amplification strategies. Products are generated via the hybridization of single-stranded DNA (ssDNA) probes containing T7 promoter and crRNA templates to a target RNA sequence using SplintR ligase. This generates large crRNA quantities in the presence of T7 RNA polymerase. At such crRNA quantities, ternary Cas13a, crRNA, and activator complexes are successfully constructed and activate Cas13a to enhance fluorescence signal outputs. The biosensor sensitively and specifically monitored H1N1 viral RNA levels down to 3.23 pM and showed good linearity when H1N1 RNA concentrations were 100 pM-1 µM. Biosensor specificity was also excellent. Importantly, our biosensor may be used to detect other viral RNAs by altering the sequences of the two probe junctions, with potential applications for the clinical diagnosis of viruses and other biomedical studies.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Vírus da Influenza A Subtipo H1N1 , RNA Viral , Técnicas Biossensoriais/métodos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , RNA Viral/análise , RNA Viral/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Limite de Detecção , Fluorescência , Transcrição Gênica
8.
PLoS Pathog ; 20(4): e1012131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626244

RESUMO

Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype swine IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intrahost Single Nucleotide Variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.


Assuntos
Deriva Genética , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Suínos , Infecções por Orthomyxoviridae/virologia , Doenças dos Suínos/virologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H1N1/genética , Variação Genética , Evolução Molecular , Seleção Genética , Filogenia
9.
Microbiol Spectr ; 12(4): e0218123, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38446039

RESUMO

Novel H1N2 and H3N2 swine influenza A viruses (IAVs) have recently been identified in Chile. The objective of this study was to evaluate their zoonotic potential. We perform phylogenetic analyses to determine the genetic origin and evolution of these viruses, and a serological analysis to determine the level of cross-protective antibodies in the human population. Eight genotypes were identified, all with pandemic H1N1 2009-like internal genes. H1N1 and H1N2 were the subtypes more commonly detected. Swine H1N2 and H3N2 IAVs had hemagglutinin and neuraminidase lineages genetically divergent from IAVs reported worldwide, including human vaccine strains. These genes originated from human seasonal viruses were introduced into the swine population since the mid-1980s. Serological data indicate that the general population is susceptible to the H3N2 virus and that elderly and young children also lack protective antibodies against the H1N2 strains, suggesting that these viruses could be potential zoonotic threats. Continuous IAV surveillance and monitoring of the swine and human populations is strongly recommended.IMPORTANCEIn the global context, where swine serve as crucial intermediate hosts for influenza A viruses (IAVs), this study addresses the pressing concern of the zoonotic potential of novel reassortant strains. Conducted on a large scale in Chile, it presents a comprehensive account of swine influenza A virus diversity, covering 93.8% of the country's industrialized swine farms. The findings reveal eight distinct swine IAV genotypes, all carrying a complete internal gene cassette of pandemic H1N1 2009 origin, emphasizing potential increased replication and transmission fitness. Genetic divergence of H1N2 and H3N2 IAVs from globally reported strains raises alarms, with evidence suggesting introductions from human seasonal viruses since the mid-1980s. A detailed serological analysis underscores the zoonotic threat, indicating susceptibility in the general population to swine H3N2 and a lack of protective antibodies in vulnerable demographics. These data highlight the importance of continuous surveillance, providing crucial insights for global health organizations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Criança , Humanos , Animais , Suínos , Pré-Escolar , Idoso , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Vírus da Influenza A Subtipo H1N1/genética , Filogenia , Chile/epidemiologia , Vírus Reordenados/genética , Doenças dos Suínos/epidemiologia , Influenza Humana/epidemiologia
10.
Emerg Microbes Infect ; 13(1): 2332652, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38517705

RESUMO

A diverse population of avian influenza A viruses (AIVs) are maintained in wild birds and ducks yet the zoonotic potential of AIVs in these environmental reservoirs and the host-virus interactions involved in mammalian infection are not well understood. In studies of a group of subtype H1N1 AIVs isolated from migratory wild birds during surveillance in North America, we previously identified eight amino acids in the polymerase genes PB2 and PB1 that were important for the transmissibility of these AIVs in a ferret model of human influenza virus transmission. In this current study we found that PB2 containing amino acids associated with transmissibility at 67, 152, 199, 508, and 649 and PB1 at 298, 642, and 667 were associated with more rapid viral replication kinetics, greater infectivity, more active polymerase complexes and greater kinetics of viral genome replication and transcription. Pathogenicity in the mouse model was also impacted, evident as greater weight loss and lung pathology associated with greater inflammatory lung cytokine expression. Further, these AIVs all contained the avian-type amino acids of PB2-E627, D701, G590, Q591 and T271. Therefore, our study provides novel insights into the role of the AIV polymerase complex in the zoonotic transmission of AIVs in mammals.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Aviária , Camundongos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Aminoácidos/genética , Interações entre Hospedeiro e Microrganismos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Furões , Vírus da Influenza A/metabolismo , Aves , Nucleotidiltransferases , Replicação Viral/genética , Filogenia
11.
Front Immunol ; 15: 1322879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482020

RESUMO

Orf virus (ORFV) is a large DNA virus that can harbor and efficiently deliver viral antigens in swine. Here we used ORFV as a vector platform to deliver chimeric hemagglutinins (HA) of Influenza A virus of swine (IAV-S). Vaccine development against IAV-S faces limitations posed by strain-specific immunity and the antigenic diversity of the IAV-S strains circulating in the field. A promising alternative aiming at re-directing immune responses on conserved epitopes of the stalk segment of the hemagglutinin (HA2) has recently emerged. Sequential immunization with chimeric HAs comprising the same stalk but distinct exotic head domains can potentially induce cross-reactive immune responses against conserved epitopes of the HA2 while breaking the immunodominance of the head domain (HA1). Here, we generated two recombinant ORFVs expressing chimeric HAs encoding the stalk region of a contemporary H1N1 IAV-S strain and exotic heads derived from either H6 or H8 subtypes, ORFVΔ121cH6/1 and ORFVΔ121cH8/1, respectively. The resulting recombinant viruses were able to express the heterologous protein in vitro. Further, the immunogenicity and cross-protection of these vaccine candidates were assessed in swine after sequential intramuscular immunization with OV-cH6/1 and OV-cH8/1, and subsequent challenge with divergent IAV-S strains. Humoral responses showed that vaccinated piglets presented increasing IgG responses in sera. Additionally, cross-reactive IgG and IgA antibody responses elicited by immunization were detected in sera and bronchoalveolar lavage (BAL), respectively, by ELISA against different viral clades and a diverse range of contemporary H1N1 IAV-S strains, indicating induction of humoral and mucosal immunity in vaccinated animals. Importantly, viral shedding was reduced in nasal swabs from vaccinated piglets after intranasal challenge with either Oh07 (gamma clade) or Ca09 (npdm clade) IAV-S strains. These results demonstrated the efficiency of ORFV-based vectors in delivering chimeric IAV-S HA-based vaccine candidates and underline the potential use of chimeric-HAs for prevention and control of influenza in swine.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Vírus do Orf , Infecções por Orthomyxoviridae , Animais , Suínos , Hemaglutininas/genética , Infecções por Orthomyxoviridae/prevenção & controle , Vírus da Influenza A Subtipo H1N1/genética , Anticorpos Antivirais , Imunoglobulina G , Epitopos
12.
Viruses ; 16(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38543754

RESUMO

The H274Y substitution (N2 numbering) in neuraminidase (NA) N1 confers oseltamivir resistance to A(H1N1) influenza viruses. This resistance has been associated with reduced N1 expression using transfected cells, but the effect of this substitution on the enzymatic properties and on the expression of other group-1-NA subtypes is unknown. The aim of the present study was to evaluate the antiviral resistance, enzymatic properties, and expression of wild-type (WT) and H274Y-substituted NA for each group-1-NA. To this end, viruses with WT or H274Y-substituted NA (N1pdm09 or avian N4, N5 or N8) were generated by reverse genetics, and for each reverse-genetic virus, antiviral susceptibility, NA affinity (Km), and maximum velocity (Vm) were measured. The enzymatic properties were coupled with NA quantification on concentrated reverse genetic viruses using mass spectrometry. The H274Y-NA substitution resulted in highly reduced inhibition by oseltamivir and normal inhibition by zanamivir and laninamivir. This resistance was associated with a reduced affinity for MUNANA substrate and a conserved Vm in all viruses. NA quantification was not significantly different between viruses carrying WT or H274Y-N1, N4 or N8, but was lower for viruses carrying H274Y-N5 compared to those carrying a WT-N5. In conclusion, the H274Y-NA substitution of different group-1-NAs systematically reduced their affinity for MUNANA substrate without a significant impact on NA Vm. The impact of the H274Y-NA substitution on viral NA expression was different according to the studied NA.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Oseltamivir/farmacologia , Antivirais/farmacologia , Vírus da Influenza A/genética , Neuraminidase/genética , Neuraminidase/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Genética Reversa , Farmacorresistência Viral/genética , Substituição de Aminoácidos , Inibidores Enzimáticos/farmacologia
13.
Med Sci Monit ; 30: e942125, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446736

RESUMO

BACKGROUND According to the WHO, up to 650 000 people die each year from seasonal flu-related respiratory illnesses. The most effective method of fighting the virus is seasonal vaccination. However, if an infection does occur, antiviral medications should be used as soon as possible. No studies of drug resistance in influenza viruses circulating in Poland have been systematically conducted. Therefore, the aim of the present study was to investigate the drug resistance and genetic diversity of influenza virus strains circulating in Poland by determining the presence of mutations in the neuraminidase gene. MATERIAL AND METHODS A total of 258 clinical specimens were collected during the 2016-2017, 2017-2018, and 2018-2019 epidemic seasons. The samples containing influenza A and B were analyzed by RT-PCR and Sanger sequencing. RESULTS Differences were found between the influenza virus strains detected in different epidemic seasons, demonstrating the occurrence of mutations. Influenza A virus was found to be more genetically variable than influenza B virus (P<0.001, Kruskal-Wallis test). However, there was no significant difference in the resistance prevalence between the influenza A subtypes A/H1N1/pdm09 (4.8%) and A/H3N2/ (6.1%). In contrast, more mutations of drug-resistance genes were found in the influenza B virus (P<0.001, chi-square test). In addition, resistance mutations appeared en masse in vaccine strains circulating in unvaccinated populations. CONCLUSIONS It seems important to determine whether the influenza virus strains tested for drug resistance as part of global influenza surveillance are equally representative of viruses circulating in populations with high and low vaccination rates, for all countries. Our results suggest that countries with low levels of influenza immunization may constitute reservoirs of drug-resistant influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Polônia/epidemiologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/genética , Vacinação , Mutação/genética
14.
Sci Rep ; 14(1): 5898, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467724

RESUMO

Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Feminino , Masculino , Animais , Camundongos , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/genética , Influenza Humana/metabolismo , Transcriptoma , Estresse Psicológico/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Corticosterona
15.
PLoS Pathog ; 20(2): e1011993, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300953

RESUMO

Pre-existing or rapidly emerging resistance of influenza viruses to approved antivirals makes the development of novel therapeutics to mitigate seasonal influenza and improve preparedness against future influenza pandemics an urgent priority. We have recently identified the chain-terminating broad-spectrum nucleoside analog clinical candidate 4'-fluorouridine (4'-FlU) and demonstrated oral efficacy against seasonal, pandemic, and highly pathogenic avian influenza viruses in the mouse and ferret model. Here, we have resistance-profiled 4'-FlU against a pandemic A/CA/07/2009 (H1N1) (CA09). In vitro viral adaptation yielded six independently generated escape lineages with distinct mutations that mediated moderate resistance to 4'-FlU in the genetically controlled background of recombinant CA09 (recCA09). Mutations adhered to three distinct structural clusters that are all predicted to affect the geometry of the active site of the viral RNA-dependent RNA polymerase (RdRP) complex for phosphodiester bond formation. Escape could be achieved through an individual causal mutation, a combination of mutations acting additively, or mutations functioning synergistically. Fitness of all resistant variants was impaired in cell culture, and all were attenuated in the mouse model. Oral 4'-FlU administered at lowest-efficacious (2 mg/kg) or elevated (10 mg/kg) dose overcame moderate resistance when mice were inoculated with 10 LD50 units of parental or resistant recCA09, demonstrated by significantly reduced virus load and complete survival. In the ferret model, invasion of the lower respiratory tract by variants representing four adaptation lineages was impaired. Resistant variants were either transmission-incompetent, or spread to untreated sentinels was fully blocked by therapeutic treatment of source animals with 4'-FlU.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Nucleotídeos de Uracila , Animais , Camundongos , Humanos , Vírus da Influenza A/genética , Antivirais/uso terapêutico , Vírus da Influenza A Subtipo H1N1/genética , Furões , Infecções por Orthomyxoviridae/tratamento farmacológico
16.
EBioMedicine ; 101: 105013, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364702

RESUMO

BACKGROUND: Influenza viruses continually acquire mutations in the antigenic epitopes of their major viral antigen, the surface glycoprotein haemagglutinin (HA), allowing evasion from immunity in humans induced upon prior influenza virus infections or vaccinations. Consequently, the influenza strains used for vaccine production must be updated frequently. METHODS: To better understand the antigenic evolution of influenza viruses, we introduced random mutations into the HA head region (where the immunodominant epitopes are located) of a pandemic H1N1 (H1N1pdm) virus from 2015 and incubated it with various human sera collected in 2015-2016. Mutants not neutralized by the human sera were sequenced and further characterized for their haemagglutination inhibition (HI) titers with human sera and with ferret sera raised to H1N1pdm viruses from 2009 to 2015. FINDINGS: The largest antigenic changes were conferred by mutations at HA amino acid position 187; interestingly, these antigenic changes were recognized by human, but not by ferret serum. H1N1pdm viruses with amino acid changes at position 187 were very rare until the end of 2018, but have become more frequent since; in fact, the D187A amino acid change is one of the defining changes of clade 6B.1A.5a.1 viruses, which emerged in 2019. INTERPRETATION: Our findings indicate that amino acid substitutions in H1N1pdm epitopes may be recognized by human sera, but not by homologous ferret sera. FUNDING: This project was supported by funding from the NIAID-funded Center for Research on Influenza Pathogenesis (CRIP, HHSN272201400008C).


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Furões , Vírus da Influenza A Subtipo H1N1/genética , Epitopos , Aminoácidos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química
17.
Influenza Other Respir Viruses ; 18(2): e13255, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403302

RESUMO

We conducted a multicentre hospital-based test-negative case-control study to measure vaccine effectiveness (VE) against PCR-confirmed influenza in adult patients with severe acute respiratory infection (SARI) during the 2022/2023 influenza season in Europe. Among 5547 SARI patients ≥18 years, 2963 (53%) were vaccinated against influenza. Overall VE against influenza A(H1N1)pdm09 was 11% (95% CI: -23-36); 20% (95% CI: -4-39) against A(H3N2) and 56% (95% CI: 22-75) against B. During the 2022/2023 season, while VE against hospitalisation with influenza B was >55%, it was ≤20% for influenza A subtypes. While influenza vaccination should be a priority for future seasons, improved vaccines against influenza are needed.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Pneumonia , Adulto , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Estudos de Casos e Controles , Eficácia de Vacinas , Europa (Continente)/epidemiologia , Hospitalização , Hospitais , Vacinação
18.
Microbiol Spectr ; 12(3): e0338623, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38299860

RESUMO

Since the 1990s, endemic North American swine influenza A viruses (swFLUAVs) contained an internal gene segment constellation, the triple reassortment internal gene (TRIG) cassette. In 2009, the H1N1 pandemic (pdmH1N1) virus spilled back into swine but did not become endemic. However, the pdmH1N1 contributed the matrix gene (pdmM) to the swFLUAVs circulating in the pig population, which replaced the classical swine matrix gene (swM) found in the TRIG cassette, suggesting the pdmM has a fitness benefit. Others have shown that swFLUAVs containing the pdmM have greater transmission efficiency compared to viruses containing the swM gene segment. We hypothesized that the matrix (M) gene could also affect disease and utilized two infection models, resistant BALB/c and susceptible DBA/2 mice, to assess pathogenicity. We infected BALB/c and DBA/2 mice with H1 and H3 swFLUAVs containing the swM or pdmM and measured lung virus titers, morbidity, mortality, and lung histopathology. H1 influenza strains containing the pdmM gene caused greater morbidity and mortality in resistant and susceptible murine strains, while H3 swFLUAVs caused no clinical disease. However, both H1 and H3 swFLUAVs containing the pdmM replicated to higher viral titers in the lungs and pdmM containing H1 viruses induced greater histological changes compared to swM H1 viruses. While the surface glycoproteins and other gene segments may contribute to swFLUAV pathogenicity in mice, these data suggest that the origin of the matrix gene also contributes to pathogenicity of swFLUAV in mice, although we must be cautious in translating these conclusions to their natural host, swine. IMPORTANCE: The 2009 pandemic H1N1 virus rapidly spilled back into North American swine, reassorting with the already genetically diverse swFLUAVs. Notably, the M gene segment quickly replaced the classical M gene segment, suggesting a fitness benefit. Here, using two murine models of infection, we demonstrate that swFLUAV isolates containing the pandemic H1N1 origin M gene caused increased disease compared to isolates containing the classical swine M gene. These results suggest that, in addition to other influenza virus gene segments, the swFLUAV M gene segment contributes to pathogenesis in mammals.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Camundongos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Modelos Animais de Doenças , Camundongos Endogâmicos DBA , Infecções por Orthomyxoviridae/patologia , Mamíferos
19.
mBio ; 15(3): e0321823, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349163

RESUMO

The 1918 influenza pandemic was the most devastating respiratory pandemic in modern human history, with 50-100 million deaths worldwide. Here, we characterized the complete genomes of influenza A virus (IAV) from two fatal cases during the fall wave of 1918 influenza A (H1N1) pandemic in the United States, one from Walter Reed Army Hospital in Washington, DC, and the other from Camp Jackson, SC. The two complete IAV genomes were obtained by combining Illumina deep sequencing data from both total RNA and influenza viral genome-enriched libraries along with Sanger sequencing data from PCR across the sequencing gaps. This study confirms the previously reported 1918 IAV genomes and increases the total number of available complete or near-complete influenza viral genomes of the 1918 pandemic from four to six. Sequence comparisons among them confirm that the genomes of the 1918 pandemic virus were highly conserved during the main wave of the pandemic with geographic separation in North America and Europe. Metagenomic analyses revealed bacterial co-infections in both cases. Interestingly, in the Washington, DC, case, evidence is presented of the first reported Rhodococcus-influenza virus co-infection. IMPORTANCE: This study applied modern molecular biotechnology and high-throughput sequencing to formalin-fixed, paraffin-embedded autopsy lung samples from two fatal cases during the fall wave of the 1918 influenza A (H1N1) pandemic in the United States. Complete influenza genomes were obtained from both cases, which increases the total number of available complete or near-complete influenza genomes of the 1918 pandemic virus from four to six. Sequence analysis confirms that the 1918 pandemic virus was highly conserved during the main wave of the pandemic with geographic separation in North America and Europe. Metagenomic analyses revealed bacterial co-infections in both cases, including the first reported evidence of Rhodococcus-influenza co-infection. Overall, this study offers a detailed view at the molecular level of the very limited samples from the most devastating influenza pandemic in modern human history.


Assuntos
Coinfecção , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Vírus da Influenza A Subtipo H1N1/genética , RNA , Coinfecção/genética , Inclusão em Parafina , Pulmão , Vírus da Influenza A/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Formaldeído , Autopsia
20.
Virol Sin ; 39(2): 205-217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346538

RESUMO

Swine are regarded as "intermediate hosts" or "mixing vessels" of influenza viruses, capable of generating strains with pandemic potential. From 2020 to 2021, we conducted surveillance on swine H1N2 influenza (swH1N2) viruses in swine farms located in Guangdong, Yunnan, and Guizhou provinces in southern China, as well as Henan and Shandong provinces in northern China. We systematically analyzed the evolution and pathogenicity of swH1N2 isolates, and characterized their replication and transmission abilities. The isolated viruses are quadruple reassortant H1N2 viruses containing genes from pdm/09 H1N1 (PB2, PB1, PA and NP genes), triple-reassortant swine (NS gene), Eurasian Avian-like (HA and M genes), and recent human H3N2 (NA gene) lineages. The NA, PB2, and NP of SW/188/20 and SW/198/20 show high gene similarities to A/Guangdong/Yue Fang277/2017 (H3N2). The HA gene of swH1N2 exhibits a high evolutionary rate. The five swH1N2 isolates replicate efficiently in human, canine, and swine cells, as well as in the turbinate, trachea, and lungs of mice. A/swine/Shandong/198/2020 strain efficiently replicates in the respiratory tract of pigs and effectively transmitted among them. Collectively, these current swH1N2 viruses possess zoonotic potential, highlighting the need for strengthened surveillance of swH1N2 viruses.


Assuntos
Evolução Molecular , Vírus da Influenza A Subtipo H1N2 , Infecções por Orthomyxoviridae , Vírus Reordenados , Doenças dos Suínos , Animais , Suínos , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Vírus Reordenados/isolamento & purificação , China/epidemiologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Doenças dos Suínos/transmissão , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H1N2/patogenicidade , Vírus da Influenza A Subtipo H1N2/isolamento & purificação , Humanos , Camundongos , Cães , Filogenia , Replicação Viral , Saúde Pública , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/virologia , Influenza Humana/transmissão , Camundongos Endogâmicos BALB C , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Virulência , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...