Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(716): eadg3540, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792954

RESUMO

Mpox virus (MPXV) caused a global outbreak in 2022. Although smallpox vaccines were rapidly deployed to curb spread and disease among those at highest risk, breakthrough disease was noted after complete immunization. Given the threat of additional zoonotic events and the virus's evolving ability to drive human-to-human transmission, there is an urgent need for an MPXV-specific vaccine that confers protection against evolving MPXV strains and related orthopoxviruses. Here, we demonstrate that an mRNA-lipid nanoparticle vaccine encoding a set of four highly conserved MPXV surface proteins involved in virus attachment, entry, and transmission can induce MPXV-specific immunity and heterologous protection against a lethal vaccinia virus (VACV) challenge. Compared with modified vaccinia virus Ankara (MVA), which forms the basis for the current MPXV vaccine, immunization with an mRNA-based MPXV vaccine generated superior neutralizing activity against MPXV and VACV and more efficiently inhibited spread between cells. We also observed greater Fc effector TH1-biased humoral immunity to the four MPXV antigens encoded by the vaccine, as well as to the four VACV homologs. Single MPXV antigen-encoding mRNA vaccines provided partial protection against VACV challenge, whereas multivalent vaccines combining mRNAs encoding two, three, or four MPXV antigens protected against disease-related weight loss and death equal or superior to MVA vaccination. These data demonstrate that an mRNA-based MPXV vaccine confers robust protection against VACV.


Assuntos
Vacina Antivariólica , Vacinas Virais , Humanos , Monkeypox virus/genética , Vaccinia virus/genética , Vacina Antivariólica/genética , Antígenos Virais , RNA Mensageiro/genética
2.
mBio ; 14(5): e0188723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37729584

RESUMO

IMPORTANCE: Modern smallpox vaccines, such as those used against mpox, are made from vaccinia viruses, but it is still unknown whether cowpox, horsepox, or vaccinia viruses were used in the early 20th century or earlier. The mystery began to be solved when the genomes of six historical smallpox vaccines used in the United States from 1850 to 1902 were determined. Our work analyzed in detail the genomes of these six historical vaccines, revealing a complex genomic structure. Historical vaccines are highly similar to horsepox in the core of their genomes, but some are closer to the structure of vaccinia virus at the ends of the genome. One of the vaccines is a recombinant virus with parts of variola virus recombined into its genome. Our data add valuable information for understanding the evolutionary path of current smallpox vaccines and the genetic makeup of the potentially extinct group of horsepox viruses.


Assuntos
Orthopoxvirus , Vacina Antivariólica , Varíola , Vírus da Varíola , Humanos , Vírus da Varíola/genética , Varíola/prevenção & controle , Duplicação Gênica , Vacina Antivariólica/genética , Vaccinia virus/genética , Orthopoxvirus/genética , Recombinação Genética
3.
Viruses ; 15(5)2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-37243206

RESUMO

Notwithstanding the presence of a smallpox vaccine that is effective against monkeypox (mpox), developing a universal vaccine candidate against monkeypox virus (MPXV) is highly required as the mpox multi-country outbreak has increased global concern. MPXV, along with variola virus (VARV) and vaccinia virus (VACV), belongs to the Orthopoxvirus genus. Due to the genetic similarity of antigens in this study, we have designed a potentially universal mRNA vaccine based on conserved epitopes that are specific to these three viruses. In order to design a potentially universal mRNA vaccine, antigens A29, A30, A35, B6, and M1 were selected. The conserved sequences among the three viral species-MPXV, VACV, and VARV-were detected, and B and T cell epitopes containing the conserved elements were used for the design of the multi-epitope mRNA construct. Immunoinformatics analyses demonstrated the stability of the vaccine construct and optimal binding to MHC molecules. Humoral and cellular immune responses were induced by immune simulation analyses. Eventually, based on in silico analysis, the universal mRNA multi-epitope vaccine candidate designed in this study may have a potential protection against MPXV, VARV, and VACV that will contribute to the advancement of prevention strategies for unpredictable pandemics.


Assuntos
Mpox , Vacina Antivariólica , Varíola , Vírus da Varíola , Humanos , Vaccinia virus/genética , Vírus da Varíola/genética , Varíola/prevenção & controle , Epitopos/metabolismo , Vacina Antivariólica/genética , Monkeypox virus/genética , Vacinas de mRNA
4.
J Med Virol ; 95(3): e28643, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890648

RESUMO

Since early May 2022, some monkeypox virus (MPXV) infections have been reported from countries where the disease is not endemic. Within 2 months, the number of patients has increased extensively, becoming the most considerable MPXV outbreak described. Smallpox vaccines demonstrated high efficacy against MPXVs in the past and are considered a crucial outbreak control measure. However, viruses isolated during the current outbreak carry distinct genetic variations, and the cross-neutralizing capability of antibodies remains to be assessed. Here we report that serum antibodies elicited by first-generation smallpox vaccines can neutralize the current MPXV more than 40 years after vaccine administration.


Assuntos
Mpox , Vacina Antivariólica , Varíola , Humanos , Monkeypox virus , Mpox/epidemiologia , Mpox/prevenção & controle , Vacina Antivariólica/genética , Vacinação
5.
Emerg Microbes Infect ; 11(1): 2359-2370, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36069348

RESUMO

Viral vectors are a potent vaccine platform for inducing humoral and T-cell immune responses. Among the various viral vectors, replication-competent ones are less commonly used for coronavirus disease 2019 (COVID-19) vaccine development compared with replication-deficient ones. Here, we show the availability of a smallpox vaccine LC16m8Δ (m8Δ) as a replication-competent viral vector for a COVID-19 vaccine. M8Δ is a genetically stable variant of the licensed and highly effective Japanese smallpox vaccine LC16m8. Here, we generated two m8Δ recombinants: one harbouring a gene cassette encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein, named m8Δ-SARS2(P7.5-S)-HA; and one encoding the S protein with a highly polybasic motif at the S1/S2 cleavage site, named m8Δ-SARS2(P7.5-SHN)-HA. M8Δ-SARS2(P7.5-S)-HA induced S-specific antibodies in mice that persisted for at least six weeks after a homologous boost immunization. All eight analysed serum samples displayed neutralizing activity against an S-pseudotyped virus at a level similar to that of serum samples from patients with COVID-19, and more than half (5/8) also had neutralizing activity against the Delta/B.1.617.2 variant of concern. Importantly, most serum samples also neutralized the infectious SARS-CoV-2 Wuhan and Delta/B.1.617.2 strains. In contrast, immunization with m8Δ-SARS2(P7.5-SHN)-HA elicited significantly lower antibody titres, and the induced antibodies had less neutralizing activity. Regarding T-cell immunity, both m8Δ recombinants elicited S-specific multifunctional CD8+ and CD4+ T-cell responses even after just a primary immunization. Thus, m8Δ provides an alternative method for developing a novel COVID-19 vaccine.


Assuntos
COVID-19 , Vacina Antivariólica , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2/genética , Vacina Antivariólica/genética , Glicoproteína da Espícula de Coronavírus/genética
6.
Viruses ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35891430

RESUMO

The conventional live smallpox vaccine based on the vaccinia virus (VACV) cannot be widely used today because it is highly reactogenic. Therefore, there is a demand for designing VACV variants possessing enhanced immunogenicity, making it possible to reduce the vaccine dose and, therefore, significantly eliminate the pathogenic effect of the VACV on the body. In this study, we analyzed the development of the humoral and T cell-mediated immune responses elicited by immunizing mice with low-dose VACV variants carrying the mutant A34R gene (which increases production of extracellular virions) or the deleted A35R gene (whose protein product inhibits antigen presentation by the major histocompatibility complex class II). The VACV LIVP strain, which is used as a smallpox vaccine in Russia, and its recombinant variants LIVP-A34R*, LIVP-dA35R, and LIVP-A34R*-dA35R, were compared upon intradermal immunization of BALB/c mice at a dose of 104 pfu/animal. The strongest T cell-mediated immunity was detected in mice infected with the LIVP-A34R*-dA35R virus. The parental LIVP strain induced a significantly lower antibody level compared to the strains carrying the modified A34R and A35R genes. Simultaneous modification of the A34R gene and deletion of the A35R gene in VACV LIVP synergistically enhanced the immunogenic properties of the LIVP-A34R*-dA35R virus.


Assuntos
Vacina Antivariólica , Varíola , Vacínia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Varíola/prevenção & controle , Vacina Antivariólica/genética , Vacinas Atenuadas/genética , Vaccinia virus
7.
mBio ; 13(1): e0010222, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35189701

RESUMO

Although providing long-lasting immunity, smallpox vaccination was associated with local and systemic reactions and rarely with severe complications, including progressive vaccinia and postvaccinia encephalitis. As the Dryvax smallpox vaccine consists of a population of variants, we investigated a particularly pathogenic isolate called clone 3 (CL3). Virus replication was monitored by inserting the gene encoding firefly luciferase (Luc) into the genomes of CL3 and ACAM2000, the second-generation smallpox vaccine derived from a less virulent clone. Greater luminescence occurred following intranasal or intraperitoneal inoculation of mice with CL3-Luc than ACAM2000-Luc. Previous genome sequencing of CL3 and ACAM2000 revealed numerous differences that could affect pathogenicity. We focused on a 4.2-kbp segment, containing several open reading frames, in CL3 that is absent from ACAM2000 and determined that lower virulence of the latter was associated with a truncation of the interferon α/ß (IFN-α/ß) decoy receptor. Truncation of the decoy receptor in CL3-Luc and repair of the truncated version in ACAM2000-Luc decreased and increased virulence, respectively. Blockade of the mouse type 1 IFN receptor increased the virulence of ACAM2000-Luc to that of CL3-Luc, consistent with the role of IFN in attenuating the former. The severities of disease following intracranial inoculation of immunocompetent mice and intraperitoneal inoculation of T cell-depleted mice were also greater in viruses expressing the full-length decoy receptor. Previous evidence for the low affinity of a similarly truncated decoy receptor for IFN and the presence of a full-length decoy receptor in virus isolated from a patient with progressive vaccinia support our findings. IMPORTANCE Attenuated live viruses make effective vaccines, although concerns exist due to infrequent complications, particularly in individuals with immunological defects. Such complications occurred with smallpox vaccines, which were shown to be comprised of populations of variants. Clone 3, isolated from Dryvax, the vaccine most widely used in the United States during the smallpox eradication campaign, was particularly pathogenic in animal models. We demonstrated that the full-length IFN-α/ß decoy receptor in CL3 and a truncation of the receptor in the clone used for the second-generation smallpox vaccine ACAM2000 account for their difference in pathogenicity. Viruses expressing the full-length decoy receptor were more virulent following intranasal, intraperitoneal, or intracranial inoculation of mice than ACAM2000, and disease was exacerbated following T cell depletion. Correspondingly, the full-length decoy receptor is present in smallpox vaccines with high rates of side effects and in a Dryvax clone obtained from a lesion in a patient with progressive vaccinia.


Assuntos
Vacina Antivariólica , Varíola , Vacínia , Animais , Anticorpos Antivirais , Antígenos Virais , Interferon-alfa , Camundongos , Varíola/prevenção & controle , Vacina Antivariólica/efeitos adversos , Vacina Antivariólica/genética , Vacínia/induzido quimicamente , Vacínia/epidemiologia , Vaccinia virus/genética , Virulência
8.
Genome Biol ; 21(1): 286, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33272280

RESUMO

According to a recent article published in Genome Biology, Duggan and coworkers sequenced and partially assembled five genomes of smallpox vaccines from the nineteenth century. No information regarding the ends of genomes was presented, and they are important to understand the evolutionary relationship of the different smallpox vaccine genomes during the centuries. We re-assembled the genomes, which include the largest genomes in the vaccinia lineage and one true horsepox strain. Moreover, the assemblies reveal a diverse genetic structure in the genome ends. Our data emphasize the concurrent use of horsepox and horsepox-related viruses as the smallpox vaccine in the nineteenth century.


Assuntos
Orthopoxvirus , Vacina Antivariólica , Varíola , Guerra Civil Norte-Americana , Genômica , Humanos , Varíola/prevenção & controle , Vacina Antivariólica/genética , Estados Unidos
9.
Virus Res ; 256: 192-200, 2018 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-30190251

RESUMO

rVTT-TA35-TJ, an attenuated vaccinia virus Tian Tan strain (VTT), was constructed by knocking out two non-essential gene fragments (TA35R and TJ2R) related to virulence, immunomodulation, and host range; and by combining double marker screening with exogenous and endogenous selectable marker knock-out techniques. Here, the shuttle plasmids pSK-TA35 and pSK-TJ were constructed, containing two pairs of recombinant arms: early and late strong promoter pE/L and EGFP as an exogenous selectable marker. The recombinant vaccinia virus rVTT-TA35-TJ without exogenous selection markers was then obtained through homologous recombination technology and the Cre/loxP system. Knocking out the two gene fragments does not affect the replication ability of the virus and displays a good genetic stability. Furthermore, a series of in vivo and in vitro experiments demonstrate that although virulence of rVTT-TA35-TJ is attenuated significantly, high immunogenicity was maintained. These results support the potential development of rVTT-TA35-TJ as a safe viral vector or vaccine.


Assuntos
Portadores de Fármacos , Técnicas de Inativação de Genes , Vacina Antivariólica/genética , Vacina Antivariólica/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Animais , Linhagem Celular , Humanos , Camundongos Endogâmicos BALB C , Coelhos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vaccinia virus/patogenicidade , Virulência , Fatores de Virulência/genética
10.
PLoS One ; 13(2): e0192725, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474493

RESUMO

LC16m8 (m8), a highly attenuated vaccinia virus (VAC) strain, was developed as a smallpox vaccine, and its safety and immunogenicity have been confirmed. Here, we aimed to develop a system that recovers infectious m8 from a bacterial artificial chromosome (BAC) that retains the full-length viral genomic DNA (m8-BAC system). The infectious virus was successfully recovered from a VAC-BAC plasmid, named pLC16m8-BAC. Furthermore, the bacterial replicon-free virus was generated by intramolecular homologous recombination and was successfully recovered from a modified VAC-BAC plasmid, named pLC16m8.8S-BAC. Also, the growth of the recovered virus was indistinguishable from that of authentic m8. The full genome sequence of the plasmid, which harbors identical inverted terminal repeats (ITR) to that of authentic m8, was determined by long-read next-generation sequencing (NGS). The ITR contains x 18 to 32 of the 70 and x 30 to 45 of 54 base pair tandem repeats, and the number of tandem repeats was different between the ITR left and right. Since the virus recovered from pLC16m8.8S-BAC was expected to retain the identical viral genome to that of m8, including the ITR, a reference-based alignment following a short-read NGS was performed to validate the sequence of the recovered virus. Based on the pattern of coverage depth in the ITR, no remarkable differences were observed between the virus and m8, and the other region was confirmed to be identical as well. In summary, this new system can recover the virus, which is geno- and phenotypically indistinguishable from authentic m8.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais Bacterianos/virologia , Genoma Viral , Vaccinia virus/genética , Animais , Sequência de Bases , Linhagem Celular , DNA Viral/genética , Proteínas de Fluorescência Verde/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutagênese , Plasmídeos/genética , Coelhos , Análise de Sequência de DNA , Vacina Antivariólica/genética , Vacina Antivariólica/imunologia , Sequências Repetidas Terminais , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Virulência/genética , Virulência/imunologia
11.
Health Secur ; 15(6): 629-637, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29091742

RESUMO

This article examines the biosecurity and biodefense implications resulting from the recent creation of horsepox virus, a noncirculating (extinct) species of orthopoxvirus. Here we examine the technical aspects of the horsepox virus synthesis and conclude that orthopox synthesis experiments currently remain technically challenging-and will continue to be so, even once this work is published in the scientific literature. This limits potential misuse by some types of nefarious actors. We also examine the implications of one stated purpose for the recreation of horsepox virus: the development of a smallpox vaccine. If the development is successful, it could take advantage of US government incentives for the priority FDA review of medical countermeasures (MCMs) against biosecurity threats. However, if this case leads to the determination that this incentive is counterproductive for security, the newly created priority review voucher program should be more clearly defined or limited based on need. Limiting the program could have costs that require further consideration, however, as general incentives for biodefense medical countermeasure development are required for MCMs to be available. Finally, while the recreation of horsepox virus was not technically trivial, nor was it cell-free, this experiment was a de facto demonstration of already-assumed scientific capabilities. The ability to recreate horsepox, or smallpox, will remain no matter what policy controls are put into place. It will be impossible to close off all avenues for nefarious misuse of gene synthesis, or misuse of biological materials more broadly. As a result, we advocate for the implementation of policy, regulations, and guidance that will make illicit recreation harder, more burdensome, more detectable, and, thus, more preventable without having sweeping negative consequences for the research enterprise. As part of our biosecurity efforts, we must also encourage and enable scientists to participate actively and to do all they can to safeguard their technical fields from irresponsible or illicit actions.


Assuntos
Orthopoxvirus/genética , Derramamento de Material Biológico/prevenção & controle , Doenças Transmissíveis Emergentes/prevenção & controle , Humanos , Varíola/imunologia , Varíola/prevenção & controle , Vacina Antivariólica/genética , Vacínia/genética
12.
Antiviral Res ; 134: 182-191, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27637905

RESUMO

The control of smallpox was achieved using live vaccinia virus (VV) vaccine, which successfully eradicated the disease worldwide. As the variola virus no longer exists as a natural infection agent, mass vaccination was discontinued after 1980. However, emergence of smallpox outbreaks caused by accidental or deliberate release of variola virus has stimulated new research for second-generation vaccine development based on attenuated VV strains. Considering the closely related animal poxviruses that also arise as zoonoses, and the increasing number of unvaccinated or immunocompromised people, a safer and more effective vaccine is still required. With this aim, new vectors based on avian poxviruses that cannot replicate in mammals should improve the safety of conventional vaccines, and protect from zoonotic orthopoxvirus diseases, such as cowpox and monkeypox. In this study, DNA and fowlpox (FP) recombinants that expressed the VV L1R, A27L, A33R, and B5R genes were generated (4DNAmix, 4FPmix, respectively) and tested in mice using novel administration routes. Mice were primed with 4DNAmix by electroporation, and boosted with 4FPmix applied intranasally. The lethal VVIHD-J strain was then administered by intranasal challenge. All of the mice receiving 4DNAmix followed by 4FPmix, and 20% of the mice immunized only with 4FPmix, were protected. The induction of specific humoral and cellular immune responses directly correlated with this protection. In particular, higher anti-A27 antibodies and IFNγ-producing T lymphocytes were measured in the blood and spleen of the protected mice, as compared to controls. VVIHD-J neutralizing antibodies in sera from the protected mice suggest that the prime/boost vaccination regimen with 4DNAmix plus 4FPmix may be an effective and safe mode to induce protection against smallpox and poxvirus zoonotic infections. The electroporation/intranasal administration routes contributed to effective immune responses and mouse survival.


Assuntos
Anticorpos Neutralizantes/sangue , Eletroporação , Varíola Aviária/genética , Vacina Antivariólica/administração & dosagem , Vacinação/métodos , Vaccinia virus/genética , Animais , Imunidade Celular , Imunidade Humoral , Interferon gama/sangue , Interferon gama/imunologia , Camundongos , Mpox/prevenção & controle , Testes de Neutralização , Varíola/prevenção & controle , Vacina Antivariólica/genética , Vacina Antivariólica/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vaccinia virus/patogenicidade , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia
13.
PLoS One ; 11(8): e0158016, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27513748

RESUMO

Although many diseases and traits show large heritability, few genetic variants have been found to strongly separate phenotype groups by genotype. Complex regulatory networks of variants and expression of multiple genes lead to small individual-variant effects and difficulty replicating the effect of any single variant in an affected pathway. Interaction network modeling of GWAS identifies effects ignored by univariate models, but population differences may still cause specific genes to not replicate. Integrative network models may help detect indirect effects of variants in the underlying biological pathway. In this study, we used gene-level functional interaction information from the Integrative Multi-species Prediction (IMP) tool to reveal important genes associated with a complex phenotype through evidence from epistasis networks and pathway enrichment. We test this method for augmenting variant-based network analyses with functional interactions by applying it to a smallpox vaccine immune response GWAS. The integrative analysis spotlights the role of genes related to retinoid X receptor alpha (RXRA), which has been implicated in a previous epistasis network analysis of smallpox vaccine.


Assuntos
Epistasia Genética/genética , Redes Reguladoras de Genes , Fenômenos do Sistema Imunitário/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores X de Retinoides/genética , Vacina Antivariólica/imunologia , Varíola/genética , Adolescente , Adulto , Algoritmos , Biologia Computacional , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Fenótipo , Transdução de Sinais , Varíola/imunologia , Varíola/prevenção & controle , Vacina Antivariólica/genética , Adulto Jovem
14.
Dokl Biochem Biophys ; 466: 35-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27025484

RESUMO

The LIVPΔ6 strain of vaccinia virus (VACV) was created by genetic engineering on the basis of previously obtained attenuated 1421ABJCN strain by target deletion of the A35R gene encoding an inhibitor of antigen presentation by the major histocompatibility complex class II. 1421ABJCN is the LIVP strain of VACV with five inactivated virulence genes encoding hemagglutinin (A56R), γ-interferon-binding protein (B8R), thymidine kinase (J2R), complement-binding protein (C3L), and Bcl2-like inhibitor of apoptosis (N1L). The highly immunogenic LIVPΔ6 strain could be an efficient fourth-generation attenuated vaccine against smallpox and other orthopoxvirus infections.


Assuntos
Deleção de Genes , Imunogenicidade da Vacina , Vacina Antivariólica/imunologia , Vacinas Atenuadas/imunologia , Vaccinia virus/imunologia , Proteínas Virais/genética , Animais , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vacina Antivariólica/genética , Vacinas Atenuadas/genética , Vaccinia virus/genética , Proteínas Virais/imunologia
15.
PLoS One ; 10(4): e0123113, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875833

RESUMO

BACKGROUND: The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. METHODS: We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. RESULTS: The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. CONCLUSION: These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.


Assuntos
Fatores Imunológicos/administração & dosagem , Vacina Antivariólica/imunologia , Varíola/imunologia , Vírus da Varíola/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , ELISPOT , Mapeamento de Epitopos , Feminino , Imunidade Celular , Imunidade Humoral , Isotipos de Imunoglobulinas/imunologia , Camundongos , Varíola/metabolismo , Varíola/prevenção & controle , Vacina Antivariólica/genética , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
16.
Gene Ther ; 22(6): 476-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25876464

RESUMO

Vaccinia virus (VV) has many attractive characteristics as a potential cancer therapeutic. There are several strains of VV. The nonvaccine strain Western Reserve VV with deletion of both the thymidine kinase and the viral growth factor genes (known as WRDD) has been reported as the most potent tumor-targeted oncolytic VV. Other strains, such as the European vaccine Lister strain, are largely untested. This study evaluated the antitumor potency and biodistribution of different VV strains using in vitro and in vivo models of cancer. Lister strain virus with thymidine kinase gene deletion (VVΔTK) demonstrated superior antitumor potency and cancer-selective replication in vitro and in vivo, compared with WRDD, especially in human cancer cell lines and immune-competent hosts. Further investigation of functional mechanisms revealed that Lister VVΔTK presented favorable viral biodistribution within the tumors, with lower levels of proinflammatory cytokines compared with WRDD, suggesting that Lister strain may induce a diminished host inflammatory response. This study indicates that the Lister strain VVΔTK may be a particularly promising VV strain for the development of the next generation of tumor-targeted oncolytic therapeutics.


Assuntos
Deleção de Genes , Vírus Oncolíticos/fisiologia , Timidina Quinase/genética , Vaccinia virus/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Modelos Animais de Doenças , Terapia Genética , Humanos , Rim/citologia , Camundongos , Mutação , Neoplasias/terapia , Vírus Oncolíticos/genética , Vacina Antivariólica/genética , Vacina Antivariólica/uso terapêutico , Replicação Viral
17.
Arch Virol ; 159(9): 2223-31, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24677065

RESUMO

Attenuation of the virulence of vaccinia Tiantan virus (VTT) underlies the strategy adopted for mass vaccination campaigns. This strategy provides advantages of safety and efficacy over traditional vaccines and is aimed at minimization of adverse health effects. In this study, a mutant form of the virus, MVTT was derived from VTT by deletion of the ribonucleotide reductase large subunit (R1) (TI4L). Compared to wild-type parental (VTT) and revertant (VTT-rev) viruses, virulence of the mutant MVTT was reduced by 100-fold based on body weight reduction and by 3,200-fold based on determination of the intracranial 50% lethal infectious dose. However, the immunogenicity of MVTT was equivalent to that of the parental VTT. We also demonstrated that the TI4L gene is not required for efficient replication. These data support the conclusion that MVTT can be used as a replicating virus vector or as a platform for the development of vaccines against infectious diseases and for cancer therapy.


Assuntos
Ribonucleotídeo Redutases/genética , Deleção de Sequência , Vacina Antivariólica/imunologia , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Animais , Peso Corporal , Feminino , Dose Letal Mediana , Camundongos Endogâmicos BALB C , Subunidades Proteicas/genética , Vacina Antivariólica/administração & dosagem , Vacina Antivariólica/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vaccinia virus/genética , Virulência
18.
Immunology ; 141(4): 531-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24205828

RESUMO

Vaccinia virus (VV) has been used globally as a vaccine to eradicate smallpox. Widespread use of this viral vaccine has been tempered in recent years because of its immuno-evasive properties, with restrictions prohibiting VV inoculation of individuals with immune deficiencies or atopic skin diseases. VV infection is known to perturb several pathways for immune recognition including MHC class II (MHCII) and CD1d-restricted antigen presentation. MHCII and CD1d molecules associate with a conserved intracellular chaperone, CD74, also known as invariant chain. Upon VV infection, cellular CD74 levels are significantly reduced in antigen-presenting cells, consistent with the observed destabilization of MHCII molecules. In the current study, the ability of sustained CD74 expression to overcome VV-induced suppression of antigen presentation was investigated. Viral inhibition of MHCII antigen presentation could be partially ameliorated by ectopic expression of CD74 or by infection of cells with a recombinant VV encoding murine CD74 (mCD74-VV). In contrast, virus-induced disruptions in CD1d-mediated antigen presentation persisted even with sustained CD74 expression. Mice immunized with the recombinant mCD74-VV displayed greater protection during VV challenge and more robust anti-VV antibody responses. Together, these observations suggest that recombinant VV vaccines encoding CD74 may be useful tools to improve CD4⁺ T-cell responses to viral and tumour antigens.


Assuntos
Antígenos de Diferenciação de Linfócitos B/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Vacina Antivariólica/imunologia , Vaccinia virus/imunologia , Vacínia/prevenção & controle , Proteínas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/virologia , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Vacina Antivariólica/administração & dosagem , Vacina Antivariólica/genética , Vacina Antivariólica/metabolismo , Fatores de Tempo , Transfecção , Vacinação , Vacinas Sintéticas/imunologia , Vacínia/imunologia , Vacínia/metabolismo , Vacínia/virologia , Vaccinia virus/genética , Vaccinia virus/metabolismo , Proteínas Virais/genética
19.
PLoS One ; 8(12): e81527, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339943

RESUMO

Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k) for each gene to optimize the Relief-F test statistics (importance scores) for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak) Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to detect both main effects and interaction effects. Software Availability: http://insilico.utulsa.edu/ReliefSeq.php.


Assuntos
Biologia Computacional/métodos , Epistasia Genética/genética , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Inteligência Artificial , Modelos Genéticos , RNA Mensageiro/genética , Vacina Antivariólica/genética
20.
Sci Rep ; 3: 2898, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24104466

RESUMO

Gene set analysis (GSA) has been used for analysis of microarray data to aid the interpretation and to increase statistical power. With the advent of next-generation sequencing, the use of GSA is even more relevant, as studies are often conducted on a small number of samples. We propose the use of soft truncation thresholding and the Gamma Method (GM) to determine significant gene set (GS), where a generalized linear model is used to assess per-gene significance. The approach was compared to other methods using an extensive simulation study and RNA-seq data from smallpox vaccine study. The GM was found to outperform other proposed methods. Application of the GM to the smallpox vaccine study found the GSs to be moderately associated with response, including focal adhesion (p = 0.04) and extracellular matrix receptor interaction (p = 0.05). The application of GSA to RNA-seq data will provide new insights into the genomic basis of complex traits.


Assuntos
Algoritmos , Biomarcadores/análise , Bases de Dados Factuais , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Vacina Antivariólica/genética , Análise por Conglomerados , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Filogenia , Vacina Antivariólica/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...