Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Nature ; 617(7960): 409-416, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37138077

RESUMO

CrAssphage and related viruses of the order Crassvirales (hereafter referred to as crassviruses) were originally discovered by cross-assembly of metagenomic sequences. They are the most abundant viruses in the human gut, are found in the majority of individual gut viromes, and account for up to 95% of the viral sequences in some individuals1-4. Crassviruses are likely to have major roles in shaping the composition and functionality of the human microbiome, but the structures and roles of most of the virally encoded proteins are unknown, with only generic predictions resulting from bioinformatic analyses4,5. Here we present a cryo-electron microscopy reconstruction of Bacteroides intestinalis virus ΦcrAss0016, providing the structural basis for the functional assignment of most of its virion proteins. The muzzle protein forms an assembly about 1 MDa in size at the end of the tail and exhibits a previously unknown fold that we designate the 'crass fold', that is likely to serve as a gatekeeper that controls the ejection of cargos. In addition to packing the approximately 103 kb of virus DNA, the ΦcrAss001 virion has extensive storage space for virally encoded cargo proteins in the capsid and, unusually, within the tail. One of the cargo proteins is present in both the capsid and the tail, suggesting a general mechanism for protein ejection, which involves partial unfolding of proteins during their extrusion through the tail. These findings provide a structural basis for understanding the mechanisms of assembly and infection of these highly abundant crassviruses.


Assuntos
Vírus de DNA , Intestinos , Proteínas Virais , Vírion , Humanos , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Vírus de DNA/química , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Vírus de DNA/metabolismo , Vírus de DNA/ultraestrutura , Vírion/química , Vírion/metabolismo , Vírion/ultraestrutura , Montagem de Vírus , Intestinos/microbiologia , Intestinos/virologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura , Desdobramento de Proteína , Dobramento de Proteína
2.
J Gen Virol ; 102(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939563

RESUMO

Viruses in the family Retroviridae are found in a wide variety of vertebrate hosts. Enveloped virions are 80-100 nm in diameter with an inner core containing the viral genome and replicative enzymes. Core morphology is often characteristic for viruses within the same genus. Replication involves reverse transcription and integration into host cell DNA, resulting in a provirus. Integration into germline cells can result in a heritable provirus known as an endogenous retrovirus. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Retroviridae, which is available at ictv.global/report/retroviridae.


Assuntos
Vírus de DNA/classificação , Retroviridae/classificação , Animais , Vírus de DNA/genética , Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , Genoma Viral , Especificidade de Hospedeiro , Retroviridae/genética , Retroviridae/fisiologia , Retroviridae/ultraestrutura , Vertebrados/virologia , Vírion/ultraestrutura , Replicação Viral
3.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34328827

RESUMO

Members of the family Thaspiviridae have linear dsDNA genomes of 27 to 29 kbp and are the first viruses known to infect mesophilic ammonia-oxidizing archaea of the phylum Thaumarchaeota. The spindle-shaped virions of Nitrosopumilus spindle-shaped virus 1 possess short tails at one pole and measure 64±3 nm in diameter and 112±6 nm in length. This morphology is similar to that of members of the families Fuselloviridae and Halspiviridae. Virus replication is not lytic but leads to growth inhibition of the host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Thaspiviridae, which is available at ictv.global/report/thaspiviridae.


Assuntos
Archaea/virologia , Vírus de Archaea/classificação , Vírus de DNA/classificação , Vírus de Archaea/genética , Vírus de Archaea/fisiologia , Vírus de Archaea/ultraestrutura , Vírus de DNA/genética , Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , Genoma Viral , Especificidade de Hospedeiro , Vírion/ultraestrutura , Replicação Viral
4.
J Gen Virol ; 102(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34085921

RESUMO

Portogloboviridae is a family of viruses with circular, double-stranded DNA genomes of about 20 kbp. Their icosahedral virions have a diameter of 87 nm, and consist of an outer protein shell, an inner lipid layer and a nucleoprotein core wound up into a spherical coil. Portogloboviruses infect hyperthermophilic archaea of the genus Saccharolobus, order Sulfolobales and are presumably nonlytic. Portogloboviruses encode mini-CRISPR arrays which they use to compete against other co-infecting viruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Portogloboviridae, which is available at ictv.global/report/portogloboviridae.


Assuntos
Vírus de Archaea/classificação , Vírus de DNA/classificação , Sulfolobaceae/virologia , Vírus de Archaea/genética , Vírus de Archaea/fisiologia , Vírus de Archaea/ultraestrutura , Vírus de DNA/genética , Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , DNA Viral/genética , Genoma Viral , Especificidade de Hospedeiro , Proteínas Virais/análise , Vírion/química , Vírion/ultraestrutura , Replicação Viral
5.
J Gen Virol ; 102(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33961544

RESUMO

Members of the family Plectroviridae produce particles that are non-enveloped rigid rods (70-280×10-16 nm). The supercoiled, circular, single-stranded DNA genome of about 4.5-8.3 kb, encodes 4-13 proteins. Viruses of this family infect cell wall-less bacteria, adsorbing to the bacterial surface, replicating their DNA by a rolling-circle mechanism or transposition, and releasing progeny from cells by extrusion, without killing the host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Plectroviridae which is available at ictv.global/report/plectroviridae.


Assuntos
Bacteriófagos/classificação , Vírus de DNA/classificação , Acholeplasma/virologia , Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , DNA de Cadeia Simples , Genoma Viral , Especificidade de Hospedeiro , Vírion/ultraestrutura , Replicação Viral
6.
Sci Rep ; 11(1): 5025, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658544

RESUMO

Bioconversion of organic materials is the foundation of many applications in chemical engineering, microbiology and biochemistry. Herein, we introduce a new methodology to quantitatively determine conversion of biomass in viral infections while simultaneously imaging morphological changes of the host cell. As proof of concept, the viral replication of an unidentified giant DNA virus and the cellular response of an amoebal host are studied using soft X-ray microscopy, titration dilution measurements and thermal gravimetric analysis. We find that virions produced inside the cell are visible from 18 h post infection and their numbers increase gradually to a burst size of 280-660 virions. Due to the large size of the virion and its strong X-ray absorption contrast, we estimate that the burst size corresponds to a conversion of 6-12% of carbonaceous biomass from amoebal host to virus. The occurrence of virion production correlates with the appearance of a possible viral factory and morphological changes in the phagosomes and contractile vacuole complex of the amoeba, whereas the nucleus and nucleolus appear unaffected throughout most of the replication cycle.


Assuntos
Acanthamoeba/virologia , Vírus de DNA/ultraestrutura , DNA Viral/genética , Genoma Viral , Vírus Gigantes/ultraestrutura , Vírion/ultraestrutura , Acanthamoeba/ultraestrutura , Biomassa , Vírus de DNA/genética , Vírus de DNA/crescimento & desenvolvimento , Vírus de DNA/isolamento & purificação , DNA Viral/biossíntese , Vírus Gigantes/genética , Vírus Gigantes/crescimento & desenvolvimento , Vírus Gigantes/isolamento & purificação , Interações Hospedeiro-Patógeno/genética , Fagossomos/ultraestrutura , Fagossomos/virologia , Microbiologia do Solo , Termogravimetria , Vacúolos/ultraestrutura , Vacúolos/virologia , Vírion/genética , Vírion/crescimento & desenvolvimento , Replicação Viral , Microtomografia por Raio-X
7.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33331812

RESUMO

Ovaliviridae is a family of enveloped viruses with a linear dsDNA genome. The virions are ellipsoidal, and contain a multi-layered spool-like capsid. The viral genome is presumably replicated through protein priming by a putative DNA polymerase encoded by the virus. Progeny virions are released through hexagonal openings resulting from the rupture of virus-associated pyramids formed on the surface of infected cells. The only known host is a hyperthermophilic archaeon of the genus Sulfolobus. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Ovaliviridae, which is available at ictv.global/report/ovaliviridae.


Assuntos
Vírus de Archaea/classificação , Vírus de Archaea/fisiologia , Vírus de DNA/classificação , Vírus de DNA/fisiologia , Vírus de Archaea/genética , Vírus de Archaea/ultraestrutura , Capsídeo/ultraestrutura , Vírus de DNA/genética , Vírus de DNA/ultraestrutura , Genoma Viral , Sulfolobus/virologia , Vírion/genética , Vírion/fisiologia , Vírion/ultraestrutura , Replicação Viral
8.
J Gen Virol ; 101(9): 894-895, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32840474

RESUMO

Finnlakeviridae is a family of icosahedral, internal membrane-containing bacterial viruses with circular, single-stranded DNA genomes. The family includes the genus, Finnlakevirus, with the species, Flavobacterium virus FLiP. Flavobacterium phage FLiP was isolated with its Gram-negative host bacterium from a boreal freshwater habitat in Central Finland in 2010. It is the first described single-stranded DNA virus with an internal membrane and shares minimal sequence similarity with other known viruses. The virion organization (pseudo T=21 dextro) and major capsid protein fold (double-ß-barrel) resemble those of Pseudoalteromonas phage PM2 (family Corticoviridae), which has a double-stranded DNA genome. A similar major capsid protein fold is also found in other double-stranded DNA viruses in the kingdom Bamfordvirae. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Finnlakeviridae, which is available at ictv.global/report/finnlakeviridae.


Assuntos
Bacteriófagos , Vírus de DNA , Flavobacterium/virologia , Bacteriólise , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , DNA de Cadeia Simples/genética , DNA Viral/genética , Genoma Viral , Vírion/química , Vírion/ultraestrutura , Replicação Viral
9.
Proc Natl Acad Sci U S A ; 117(33): 19643-19652, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32759221

RESUMO

Living organisms expend metabolic energy to repair and maintain their genomes, while viruses protect their genetic material by completely passive means. We have used cryo-electron microscopy (cryo-EM) to solve the atomic structures of two filamentous double-stranded DNA viruses that infect archaeal hosts living in nearly boiling acid: Saccharolobus solfataricus rod-shaped virus 1 (SSRV1), at 2.8-Å resolution, and Sulfolobus islandicus filamentous virus (SIFV), at 4.0-Å resolution. The SIFV nucleocapsid is formed by a heterodimer of two homologous proteins and is membrane enveloped, while SSRV1 has a nucleocapsid formed by a homodimer and is not enveloped. In both, the capsid proteins wrap around the DNA and maintain it in an A-form. We suggest that the A-form is due to both a nonspecific desolvation of the DNA by the protein, and a specific coordination of the DNA phosphate groups by positively charged residues. We extend these observations by comparisons with four other archaeal filamentous viruses whose structures we have previously determined, and show that all 10 capsid proteins (from four heterodimers and two homodimers) have obvious structural homology while sequence similarity can be nonexistent. This arises from most capsid residues not being under any strong selective pressure. The inability to detect homology at the sequence level arises from the sampling of viruses in this part of the biosphere being extremely sparse. Comparative structural and genomic analyses suggest that nonenveloped archaeal viruses have evolved from enveloped viruses by shedding the membrane, indicating that this trait may be relatively easily lost during virus evolution.


Assuntos
Vírus de Archaea/química , Vírus de DNA/química , DNA Viral/química , Sulfolobales/virologia , Sulfolobus/virologia , Vírus de Archaea/classificação , Vírus de Archaea/genética , Vírus de Archaea/ultraestrutura , Evolução Biológica , Capsídeo/química , Capsídeo/ultraestrutura , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/ultraestrutura , DNA Viral/genética , Ambientes Extremos , Genoma Viral , Filogenia
10.
Virol J ; 16(1): 158, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842897

RESUMO

BACKGROUND: After the isolation of Acanthamoeba polyphaga mimivirus (APMV), the study and search for new giant viruses has been intensified. Most giant viruses are associated with free-living amoebae of the genus Acanthamoeba; however other giant viruses have been isolated in Vermamoeba vermiformis, such as Faustovirus, Kaumoebavirus and Orpheovirus. These studies have considerably expanded our knowledge about the diversity, structure, genomics, and evolution of giant viruses. Until now, there has been only one Orpheovirus isolate, and many aspects of its life cycle remain to be elucidated. METHODS: In this study, we performed an in-depth characterization of the replication cycle and particles of Orpheovirus by transmission and scanning electron microscopy, optical microscopy and IF assays. RESULTS: We observed, through optical and IF microscopy, morphological changes in V. vermiformis cells during Orpheovirus infection, as well as increased motility at 12 h post infection (h.p.i.). The viral factory formation and viral particle morphogenesis were analysed by transmission electron microscopy, revealing mitochondria and membrane recruitment into and around the electron-lucent viral factories. Membrane traffic inhibitor (Brefeldin A) negatively impacted particle morphogenesis. The first structure observed during particle morphogenesis was crescent-shaped bodies, which extend and are filled by the internal content until the formation of multi-layered mature particles. We also observed the formation of defective particles with different shapes and sizes. Virological assays revealed that viruses are released from the host by exocytosis at 12 h.p.i., which is associated with an increase of particle counts in the supernatant. CONCLUSIONS: The results presented here contribute to a better understanding of the biology, structures and important steps in the replication cycle of Orpheovirus.


Assuntos
Vírus de DNA/crescimento & desenvolvimento , Vírus Gigantes/crescimento & desenvolvimento , Replicação Viral , Antígenos Virais/análise , Vírus de DNA/ultraestrutura , Vírus Gigantes/ultraestrutura , Lobosea/virologia , Microscopia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Vírion/química , Vírion/ultraestrutura
11.
Proc Natl Acad Sci U S A ; 116(45): 22591-22597, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636205

RESUMO

Studies on viruses infecting archaea living in the most extreme environments continue to show a remarkable diversity of structures, suggesting that the sampling continues to be very sparse. We have used electron cryo-microscopy to study at 3.7-Å resolution the structure of the Sulfolobus polyhedral virus 1 (SPV1), which was originally isolated from a hot, acidic spring in Beppu, Japan. The 2 capsid proteins with variant single jelly-roll folds form pentamers and hexamers which assemble into a T = 43 icosahedral shell. In contrast to tailed icosahedral double-stranded DNA (dsDNA) viruses infecting bacteria and archaea, and herpesviruses infecting animals and humans, where naked DNA is packed under very high pressure due to the repulsion between adjacent layers of DNA, the circular dsDNA in SPV1 is fully covered with a viral protein forming a nucleoprotein filament with attractive interactions between layers. Most strikingly, we have been able to show that the DNA is in an A-form, as it is in the filamentous viruses infecting hyperthermophilic acidophiles. Previous studies have suggested that DNA is in the B-form in bacteriophages, and our study is a direct visualization of the structure of DNA in an icosahedral virus.


Assuntos
Vírus de Archaea/fisiologia , Vírus de DNA/fisiologia , DNA Forma A/genética , DNA Viral/genética , Montagem de Vírus , Vírus de Archaea/genética , Vírus de Archaea/ultraestrutura , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Vírus de DNA/genética , Vírus de DNA/ultraestrutura , DNA Forma A/metabolismo , DNA Viral/metabolismo , Sulfolobus/virologia
12.
Adv Virus Res ; 105: 73-91, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31522709

RESUMO

Although icosahedral viruses have highly symmetrical capsid features, asymmetric structural elements are also present since the genome and minor structural proteins are usually incorporated without adhering to icosahedral symmetry. Besides this inherent asymmetry, interactions with the host during the virus life cycle are also asymmetric. However, until recently it was impossible to resolve high resolution asymmetric features during single-particle cryoEM image processing. This review summarizes the current approaches that can be used to visualize asymmetric structural features. We have included examples of advanced structural strategies developed to reveal unique features and asymmetry in icosahedral viruses.


Assuntos
Microscopia Crioeletrônica/métodos , Vírus de DNA/ultraestrutura , Vírus de RNA/ultraestrutura , Vírion/ultraestrutura
13.
Proc Natl Acad Sci U S A ; 116(9): 3556-3561, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30737287

RESUMO

Double-stranded DNA viruses, including bacteriophages and herpesviruses, package their genomes into preformed capsids, using ATP-driven motors. Seeking to advance structural and mechanistic understanding, we established in vitro packaging for a thermostable bacteriophage, P23-45 of Thermus thermophilus Both the unexpanded procapsid and the expanded mature capsid can package DNA in the presence of packaging ATPase over the 20 °C to 70 °C temperature range, with optimum activity at 50 °C to 65 °C. Cryo-EM reconstructions for the mature and immature capsids at 3.7-Å and 4.4-Å resolution, respectively, reveal conformational changes during capsid expansion. Capsomer interactions in the expanded capsid are reinforced by formation of intersubunit ß-sheets with N-terminal segments of auxiliary protein trimers. Unexpectedly, the capsid has T=7 quasi-symmetry, despite the P23-45 genome being twice as large as those of known T=7 phages, in which the DNA is compacted to near-crystalline density. Our data explain this anomaly, showing how the canonical HK97 fold has adapted to double the volume of the capsid, while maintaining its structural integrity. Reconstructions of the procapsid and the expanded capsid defined the structure of the single vertex containing the portal protein. Together with a 1.95-Å resolution crystal structure of the portal protein and DNA packaging assays, these reconstructions indicate that capsid expansion affects the conformation of the portal protein, while still allowing DNA to be packaged. These observations suggest a mechanism by which structural events inside the capsid can be communicated to the outside.


Assuntos
Bacteriófagos/ultraestrutura , Capsídeo/ultraestrutura , Empacotamento do DNA/genética , Vírus de DNA/ultraestrutura , Bacteriófagos/genética , Microscopia Crioeletrônica , Vírus de DNA/genética , DNA Viral/genética , DNA Viral/ultraestrutura , Vírion/genética , Vírion/ultraestrutura , Montagem de Vírus/genética
14.
Nat Commun ; 10(1): 388, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674888

RESUMO

Although the nucleocytoplasmic large DNA viruses (NCLDVs) are one of the largest group of viruses that infect many eukaryotic hosts, the near-atomic resolution structures of these viruses have remained unknown. Here we describe a 3.5 Å resolution icosahedrally averaged capsid structure of Paramecium bursaria chlorella virus 1 (PBCV-1). This structure consists of 5040 copies of the major capsid protein, 60 copies of the penton protein and 1800 minor capsid proteins of which there are 13 different types. The minor capsid proteins form a hexagonal network below the outer capsid shell, stabilizing the capsid by binding neighboring capsomers together. The size of the viral capsid is determined by a tape-measure, minor capsid protein of which there are 60 copies in the virion. Homologs of the tape-measure protein and some of the other minor capsid proteins exist in other NCLDVs. Thus, a similar capsid assembly pathway might be used by other NCLDVs.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Capsídeo/química , Capsídeo/ultraestrutura , Vírus Gigantes/ultraestrutura , Phycodnaviridae/ultraestrutura , Vírus de DNA/ultraestrutura , Modelos Moleculares , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Proteínas Virais/química , Proteínas Virais/ultraestrutura , Vírion/ultraestrutura , Montagem de Vírus
15.
J Gen Virol ; 100(2): 135-136, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30540248

RESUMO

Tristromaviridae is a family of viruses with linear, double-stranded DNA genomes of 16-18 kbp. The flexible, filamentous virions (400±20 nm×30±3 nm) consist of an envelope and an inner core constructed from two structural units: a rod-shaped helical nucleocapsid and a nucleocapsid-encompassing matrix protein layer. Tristromaviruses are lytic and infect hyperthermophilic archaea of the order Thermoproteales. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the Tristromaviridae, which is available at www.ictv.global/report/tristromaviridae.


Assuntos
Vírus de DNA/classificação , DNA Viral/genética , Thermoproteales/virologia , Vírion/ultraestrutura , Vírus de DNA/genética , Vírus de DNA/ultraestrutura
16.
Viruses ; 10(10)2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314306

RESUMO

HcDNAV (a type species of Genus Dinodnavirus) is a large double-stranded DNA virus, which lytically infects the bloom-forming marine microalga Heterocapsa circularisquama Horiguchi (Dinophyceae). In the present study, detailed observation of the HcDNAV particle and its infection process was conducted via field emission scanning electron microscopy (FE-SEM) and epifluorescence microscopy (EFM). Each five-fold vertex of the icosahedral virion was decorated with a protrusion, which may be related to the entry process of HcDNAV into the host. The transverse groove of host cells is proposed to be the main virus entry site. A visible DAPI-stained region, which is considered to be the viroplasm (virus factory), appeared in close proximity to the host nucleus at 11 h post infection (hpi); the putative viral DAPI signal was remarkably enlarged at 11⁻30 hpi. It was kidney-shaped at 13⁻15 hpi, horseshoe-shaped at 20 hpi, doughnut-shaped at 30 hpi, and changed into a three-dimensionally complicated shape at 51⁻53 hpi, by which time most parts of the host cell were occupied by the putative viral DAPI signal. While the virions were within the viroplasm, they were easily distinguishable by their vertex protrusions by FE-SEM.


Assuntos
Vírus de DNA/fisiologia , Dinoflagellida/virologia , Vírus de DNA/patogenicidade , Vírus de DNA/ultraestrutura , Microscopia Eletrônica de Varredura , Vírion/patogenicidade , Vírion/fisiologia , Vírion/ultraestrutura , Virulência
17.
Nat Commun ; 9(1): 3360, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135568

RESUMO

Different forms of viruses that infect archaea inhabiting extreme environments continue to be discovered at a surprising rate, suggesting that the current sampling of these viruses is sparse. We describe here Sulfolobus filamentous virus 1 (SFV1), a membrane-enveloped virus infecting Sulfolobus shibatae. The virus encodes two major coat proteins which display no apparent sequence similarity with each other or with any other proteins in databases. We have used cryo-electron microscopy at 3.7 Å resolution to show that these two proteins form a nearly symmetrical heterodimer, which wraps around A-form DNA, similar to what has been shown for SIRV2 and AFV1, two other archaeal filamentous viruses. The thin (∼ 20 Å) membrane of SFV1 is mainly archaeol, a lipid species that accounts for only 1% of the host lipids. Our results show how relatively conserved structural features can be maintained across evolution by both proteins and lipids that have diverged considerably.


Assuntos
Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , Sulfolobus/virologia , Microscopia Crioeletrônica , Vírus de DNA/genética , Genoma Viral/genética , Estrutura Secundária de Proteína , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion/ultraestrutura
18.
J Gen Virol ; 99(10): 1357-1358, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30091697

RESUMO

The family Globuloviridae comprises enveloped viruses with linear, double-stranded DNA genomes of about 21-28 kbp. The virions are spherical with a diameter of 70-100 nm. No information is available about genome replication. Globuloviruses infect hyperthermophilic archaea belonging to the genera Pyrobaculum and Thermoproteus, which thrive in extreme geothermal environments. Infection does not cause lysis of host cells and is noncytocidal. The viral genome does not integrate into the host chromosome. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Globuloviridae, which is available at www.ictv.global/report/globuloviridae.


Assuntos
Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , DNA/genética , Pyrobaculum/virologia , Thermoproteus/virologia , Vírus de DNA/ultraestrutura , DNA Viral/genética , Vírion/ultraestrutura
19.
Sci Rep ; 8(1): 4000, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507337

RESUMO

The giant viruses are the largest and most complex viruses in the virosphere. In the last decade, new members have constantly been added to this group. Here, we provide an in-depth descriptive analysis of the replication cycle of Cedratvirus getuliensis, one of the largest viruses known to date. We tracked the virion entry, the early steps of virus factory and particles morphogenesis, and during this phase, we observed a complex and unique sequential organization of immature particle elements, including horseshoe and rectangular compartments, revealed by transverse and longitudinal sections, respectively, until the formation of the final ovoid-shaped striped virion. The genome and virion proteins are incorporated through a longitudinal opening in the immature virion, followed by the incorporation of the second cork and thickening of the capsid well. Moreover, many cell modifications occur during viral infection, including intense membrane trafficking important to viral morphogenesis and release, as evidenced by treatment using brefeldin A. Finally, we observed that Cedratvirus getuliensis particles are released after cellular lysis, although we obtained microscopic evidence that some particles are released by exocytosis. The present study provides new information on the unexplored steps in the life cycle of cedratviruses.


Assuntos
Vírus de DNA/fisiologia , Replicação Viral , Acanthamoeba castellanii/virologia , Citocalasinas/farmacologia , Citoplasma/efeitos dos fármacos , Citoplasma/virologia , Vírus de DNA/efeitos dos fármacos , Vírus de DNA/isolamento & purificação , Vírus de DNA/ultraestrutura , Exocitose , Estágios do Ciclo de Vida , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Esgotos/virologia , Vírion/ultraestrutura , Internalização do Vírus
20.
Virology ; 516: 239-245, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29407382

RESUMO

Nucleocytoplasmic large DNA viruses (NCLDVs) blur the line between viruses and cells. Melbournevirus (MelV, family Marseilleviridae) belongs to a new family of NCLDVs. Here we present an electron cryo-microscopy structure of the MelV particle, with the large triangulation number T = 309 constructed by 3080 pseudo-hexagonal capsomers. The most distinct feature of the particle is a large and dense body (LDB) consistently found inside all particles. Electron cryo-tomography of 147 particles shows that the LDB is preferentially located in proximity to the probable lipid bilayer. The LDB is 30 nm in size and its density matches that of a genome/protein complex. The observed LDB reinforces the structural complexity of MelV, setting it apart from other NCLDVs.


Assuntos
Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , Vírion/fisiologia , Vírion/ultraestrutura , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Vírus de DNA/genética , Genoma Viral , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...