Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2775: 393-410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758333

RESUMO

Creating a safe and effective vaccine against infection by the fungal pathogen Cryptococcus neoformans is an appealing option that complements the discovery of new small molecule antifungals. Recent animal studies have yielded promising results for a variety of vaccines that include live-attenuated and heat-killed whole-cell vaccines, as well as subunit vaccines formulated around recombinant proteins. Some of the recombinantly engineered cryptococcal mutants in the chitosan biosynthesis pathway are avirulent and very effective at conferring protective immunity. Mice vaccinated with these avirulent chitosan-deficient strains are protected from a lethal pulmonary infection with C. neoformans strain KN99. Heat-killed derivatives of the vaccination strains are likewise effective in a murine model of infection. The efficacy of these whole-cell vaccines, however, is dependent on a number of factors, including the inoculation dose, route of vaccination, frequency of vaccination, and the specific mouse strain used in the study. Here, we present detailed methods for identifying and optimizing various factors influencing vaccine potency and efficacy in various inbred mouse strains using a chitosan-deficient cda1Δcda2Δcda3Δ strain as a whole-cell vaccine candidate. This chapter describes the protocols for immunizing three different laboratory mouse strains with vaccination regimens that use intranasal, orotracheal, and subcutaneous vaccination routes after the animals were sedated using two different types of anesthesia.


Assuntos
Quitosana , Criptococose , Cryptococcus neoformans , Vacinas Fúngicas , Animais , Quitosana/química , Camundongos , Vacinas Fúngicas/imunologia , Vacinas Fúngicas/genética , Vacinas Fúngicas/administração & dosagem , Criptococose/imunologia , Criptococose/prevenção & controle , Criptococose/microbiologia , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/genética , Modelos Animais de Doenças , Vacinação/métodos , Feminino , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética
2.
J Immunol Res ; 2021: 9921620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471644

RESUMO

INTRODUCTION: Cryptococcosis is a ubiquitous opportunistic fungal disease caused by Cryptococcus neoformans var. grubii. It has high global morbidity and mortality among HIV patients and non-HIV carriers with 99% and 95%, respectively. Furthermore, the increasing prevalence of undesired toxicity profile of antifungal, multidrug-resistant organisms and the scarcity of FDA-authorized vaccines were the hallmark in the present days. This study was undertaken to design a reliable epitope-based peptide vaccine through targeting highly conserved immunodominant heat shock 70 kDa protein of Cryptococcus neoformans var. grubii that covers a considerable digit of the world population through implementing a computational vaccinology approach. MATERIALS AND METHODS: A total of 38 sequences of Cryptococcus neoformans var. grubii's heat shock 70 kDa protein were retrieved from the NCBI protein database. Different prediction tools were used to analyze the aforementioned protein at the Immune Epitope Database (IEDB) to discriminate the most promising T-cell and B-cell epitopes. The proposed T-cell epitopes were subjected to the population coverage analysis tool to compute the global population's coverage. Finally, the T-cell projected epitopes were ranked based on their binding scores and modes using AutoDock Vina software. Results and Discussion. The epitopes (ANYVQASEK, QSEKPKNVNPVI, SEKPKNVNPVI, and EKPKNVNPVI) had shown very strong binding affinity and immunogenic properties to B-cell. (FTQLVAAYL, YVYDTRGKL) and (FFGGKVLNF, FINAQLVDV, and FDYALVQHF) exhibited a very strong binding affinity to MHC-I and MHC-II, respectively, with high population coverage for each, while FYRQGAFEL has shown promising results in terms of its binding profile to MHC-II and MHC-I alleles and good strength of binding when docked with HLA-C∗12:03. In addition, there is massive global population coverage in the three coverage modes. Accordingly, our in silico vaccine is expected to be the future epitope-based peptide vaccine against Cryptococcus neoformans var. grubii that covers a significant figure of the entire world citizens.


Assuntos
Cryptococcus neoformans/imunologia , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Biologia Computacional , Desenho Assistido por Computador , Criptococose/imunologia , Criptococose/microbiologia , Cryptococcus neoformans/genética , Mapeamento de Epitopos , Epitopos de Linfócito B , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Proteínas Fúngicas/genética , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Antígenos HLA-C/imunologia , Antígenos HLA-C/metabolismo , Proteínas de Choque Térmico HSP70/genética , Humanos , Imunogenicidade da Vacina , Simulação de Acoplamento Molecular , Desenvolvimento de Vacinas/métodos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
3.
mBio ; 12(4): e0201821, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399628

RESUMO

The development of effective vaccines against fungal infections requires the induction of protective, pathogen-specific cell-mediated immune responses. Here, we asked whether combination adjuvants based on delta inulin (Advax) formulated with Toll-like receptor (TLR) agonists could improve vaccine protection mediated by a fungal recombinant protein, Bl-Eng2 (i.e., Blastomyces endoglucanase 2), which itself harbors an immunodominant antigen and dectin-2 agonist/adjuvant. We found that Bl-Eng2 formulated with Advax3 containing TLR9 agonist or Advax8 containing TLR4 agonist provided the best protection against pulmonary infection with Blastomyces dermatitidis, being more effective than complete Freund's adjuvant or Adjuplex. Advax3 was most efficient in inducing gamma interferon (IFN-γ)- and interleukin-17 (IL-17)-producing antigen-specific T cells that migrated to the lung upon Blastomyces dermatitidis infection. Mechanistic studies revealed Bl-Eng2/Advax3 protection was tempered by neutralization of IL-17 and particularly IFN-γ. Likewise, greater numbers of lung-resident T cells producing IFN-γ, IL-17, or both IFN-γ and IL-17 correlated with fewer fungi recovered from lung. Protection was maintained after depletion of CD4+ T cells, partially reduced by depletion of CD8+ T cells, and completely eliminated after depletion of both CD4+ and CD8+ T cells. We conclude that Bl-Eng2 formulated with Advax3 is promising for eliciting vaccine-induced antifungal immunity, through a previously uncharacterized mechanism involving CD8+ and also CD4+ T cells producing IFN-γ and/or IL-17. Although no licensed vaccine exists as yet against any fungal disease, these findings indicate the importance of adjuvant selection for the development of effective fungal vaccines. IMPORTANCE Fungal disease remains a challenging clinical and public health problem. Despite medical advances, invasive fungal infections have skyrocketed over the last decade and pose a mounting health threat in immunocompetent and -deficient hosts, with worldwide mortality rates ranking 7th, even ahead of tuberculosis. The development of safe, effective vaccines remains a major hurdle for fungi. Critical barriers to progress include the lack of defined fungal antigens and suitable adjuvants. Our research is significant in identifying adjuvant combinations that elicit optimal vaccine-induced protection when formulated with a recombinant protective antigen and uncovering the mechanistic bases of the underlaying vaccine protection, which will foster the strategic development of antifungal vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Fúngicas/genética , Vacinas Fúngicas/imunologia , Micoses/prevenção & controle , Animais , Blastomyces/imunologia , Blastomicose/prevenção & controle , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Vacinas Fúngicas/administração & dosagem , Imunidade Celular , Interferon gama , Inulina/administração & dosagem , Inulina/análogos & derivados , Inulina/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Micoses/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
4.
J Immunol Res ; 2021: 8280925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34036109

RESUMO

BACKGROUND: Candida glabrata is a human opportunistic pathogen that can cause life-threatening systemic infections. Although there are multiple effective vaccines against fungal infections and some of these vaccines are engaged in different stages of clinical trials, none of them have yet been approved by the FDA. AIM: Using immunoinformatics approach to predict the most conserved and immunogenic B- and T-cell epitopes from the fructose bisphosphate aldolase (Fba1) protein of C. glabrata. Material and Method. 13 C. glabrata fructose bisphosphate aldolase protein sequences (361 amino acids) were retrieved from NCBI and presented in several tools on the IEDB server for prediction of the most promising epitopes. Homology modeling and molecular docking were performed. RESULT: The promising B-cell epitopes were AYFKEH, VDKESLYTK, and HVDKESLYTK, while the promising peptides which have high affinity to MHC I binding were AVHEALAPI, KYFKRMAAM, QTSNGGAAY, RMAAMNQWL, and YFKEHGEPL. Two peptides, LFSSHMLDL and YIRSIAPAY, were noted to have the highest affinity to MHC class II that interact with 9 alleles. The molecular docking revealed that the epitopes QTSNGGAAY and LFSSHMLDL have the lowest binding energy to MHC molecules. CONCLUSION: The epitope-based vaccines predicted by using immunoinformatics tools have remarkable advantages over the conventional vaccines in that they are more specific, less time consuming, safe, less allergic, and more antigenic. Further in vivo and in vitro experiments are needed to prove the effectiveness of the best candidate's epitopes (QTSNGGAAY and LFSSHMLDL). To the best of our knowledge, this is the first study that has predicted B- and T-cell epitopes from the Fba1 protein by using in silico tools in order to design an effective epitope-based vaccine against C. glabrata.


Assuntos
Candida glabrata/imunologia , Candidíase/terapia , Frutose-Bifosfato Aldolase/imunologia , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/imunologia , Sequência de Aminoácidos/genética , Candida glabrata/enzimologia , Candida glabrata/genética , Candidíase/imunologia , Candidíase/microbiologia , Biologia Computacional , Sequência Conservada/genética , Sequência Conservada/imunologia , Desenho de Fármacos , Mapeamento de Epitopos/métodos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/ultraestrutura , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/ultraestrutura , Humanos , Imunogenicidade da Vacina/genética , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
5.
Pol J Microbiol ; 70(1): 3-11, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33815522

RESUMO

Aspergillus fumigatus is one of the ubiquitous fungi with airborne conidia, which accounts for most aspergillosis cases. In immunocompetent hosts, the inhaled conidia are rapidly eliminated. However, immunocompromised or immunodeficient hosts are particularly vulnerable to most Aspergillus infections and invasive aspergillosis (IA), with mortality from 50% to 95%. Despite the improvement of antifungal drugs over the last few decades, the therapeutic effect for IA patients is still limited and does not provide significant survival benefits. The drawbacks of antifungal drugs such as side effects, antifungal drug resistance, and the high cost of antifungal drugs highlight the importance of finding novel therapeutic and preventive approaches to fight against IA. In this article, we systemically addressed the pathogenic mechanisms, defense mechanisms against A. fumigatus, the immune response, molecular aspects of host evasion, and vaccines' current development against aspergillosis, particularly those based on AFMP4 protein, which might be a promising antigen for the development of anti-A. fumigatus vaccines.


Assuntos
Antígenos de Fungos/imunologia , Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/imunologia , Animais , Antígenos de Fungos/administração & dosagem , Antígenos de Fungos/genética , Aspergilose/microbiologia , Aspergilose/prevenção & controle , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/administração & dosagem , Proteínas Fúngicas/genética , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Humanos , Imunidade , Virulência
6.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32661125

RESUMO

The rising incidence of non-albicans Candida species globally, along with the emergence of drug resistance, is a cause for concern. This study investigated the protective efficacy of secreted aspartyl proteinase 2 (Sap2) in systemic C. tropicalis infection. Vaccination with recombinant Sap2 (rSap2) protein from C. parapsilosis enhanced survival of mice compared to rSap2 vaccinations from C. albicans (P = 0.02), C. tropicalis (P = 0.06), and sham immunization (P = 0.04). Compared to sham-immunized mice, the fungal CFU number was significantly reduced in organs of Sap2-parapsilosis-immunized mice. Histopathologically, increased neutrophilic recruitment was observed in Sap2-parapsilosis- and Sap2-tropicalis-immunized mice. Among different rSap2 proteins, Sap2-parapsilosis vaccination induced increased titers of Sap2-specific Ig, IgG, and IgM antibodies, which could bind whole fungus. Between different groups, sera from Sap2-parapsilosis-vaccinated mice exhibited increased C. tropicalis biofilm inhibition ability in vitro and enhanced neutrophil-mediated fungal killing. Passive transfer of anti-Sap2-parapsilosis immune serum in naive mice significantly reduced fungal burdens compared to those in mice receiving anti-sham immune serum. Higher numbers of plasma cells and Candida-binding B cells in Sap2-vaccinated mice suggest a role of B cells during early stages of Sap2-mediated immune response. Additionally, increased levels of Th1/Th2/Th17 cytokines observed in Sap2-parapsilosis-vaccinated mice indicate immunomodulatory properties of Sap2. Epitope analysis performed using identified B-cell epitopes provides a basis to understand differences in immunogenicity observed among Sap2-antigens and can aid the development of a multivalent or multiepitope anti-Candida vaccine(s). In summary, our results suggest that Sap2-parapsilosis vaccination can improve mouse survival during C. tropicalis infection by inducing both humoral and cellular immunity, and higher titers of Sap2-induced antibodies are beneficial during systemic candidiasis.


Assuntos
Ácido Aspártico Endopeptidases/administração & dosagem , Candida parapsilosis/imunologia , Candida tropicalis/imunologia , Candidíase/prevenção & controle , Proteínas Fúngicas/administração & dosagem , Vacinas Fúngicas/administração & dosagem , Animais , Anticorpos Antifúngicos/sangue , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/imunologia , Candida albicans/genética , Candida albicans/imunologia , Candida parapsilosis/genética , Candidíase/microbiologia , Contagem de Colônia Microbiana , Citocinas/sangue , Epitopos de Linfócito B , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/genética , Vacinas Fúngicas/imunologia , Rim/microbiologia , Rim/patologia , Camundongos , Baço/imunologia , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
7.
Sci Rep ; 10(1): 1066, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974431

RESUMO

Invasive candidiasis (IC) is the most common nosocomial infection and a leading cause of mycoses-related deaths. High-systemic toxicity and emergence of antifungal-resistant species warrant the development of newer preventive approaches against IC. Here, we have adopted an immunotherapeutic peptide vaccine-based approach, to enhance the body's immune response against invasive candida infections. Using computational tools, we screened the entire candida proteome (6030 proteins) and identified the most immunodominant HLA class I, HLA class II and B- cell epitopes. By further immunoinformatic analyses for enhanced vaccine efficacy, we selected the 18- most promising epitopes, which were joined together using molecular linkers to create a multivalent recombinant protein against Candida albicans (mvPC). To increase mvPC's immunogenicity, we added a synthetic adjuvant (RS09) to the mvPC design. The selected mvPC epitopes are homologous against all currently available annotated reference sequences of 22 C. albicans strains, thus offering a higher coverage and greater protective response. A major advantage of the current vaccine approach is mvPC's multivalent nature (recognizing multiple-epitopes), which is likely to provide enhanced protection against complex candida antigens. Here, we describe the computational analyses leading to mvPC design.


Assuntos
Candida albicans/imunologia , Candidíase/prevenção & controle , Vacinas Fúngicas/imunologia , Candida albicans/genética , Candidíase/genética , Candidíase/imunologia , Candidíase/microbiologia , Biologia Computacional , Simulação por Computador , Desenho de Fármacos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Humanos , Vacinas de Subunidades Antigênicas
8.
mBio ; 10(6)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772051

RESUMO

Cryptococcus neoformans is a fungal pathogen that infects the lungs and then often disseminates to the central nervous system, causing meningitis. How Cryptococcus is able to suppress host immunity and escape the antifungal activity of macrophages remains incompletely understood. We reported that the F-box protein Fbp1, a subunit of the SCF(Fbp1) E3 ligase, promotes Cryptococcus virulence by regulating host-Cryptococcus interactions. Our recent studies demonstrated that the fbp1Δ mutant elicited superior protective Th1 host immunity in the lungs and that the enhanced immunogenicity of heat-killed fbp1Δ yeast cells can be harnessed to confer protection against a subsequent infection with the virulent parental strain. We therefore examined the use of heat-killed fbp1Δ cells in several vaccination strategies. Interestingly, the vaccine protection remains effective even in mice depleted of CD4+ T cells. This finding is particularly important in the context of HIV/AIDS-induced immune deficiency. Moreover, we observed that vaccinating mice with heat-killed fbp1Δ induces significant cross-protection against challenge with diverse invasive fungal pathogens, including C. neoformans, C. gattii, and Aspergillus fumigatus, as well as partial protection against Candida albicans Thus, our data suggest that the heat-killed fbp1Δ strain has the potential to be a suitable vaccine candidate against cryptococcosis and other invasive fungal infections in both immunocompetent and immunocompromised populations.IMPORTANCE Invasive fungal infections kill more than 1.5 million people each year, with limited treatment options. There is no vaccine available in clinical use to prevent and control fungal infections. Our recent studies showed that a mutant of the F-box protein Fbp1, a subunit of the SCF(Fbp1) E3 ligase in Cryptococcus neoformans, elicited superior protective Th1 host immunity. Here, we demonstrate that the heat-killed fbp1Δ cells (HK-fbp1) can be harnessed to confer protection against a challenge by the virulent parental strain, even in animals depleted of CD4+ T cells. This finding is particularly important in the context of HIV/AIDS-induced immune deficiency. Moreover, we observed that HK-fbp1 vaccination induces significant cross-protection against challenge with diverse invasive fungal pathogens. Thus, our data suggest that HK-fbp1 has the potential to be a broad-spectrum vaccine candidate against invasive fungal infections in both immunocompetent and immunocompromised populations.


Assuntos
Criptococose/prevenção & controle , Cryptococcus neoformans/imunologia , Vacinas Fúngicas/administração & dosagem , Infecções Fúngicas Invasivas/prevenção & controle , Animais , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/fisiologia , Proteção Cruzada , Criptococose/imunologia , Criptococose/microbiologia , Cryptococcus gattii/imunologia , Cryptococcus gattii/fisiologia , Cryptococcus neoformans/química , Cryptococcus neoformans/genética , Feminino , Proteínas Fúngicas/administração & dosagem , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/genética , Vacinas Fúngicas/imunologia , Temperatura Alta , Humanos , Infecções Fúngicas Invasivas/imunologia , Infecções Fúngicas Invasivas/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia
9.
Vaccine ; 37(37): 5607-5613, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31399276

RESUMO

Paracoccidioidomycosis (PCM) is a systemic mycosis autochthonous to Latin America and endemic to Brazil, which has the majority of the PCM cases. PCM is acquired through the inhalation of propagules of fungi from genus Paracoccidioides spp. and mainly affects the lungs. We have previously shown that P. brasiliensis-infected mice treated with single-dose of recombinant 60-kDa-heat shock protein from P. brasiliensis (rPbHsp60) had a worsening infection in comparison to animals only infected. In this study, we investigate whether the treatment of infected mice with PB_HSP60 gene cloned into a plasmid (pVAX1-PB_HSP60) would result in efficient immune response and better control of the disease. The harmful impact of single-dose therapy with protein was not seen with plasmid preparations. Most importantly, three doses of pVAX1-PB_HSP60 and protein induced a beneficial effect in experimental PCM with a reduction in fungal load and lung injury when compared with infected mice treated with pVAX1 or PBS. The increase of the cytokines IFN-γ, TNF, and IL-17 and the decrease of IL-10 observed after treatment with three doses of pVAX1-PB_HSP60 appears to be responsible for the control of infection. These results open perspectives of the therapeutic use of Hsp60 in PCM.


Assuntos
Chaperonina 60/imunologia , Vacinas Fúngicas/imunologia , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/prevenção & controle , Vacinas de DNA/imunologia , Animais , Antígenos de Fungos/imunologia , Chaperonina 60/genética , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Vacinas Fúngicas/genética , Imunização , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Paracoccidioides/genética , Paracoccidioidomicose/genética , Paracoccidioidomicose/microbiologia , Prognóstico , Vacinas de DNA/genética
10.
Vaccine ; 36(38): 5717-5724, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30111514

RESUMO

Candida albicans is a common commensal and opportunistic fungal pathogen in human, which poses threat to human health, especially in immunocompromised patients. Unfortunately, few effective prophylactic and therapeutic strategies were applied to clinic practice. Recently, the peptide YGKDVKDLFDYAQE from Fructose-bisphosphate aldolase 1 (Fba1), as a vaccine, was reported to induce protection effects against systemic candidiasis. Here, we displayed this epitope peptide on the coat proteins (pIII or pVIII) of filamentous phage, and investigated their protective effects against C. albicans infections. Mice were immunized with recombinant phages (designated as phage-3F and phage-8F) or protein (rFba1), then challenged with C. albicans yeast cells via lateral tail vein. Results demonstrated that the recombinant phages as well as rFba1 apparently induced humoral and cellular immune responses, reduced fungal burden and relieved kidney damage in infected mice and significantly improved their survival rates. Briefly, all these findings indicated that the recombinant phages displaying the epitope YGKDVKDLFDYAQE have the potential to be developed into a new vaccine against C. albicans infections.


Assuntos
Candida albicans/imunologia , Candidíase/prevenção & controle , Proteínas do Capsídeo/imunologia , Frutose-Bifosfato Aldolase/imunologia , Vacinas Fúngicas/imunologia , Peptídeos/imunologia , Proteínas Recombinantes/imunologia , Animais , Bacteriófagos/genética , Bacteriófagos/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Proteínas do Capsídeo/genética , Epitopos/imunologia , Feminino , Frutose-Bifosfato Aldolase/genética , Vacinas Fúngicas/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética
11.
mBio ; 8(6)2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184017

RESUMO

Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs) as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus-derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1) were selected, recombinantly expressed in Escherichia coli, purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4) were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1) afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific.IMPORTANCE The encapsulated fungi Cryptococcus neoformans and Cryptococcus gattii are responsible for nearly 200,000 deaths annually, mostly in immunocompromised individuals. An effective vaccine could substantially reduce the burden of cryptococcosis. However, a major gap in cryptococcal vaccine development has been the discovery of protective antigens to use in vaccines. Here, six cryptococcal proteins with potential as vaccine antigens were expressed recombinantly and purified. Mice were then vaccinated with glucan particle preparations containing each antigen. Of the six candidate vaccines, four protected mice from a lethal cryptococcal challenge. However, the degree of protection varied as a function of mouse strain and cryptococcal species. These preclinical studies identify cryptococcal proteins that could serve as candidate vaccine antigens and provide a proof of principle regarding the feasibility of protein antigen-based vaccines to protect against cryptococcosis.


Assuntos
Antígenos de Fungos/imunologia , Criptococose/prevenção & controle , Cryptococcus gattii/imunologia , Cryptococcus neoformans/imunologia , Portadores de Fármacos/administração & dosagem , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/imunologia , Animais , Antígenos de Fungos/administração & dosagem , Antígenos de Fungos/genética , Clonagem Molecular , Criptococose/patologia , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/administração & dosagem , Proteínas Fúngicas/genética , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Expressão Gênica , Glucanos/administração & dosagem , Pulmão/patologia , Pneumopatias Fúngicas/prevenção & controle , Camundongos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sobrevida , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
12.
Methods Mol Biol ; 1625: 85-96, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28584985

RESUMO

The conventional treatment for fungal diseases usually shows long periods of therapy and the high frequency of relapses and sequels. New strategies of the treatment are necessary. We have shown that the Mycobacterium leprae HSP65 gene can be successfully used as therapy against murine Paracoccidioidomycosis (PCM). Here, we described the methodology of DNAhsp65 immunotherapy in mice infected with the dimorphic fungus Paracoccidioides brasiliensis, one of PCM agent, evaluating cytokines levels, fungal burden, and lung injury. Our results provide a new prospective on the immunotherapy of mycosis.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Chaperonina 60/imunologia , Vacinas Fúngicas/imunologia , Paracoccidioidomicose/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Chaperonina 60/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Vacinas Fúngicas/genética , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Camundongos , Óxido Nítrico/metabolismo , Paracoccidioidomicose/microbiologia , Paracoccidioidomicose/prevenção & controle , Paracoccidioidomicose/terapia , Plasmídeos/genética , Baço/imunologia , Baço/metabolismo , Baço/patologia , Vacinas de DNA/genética
13.
Vaccine ; 35(4): 672-679, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28012778

RESUMO

RATIONALE: Pneumocystis pneumonia is a major cause of morbidity and mortality in HIV-infected subjects, cancer patients undergoing chemotherapy and solid organ transplant recipients. No vaccine is currently available. By chemical labeling coupled with proteomic approach, we have identified a putative surface protein (SPD1, Broad Institute gene accession number PNEG_01848) derived from single suspended P. murina cysts. SPD1 was expressed in an insect cell line and tested for vaccine development. METHODS: Mice were immunized with SPD1 plus adjuvant MF-59 by subcutaneous injection. Three weeks after the last immunization, CD4+ cells were depleted with anti-CD4 antibody GK1.5. The mice were then challenged with 2×105Pneumocystis organisms. Mice were sacrificed at 4 and 6weeks after PC challenge. Spleen/lung cells and serum were harvested. B cells and memory B cells were assessed via flow cytometry. Specific Pneumocystis IgG antibody was measured by ELISA before and after challenge. Infection burden was measured as real-time PCR for P. murina rRNA. RESULTS: Normal mice infected with Pneumocystis mounted a serum IgG antibody response to SPD1. Serum from rhesus macaques exposed to Pneumocystis showed a similar serum IgG response to purified SPD1. SPD1 immunization increased B cell and memory B cell absolute cell counts in CD4-depleted Balb/c mice post Pneumocystis challenge in spleen and lung. Immunization with SPD1 significantly increased specific Pneumocystis IgG antibody production before and after challenge. Mice immunized with SPD1 showed significantly decreased P. murina copy number compared with mice that did not receive SPD1 at 6weeks after challenge. CONCLUSION: Immunization with SPD1 provides protective efficacy against P. murina infection. SPD1 protection against Pneumocystis challenge is associated with enhanced memory B cell production and higher anti-Pneumocystis IgG antibody production. SPD1 is a potential vaccine candidate to prevent or treat pulmonary infection with Pneumocystis.


Assuntos
Anticorpos Antifúngicos/sangue , Linfócitos B/imunologia , Vacinas Fúngicas/imunologia , Proteínas de Membrana/imunologia , Peptídeo Hidrolases/imunologia , Pneumocystis/imunologia , Pneumonia por Pneumocystis/prevenção & controle , Animais , Formação de Anticorpos , Antígenos de Fungos/genética , Antígenos de Fungos/imunologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Pulmão/microbiologia , Macaca mulatta , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Peptídeo Hidrolases/genética , Pneumocystis/enzimologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
14.
mBio ; 7(3)2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27165801

RESUMO

UNLABELLED: Cryptococcus neoformans is a major opportunistic fungal pathogen that causes fatal meningoencephalitis in immunocompromised individuals and is responsible for a large proportion of AIDS-related deaths. The fungal cell wall is an essential organelle which undergoes constant modification during various stages of growth and is critical for fungal pathogenesis. One critical component of the fungal cell wall is chitin, which in C. neoformans is predominantly deacetylated to chitosan. We previously reported that three chitin deacetylase (CDA) genes have to be deleted to generate a chitosan-deficient C. neoformans strain. This cda1Δ2Δ3Δ strain was avirulent in mice, as it was rapidly cleared from the lungs of infected mice. Here, we report that clearance of the cda1Δ2Δ3Δ strain was associated with sharply spiked concentrations of proinflammatory molecules that are known to be critical mediators of the orchestration of a protective Th1-type adaptive immune response. This was followed by the selective enrichment of the Th1-type T cell population in the cda1Δ2Δ3Δ strain-infected mouse lung. Importantly, this response resulted in the development of robust protective immunity to a subsequent lethal challenge with a virulent wild-type C. neoformans strain. Moreover, protective immunity was also induced in mice vaccinated with heat-killed cda1Δ2Δ3Δ cells and was effective in multiple mouse strains. The results presented here provide a strong framework to develop the cda1Δ2Δ3Δ strain as a potential vaccine candidate for C. neoformans infection. IMPORTANCE: The most commonly used anticryptococcal therapies include amphotericin B, 5-fluorocytosine, and fluconazole alone or in combination. Major drawbacks of these treatment options are their limited efficacy, poor availability in limited resource areas, and potential toxicity. The development of antifungal vaccines and immune-based therapeutic interventions is promising and an attractive alternative to chemotherapeutics. Currently, there are no fungal vaccines in clinical use. This is the first report of a C. neoformans deletion strain with an avirulent phenotype in mice exhibiting protective immunity when used as a vaccine after heat inactivation, although other strains that overexpress fungal or murine proteins have recently been shown to induce a protective response. The data presented here demonstrate the potential for developing the avirulent cda1Δ2Δ3Δ strain into a vaccine-based therapy to treat C. neoformans infection.


Assuntos
Quitosana , Criptococose/imunologia , Criptococose/prevenção & controle , Cryptococcus neoformans/química , Cryptococcus neoformans/imunologia , Vacinas Fúngicas/imunologia , Amidoidrolases/genética , Animais , Parede Celular/química , Criptococose/microbiologia , Cryptococcus neoformans/genética , Citocinas/biossíntese , Citocinas/imunologia , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Temperatura Alta , Imunidade Celular , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Mutação , Células Th1/imunologia
15.
Microbiol Immunol ; 60(6): 397-406, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27185490

RESUMO

Pneumocystis spp. are opportunistic fungal pathogens that are closely associated with severe pneumonia and pulmonary complications in patients with impaired immunity. In this study, the antigenic epitopes of the gene encoding the 55 kDa antigen fragment of Pneumocystis (p55), which may play an important role in Pneumocystis pneumonia, were analyzed. A gene containing tandem variants of the p55 antigen was synthesized and named the tandem antigen gene (TAG). TAG's potential as a DNA vaccine was assessed in immunosuppressed rats. Immunization with p55-TAG DNA vaccine significantly reduced both the pathogen burden and lung-weight to body-weight ratios. Additionally, p55-TAG vaccination in immunosuppressed rats elicited both cell-mediated and humoral immunity.


Assuntos
Antígenos de Fungos/genética , Antígenos de Fungos/imunologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/imunologia , Pneumocystis carinii/imunologia , Pneumonia por Pneumocystis/prevenção & controle , Vacinas de DNA/imunologia , Animais , Anticorpos Antifúngicos/sangue , Anticorpos Antifúngicos/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/sangue , Epitopos de Linfócito B/imunologia , Feminino , Vacinas Fúngicas/biossíntese , Vacinas Fúngicas/genética , Vacinas Fúngicas/farmacologia , Células HEK293 , Humanos , Imunidade Celular/imunologia , Imunoglobulina G/sangue , Pneumopatias Fúngicas/patologia , Pneumopatias Fúngicas/prevenção & controle , Pneumocystis carinii/genética , Pneumonia por Pneumocystis/imunologia , Pneumonia por Pneumocystis/microbiologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia , Vacinas de DNA/biossíntese , Vacinas de DNA/genética , Vacinas de DNA/farmacologia
16.
Infect Immun ; 84(3): 635-42, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26667836

RESUMO

C-type lectin receptors (CLRs) are essential in shaping the immune response to fungal pathogens. Vaccine-induced resistance requires Dectin-2 to promote differentiation of antifungal Th1 and Th17 cells. Since Dectin-2 and MCL heterodimerize and both CLRs use FcRγ as the signaling adaptor, we investigated the role of MCL in vaccine immunity to the fungal pathogen Blastomyces dermatitidis. MCL(-/-) mice showed impaired vaccine resistance against B. dermatitidis infection compared to that of wild-type animals. The lack of resistance correlated with the reduced recruitment of Th17 cells to the lung upon recall following experimental challenge and impaired interleukin-17 (IL-17) production by vaccine antigen-stimulated splenocytes in vitro. Soluble MCL fusion protein recognized and bound a water-soluble ligand from the cell wall of vaccine yeast, but the addition of soluble Dectin-2 fusion protein did not augment ligand recognition by MCL. Taken together, our data indicate that MCL regulates the development of vaccine-induced Th17 cells and protective immunity against lethal experimental infection with B. dermatitidis.


Assuntos
Blastomyces/imunologia , Blastomicose/imunologia , Vacinas Fúngicas/imunologia , Lectinas Tipo C/imunologia , Receptores Imunológicos/imunologia , Animais , Blastomyces/genética , Blastomicose/genética , Blastomicose/microbiologia , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Humanos , Interleucina-17/imunologia , Lectinas Tipo C/genética , Camundongos , Camundongos Endogâmicos C57BL , Receptores Imunológicos/genética , Células Th17/imunologia
17.
Mycopathologia ; 178(3-4): 177-88, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25135302

RESUMO

Paracoccidioidomycosis is a systemic granulomatous disease caused by Paracoccidioides spp. A peptide from the major diagnostic antigen gp43, named P10, induces a T-CD4(+) helper-1 immune response in mice and protects against intratracheal challenge with virulent P. brasiliensis. Previously, we evaluated the efficacy of the P10 peptide alone or combined with antifungal drugs in mice immunosuppressed and infected with virulent isolate of P. brasiliensis. In the present work, our data suggest that P10 immunization leads to an effective cellular immune response associated with an enhanced T cell proliferative response. P10-stimulated splenocytes increased nitric oxide (NO) production and induced high levels of IFN-γ, IL-1ß and IL-12. Furthermore, significantly increased concentrations of pro-inflammatory cytokines were also observed in lung homogenates of immunized mice. P10 immunization was followed by minimal fibrosis in response to infection. Combined with antifungal drugs, P10 immunization most significantly improved survival of anergic infected mice. Administration of either itraconazole or sulfamethoxazole/trimethoprim together with P10 immunization resulted in 100 % survival up to 200 days post-infection, whereas untreated mice died within 80 days. Hence, our data show that P10 immunization promotes a strong specific immune response even in immunocompromised hosts and thus P10 treatment represents a powerful adjuvant therapy to chemotherapy.


Assuntos
Antígenos de Fungos/imunologia , Vacinas Fúngicas/imunologia , Glicoproteínas/imunologia , Paracoccidioides/imunologia , Paracoccidioidomicose/prevenção & controle , Fragmentos de Peptídeos/imunologia , Animais , Antígenos de Fungos/administração & dosagem , Antígenos de Fungos/genética , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Glicoproteínas/administração & dosagem , Glicoproteínas/genética , Hospedeiro Imunocomprometido , Leucócitos Mononucleares/imunologia , Masculino , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Baço/imunologia , Análise de Sobrevida , Vacinação/métodos
18.
PLoS Negl Trop Dis ; 8(4): e2788, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24743161

RESUMO

BACKGROUND: Paracoccin is a dual-function protein of the yeast Paracoccidioides brasiliensis that has lectin properties and N-acetylglucosaminidase activities. Proteomic analysis of a paracoccin preparation from P. brasiliensis revealed that the sequence matched that of the hypothetical protein encoded by PADG-3347 of isolate Pb-18, with a polypeptide sequence similar to the family 18 endochitinases. These endochitinases are multi-functional proteins, with distinct lectin and enzymatic domains. METHODOLOGY/PRINCIPAL FINDINGS: The multi-exon assembly and the largest exon of the predicted ORF (PADG-3347), was cloned and expressed in Escherichia coli cells, and the features of the recombinant proteins were compared to those of the native paracoccin. The multi-exon protein was also used for protection assays in a mouse model of paracoccidioidomycosis. CONCLUSIONS/SIGNIFICANCE: Our results showed that the recombinant protein reproduced the biological properties described for the native protein-including binding to laminin in a manner that is dependent on carbohydrate recognition-showed N-acetylglucosaminidase activity, and stimulated murine peritoneal macrophages to produce high levels of TNF-α and nitric oxide. Considering the immunomodulatory potential of glycan-binding proteins, we also investigated whether prophylactic administration of recombinant paracoccin affected the course of experimental paracoccidioidomycosis in mice. In comparison to animals injected with vehicle (controls), mice treated with recombinant paracoccin displayed lower pulmonary fungal burdens and reduced pulmonary granulomas. These protective effects were associated with augmented pulmonary levels of IL-12 and IFN-γ. We also observed that injection of paracoccin three days before challenge was the most efficient administration protocol, as the induced Th1 immunity was balanced by high levels of pulmonary IL-10, which may prevent the tissue damage caused by exacerbated inflammation. The results indicated that paracoccin is the protein encoded by PADG-3347, and we propose that this gene and homologous proteins in other P. brasiliensis strains be called paracoccin. We also concluded that recombinant paracoccin confers resistance to murine P. brasiliensis infection by exerting immunomodulatory effects.


Assuntos
Proteínas Fúngicas/imunologia , Vacinas Fúngicas/imunologia , Lectinas/imunologia , Paracoccidioides/imunologia , Paracoccidioidomicose/prevenção & controle , Células Th1/imunologia , Acetilglucosaminidase/metabolismo , Animais , Clonagem Molecular , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Expressão Gênica , Lectinas/genética , Lectinas/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Paracoccidioides/genética , Paracoccidioidomicose/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Fator de Necrose Tumoral alfa/metabolismo
19.
Biocontrol Sci ; 19(1): 51-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24670619

RESUMO

Candida albicans malate dehydrogenase (Mdh1p) has been screened by previous proteome studies as a candidate for a vaccine against candidiasis. In this study, recombinant Mdh1 protein with a His-tag was produced in Escherichia coli and evaluated as an immunogenic protein against candidiasis. Mdh1p was administrated to mice by two methods subcutaneous injection and intranasal administration before challenging them with a lethal dose of C. albicans. After vaccination of Mdh1p, antibody responses were observed. To evaluate the vaccination effect of Mdh1p, survival tests were performed after 35 d. Although all control mice died within 24 d or 25 d, 100% and 80% of mice survived with subcutaneous and intranasal administration, respectively. Therefore, our results indicate that, among C. albicans antigens examined thus far, Mdh1p is currently the most effective antigen for use as a vaccine for C. albicans.


Assuntos
Candida albicans/enzimologia , Candidíase/prevenção & controle , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/imunologia , Malato Desidrogenase/imunologia , Animais , Anticorpos Antifúngicos/imunologia , Candida albicans/genética , Candida albicans/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Proteínas Fúngicas/administração & dosagem , Proteínas Fúngicas/genética , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Humanos , Malato Desidrogenase/administração & dosagem , Malato Desidrogenase/genética , Camundongos , Camundongos Endogâmicos C57BL , Vacinação
20.
Hum Vaccin Immunother ; 10(4): 1057-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24448202

RESUMO

The polymorphic fungus Candida albicans (C. albicans) can live as an aggressive pathogen and cause many diseases in hosts, for which no effective vaccine exists. The secreted aspartyl proteinase 2 (Sap2) plays a protective role in systemically infected BALB/c mice. Protective cellular immune responses can be preferentially induced when antigens are displayed on small particles. Therefore, the emphasis is placed on developing new phage vaccine to inhibit C. albicans infection. In this study, the ability of the hybrid phage displaying the epitope SLAQVKYTSASSI and recombinant protein of Sap2 (rSap2) for inducing immune protective responses against C. albicans infection was evaluated by lymphoproliferative assay, to gather cytokine and antibody measurements in BALB/c mice. Our results showed that, strong cellular and humoral immune responses were induced in a mouse model immunized with hybrid phage or rSap2. Furthermore, the protection against lethal challenge with C. albicans was observed in mice vaccinated hybrid phage without adjuvant. These findings demonstrate that the hybrid phage displaying the epitope SLAQVKYTSASSI might be a potential vaccine against C. albicans infections.


Assuntos
Ácido Aspártico Endopeptidases/imunologia , Bacteriófagos/genética , Candida albicans/imunologia , Candidíase/prevenção & controle , Portadores de Fármacos/administração & dosagem , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/imunologia , Vetores Genéticos , Animais , Anticorpos Antifúngicos/sangue , Antígenos de Fungos/genética , Antígenos de Fungos/imunologia , Ácido Aspártico Endopeptidases/genética , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...