Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virology ; 552: 20-31, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33038571

RESUMO

Infectious hematopoietic necrosis virus (IHNV) is a pathogen of importance for salmonid aquaculture. In this study, we aimed to characterize virus behavior and defense mechanisms developed in rainbow trout (RT, Oncorhynchus mykiss) experimentally infected with isolates belonging to the five described genotypes of IHNV, i.e. L, U, M, E and J. Mortality was monitored for two months, and blood and target organs were sampled at different times post-infection to assess viral load and cellular and humoral immune responses. Profiles of virulence were highly linked to precocious viral replication but also to the innate and specific immunity elicited in the host. Seroneutralization test (SNT) used for specific antibodies detection exhibited reliable results, with efficient cross-neutralization observed in heterologous systems except for the Asian representative. These data bring new insights about IHNV/RT interaction and reinforce the interest of SNT as preventive and epidemiological tool.


Assuntos
Imunidade , Vírus da Necrose Hematopoética Infecciosa/imunologia , Vírus da Necrose Hematopoética Infecciosa/metabolismo , Oncorhynchus mykiss/imunologia , Oncorhynchus mykiss/virologia , Animais , Linhagem Celular , Genótipo , Especificidade de Hospedeiro , Mortalidade , Testes de Neutralização , Carga Viral , Virulência
2.
Glycobiology ; 29(5): 419-430, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30834446

RESUMO

Galectins, highly conserved ß-galactoside-binding lectins, have diverse regulatory roles in development and immune homeostasis and can mediate protective functions during microbial infection. In recent years, the role of galectins in viral infection has generated considerable interest. Studies on highly pathogenic viruses have provided invaluable insight into the participation of galectins in various stages of viral infection, including attachment and entry. Detailed mechanistic and structural aspects of these processes remain undetermined. To address some of these gaps in knowledge, we used Zebrafish as a model system to examine the role of galectins in infection by infectious hematopoietic necrosis virus (IHNV), a rhabdovirus that is responsible for significant losses in both farmed and wild salmonid fish. Like other rhabdoviruses, IHNV is characterized by an envelope consisting of trimers of a glycoprotein that display multiple N-linked oligosaccharides and play an integral role in viral infection by mediating the virus attachment and fusion. Zebrafish's proto-typical galectin Drgal1-L2 and the chimeric-type galectin Drgal3-L1 interact directly with the glycosylated envelope of IHNV, and significantly reduce viral attachment. In this study, we report the structure of the complex of Drgal1-L2 with N-acetyl-d-lactosamine at 2.0 Å resolution. To gain structural insight into the inhibitory effect of these galectins on IHNV attachment to the zebrafish epithelial cells, we modeled Drgal3-L1 based on human galectin-3, as well as, the ectodomain of the IHNV glycoprotein. These models suggest mechanisms for which the binding of these galectins to the IHNV glycoprotein hinders with different potencies the viral attachment required for infection.


Assuntos
Galectinas/química , Galectinas/metabolismo , Glicoproteínas/química , Vírus da Necrose Hematopoética Infecciosa/química , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Glicoproteínas/metabolismo , Vírus da Necrose Hematopoética Infecciosa/metabolismo , Modelos Moleculares , Alinhamento de Sequência , Peixe-Zebra
3.
Virus Res ; 244: 194-198, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29174718

RESUMO

Benzyloxycarbonyl-phenylalanyl-alanyl-fluoromethyl ketone (Z-FA-FMK) is a protease inhibitor that has been shown to strongly inhibit mammalian orthoreovirus replication. Here we explore the ability of Z-FA-FMK to inhibit three important yet genetically discrete aquatic fish viruses: chum salmon aquareovirus (CSRV), piscine orthoreovirus (PRV), and the rhabdovirus infectious hematopoietic necrosis virus (IHNV). Z-FA-FMK significantly attenuated CSRV in vitro transcription and infectious yield following low-dose (2-20µM) exposure, yet a relatively high dose (200µM) was required to completely block CSRV replication. For PRV and IHNV, no significant attenuation of in vitro viral transcription was observed following low-dose (2-20µM) exposure; and although high dose (200µM) exposure significantly attenuated both PRV and IHNV transcription, neither was completely inhibited. These transcriptional results were similarly reflected in IHNV infectious titre observed at 7days post exposure. PRV titre is currently undeterminable in vitro; however, in vivo intra-peritoneal injection of PRV into juvenile Atlantic salmon (Salmo salar) in conjunction with 1.5mg/kg Z-FA-FMK did not affect PRV replication as measured by blood associated viral transcripts at 14days post challenge. These results indicate that aquatic ortho- and aqua-reoviruses appear to possess resilience to Z-FA-FMK relative to mammalian orthoreoviruses and suggest that environmental parameters or alternative mechanisms for viral replication may affect the efficacy of Z-FA-FMK as an antireoviral compound. Further, as Z-FA-FMK has been shown to irreversibly inhibit cysteine proteases such as cathepsins B and L in vitro at concentrations of ≤100µM, continued replication of IHNV (and possibly PRV) at 200µM Z-FA-FMK suggests that replication of these viruses can occur in a cathepsin-independent manner whereas CSRV likely requires cathepsins or similar cysteine proteases for successful replication.


Assuntos
Antivirais/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Doenças dos Peixes/tratamento farmacológico , Vírus da Necrose Hematopoética Infecciosa/efeitos dos fármacos , Cetonas/farmacologia , Orthoreovirus/efeitos dos fármacos , Reoviridae/efeitos dos fármacos , Animais , Resistência à Doença , Relação Dose-Resposta a Droga , Doenças dos Peixes/virologia , Vírus da Necrose Hematopoética Infecciosa/genética , Vírus da Necrose Hematopoética Infecciosa/metabolismo , Orthoreovirus/genética , Orthoreovirus/metabolismo , Reoviridae/genética , Reoviridae/metabolismo , Infecções por Reoviridae/tratamento farmacológico , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Infecções por Rhabdoviridae/tratamento farmacológico , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Salmo salar/virologia , Transcrição Gênica/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
4.
Biotechnol Lett ; 36(10): 2109-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25048222

RESUMO

The glycoprotein of infectious hematopoietic necrosis virus was truncated to ten overlapping fragments. All fragments were displayed on the inner membrane of the Escherichia coli periplasm. After disruption of the outer membrane, spheroplasts that had anchored with the glycoprotein fragment were incubated with an anti-glycoprotein polyclonal antibody. Prey pairs were detected and quantitated by flow cytometry with all fragments but one, G2, reacting with the polyclonal antibody. The antigenicity of all ten fragments was analyzed using conventional methods, and epitopes were localized in all fragments, except for G2 and were consistent with FCM analysis. Antigenicity of purified glycoprotein fusion proteins was confirmed by western blotting and ELISA. This method provides a rapid, quantitative and simple strategy for identifying linear B cell epitopes of a given protein.


Assuntos
Mapeamento de Epitopos/métodos , Glicoproteínas/genética , Vírus da Necrose Hematopoética Infecciosa/metabolismo , Proteínas Virais/genética , Epitopos/genética , Citometria de Fluxo , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Vírus da Necrose Hematopoética Infecciosa/genética , Dados de Sequência Molecular , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
5.
J AOAC Int ; 89(1): 240-4, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16512254

RESUMO

An assay was developed for the detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) based on real-time quantitative polymerase chain reaction (PCR). A pair of primers and a TaqMan probe were designed that are specific for the recognition of a conservative region in the IHHNV genome. The IHHNV real-time PCR assay had a detection limit of 9 DNA copies, with a dynamic range of detection between 9 x 106 and 9 DNA copies. The primer pairs and probe were specific to IHHNV and did not cross-react with shrimp genomic DNA or other shrimp viruses such as White Spot Syndrome Virus (WSSV), Monodon Baculovirus (MBV), and hepatopancreatic parvovirus (HPV). This assay has a broad application for basic and clinical investigations. For clinical samples, the real-time PCR assay detected all the positive samples screened by conventional PCR, which indicated the sensitivity of the real-time assay. The IHHNV real-time PCR assay with high sensitivity, specificity, wide range of detection ability, and simplicity is particularly useful for screening large numbers of specimens and measuring viral loads to monitor the broodstock.


Assuntos
Técnicas de Química Analítica/métodos , Crustáceos/virologia , Vírus da Necrose Hematopoética Infecciosa/metabolismo , Sondas de Oligonucleotídeos/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , DNA/metabolismo , Primers do DNA/química , Necrose , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Carga Viral , Viroses/metabolismo
6.
J Virol ; 76(6): 2881-9, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11861855

RESUMO

Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are two salmonid rhabdoviruses replicating at low temperatures (14 to 20 degrees C). Both viruses belong to the Novirhabdovirus genus, but they are only distantly related and do not cross antigenically. By using a recently developed reverse-genetic system based on IHNV (S. Biacchesi et al., J. Virol. 74:11247-11253, 2000), we investigated the ability to exchange IHNV glycoprotein G with that of VHSV. Thus, the IHNV genome was modified so that the VHSV G gene replaced the complete IHNV G gene. A recombinant virus expressing VHSV G instead of IHNV G, rIHNV-Gvhsv, was generated and was shown to replicate as well as the wild-type rIHNV in cell culture. This study was extended by exchanging IHNV G with that of a fish vesiculovirus able to replicate at high temperatures (up to 28 degrees C), the spring viremia of carp virus (SVCV). rIHNV-Gsvcv was successfully recovered; however, its growth was restricted to 14 to 20 degrees C. These results show the nonspecific sequence requirement for the insertion of heterologous glycoproteins into IHNV virions and also demonstrate that an IHNV protein other than the G protein is responsible for the low-temperature restriction on growth. To determine to what extent the matrix (M) protein interacts with G, a series of chimeric pIHNV constructs in which all or part of the M gene was replaced with the VHSV counterpart was engineered and used to recover the respective recombinant viruses. Despite the very low percentage (38%) of amino acid identity between the IHNV and VHSV matrix proteins, viable chimeric IHNVs, harboring either the matrix protein or both the glycoprotein and the matrix protein from VHSV, were recovered and propagated. Altogether, these data show the extreme flexibility of IHNV to accommodate heterologous structural proteins.


Assuntos
Glicoproteínas/genética , Novirhabdovirus/genética , Novirhabdovirus/patogenicidade , Oncorhynchus mykiss , Recombinação Genética , Proteínas da Matriz Viral/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Doenças dos Peixes/fisiopatologia , Doenças dos Peixes/virologia , Glicoproteínas/metabolismo , Vírus da Necrose Hematopoética Infecciosa/genética , Vírus da Necrose Hematopoética Infecciosa/metabolismo , Vírus da Necrose Hematopoética Infecciosa/patogenicidade , Dados de Sequência Molecular , Novirhabdovirus/metabolismo , Proteínas Recombinantes de Fusão , Infecções por Rhabdoviridae/virologia , Proteínas da Matriz Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA