Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Biol Macromol ; 267(Pt 2): 131517, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621559

RESUMO

Infection with the hepatitis C virus (HCV) is one of the causes of liver cancer, which is the world's sixth most prevalent and third most lethal cancer. The current treatments do not prevent reinfection; because they are expensive, their usage is limited to developed nations. Therefore, a prophylactic vaccine is essential to control this virus. Hence, in this study, an immunoinformatics method was applied to design a multi-epitope vaccine against HCV. The best B- and T-cell epitopes from conserved regions of the E2 protein of seven HCV genotypes were joined with the appropriate linkers to design a multi-epitope vaccine. In addition, cholera enterotoxin subunit B (CtxB) was included as an adjuvant in the vaccine construct. This study is the first to present this epitopes-adjuvant combination. The vaccine had acceptable physicochemical characteristics. The vaccine's 3D structure was predicted and validated. The vaccine's binding stability with Toll-like receptor 2 (TLR2) and TLR4 was confirmed using molecular docking and molecular dynamics (MD) simulation. The immune simulation revealed the vaccine's efficacy by increasing the population of B and T cells in response to vaccination. In silico expression in Escherichia coli (E. coli) was also successful.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Hepacivirus , Hepatite C , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Hepacivirus/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Humanos , Biologia Computacional/métodos , Hepatite C/prevenção & controle , Hepatite C/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/química , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/química , Simulação por Computador , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Imunoinformática
2.
Science ; 378(6617): 263-269, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264808

RESUMO

Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma in humans and afflicts more than 58 million people worldwide. The HCV envelope E1 and E2 glycoproteins are essential for viral entry and comprise the primary antigenic target for neutralizing antibody responses. The molecular mechanisms of E1E2 assembly, as well as how the E1E2 heterodimer binds broadly neutralizing antibodies, remain elusive. Here, we present the cryo-electron microscopy structure of the membrane-extracted full-length E1E2 heterodimer in complex with three broadly neutralizing antibodies-AR4A, AT1209, and IGH505-at ~3.5-angstrom resolution. We resolve the interface between the E1 and E2 ectodomains and deliver a blueprint for the rational design of vaccine immunogens and antiviral drugs.


Assuntos
Hepacivirus , Hepatite C , Proteínas do Envelope Viral , Humanos , Antivirais/química , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Hepacivirus/química , Hepacivirus/imunologia , Hepatite C/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Multimerização Proteica , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia
3.
Proc Natl Acad Sci U S A ; 119(11): e2112008119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263223

RESUMO

SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.


Assuntos
Anticorpos Amplamente Neutralizantes , Anticorpos Anti-Hepatite C , Hepatite C , Imunogenicidade da Vacina , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral , Animais , Anticorpos Amplamente Neutralizantes/biossíntese , Anticorpos Amplamente Neutralizantes/sangue , Hepatite C/prevenção & controle , Anticorpos Anti-Hepatite C/biossíntese , Anticorpos Anti-Hepatite C/sangue , Camundongos , Multimerização Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia
4.
Hepatology ; 75(1): 182-195, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34396571

RESUMO

BACKGROUND AND AIM: HBV DNA can be reduced using antiviral drugs in patients with chronic hepatitis B (CHB); however, the rate of HBeAg seroconversion remains low. A clinical trial was conducted to assess the efficacy and safety of a de novo designed liposome-based nanoparticle lipopeptide vaccine, εPA-44, for CHB. APPROACH AND RESULTS: A two-stage phase 2 trial, which included a 76-week, randomized, double-blind, placebo-controlled trial (stage 1) and a 68-week open-label extension (stage 2), was conducted in 15 centers across China (Clinicaltrials.gov No. NCT00869778). In stage 1, 360 human leukocyte antigen A2 (HLA-A2)-positive and HBeAg-positive patients were randomly and equally distributed to receive six subcutaneous injections of 600 µg or 900 µg εPA-44 or placebo at week 0, 4, 8, 12, 20, and 28. In stage 2, 183 patients received extended 900 µg εPA-44, and 26 patients were observed for relapse without further treatment. The primary endpoint was the percentage of patients with HBeAg seroconversion at week 76. At week 76, patients receiving 900 µg εPA-44 achieved significantly higher HBeAg seroconversion rate (38.8%) versus placebo (20.2%) (95% CI, 6.9-29.6%; p = 0.002). With a combined endpoint of HBeAg seroconversion, alanine aminotransferase normalization and HBV DNA < 2,000 IU/mL, both 900 µg (18.1%) and 600 µg (14.3%), resulted in significantly higher rate versus placebo (5.0%) (p = 0.002 and p = 0.02, respectively) at week 76. In stage 2, none (0 of 20) of 900 µg εPA-44-treated patients experienced serologic relapse. The safety profile of εPA-44 was comparable to that of placebo. CONCLUSIONS: Among HLA-A2-positive patients with progressive CHB, a finite duration of 900 µg εPA-44 monotherapy resulted in significantly higher HBeAg seroconversion rate than placebo and sustained off-treatment effect. A phase 3 trial is ongoing (ChiCTR2100043708).


Assuntos
Antígenos E da Hepatite B/sangue , Vírus da Hepatite B/imunologia , Hepatite B Crônica/terapia , Vacinas contra Hepatite Viral/administração & dosagem , Adolescente , Adulto , Método Duplo-Cego , Feminino , Antígenos E da Hepatite B/imunologia , Hepatite B Crônica/sangue , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Humanos , Injeções Subcutâneas , Lipossomos , Masculino , Sistemas de Liberação de Fármacos por Nanopartículas , Soroconversão , Resposta Viral Sustentada , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas de Subunidades Antigênicas/química , Vacinas contra Hepatite Viral/efeitos adversos , Vacinas contra Hepatite Viral/química , Adulto Jovem
5.
Viruses ; 13(5)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064532

RESUMO

Hepatitis C virus (HCV) is a serious and growing public health problem despite recent developments of antiviral therapeutics. To achieve global elimination of HCV, an effective cross-genotype vaccine is needed. The failure of previous vaccination trials to elicit an effective cross-reactive immune response demands better vaccine antigens to induce a potent cross-neutralizing response to improve vaccine efficacy. HCV E1 and E2 envelope (Env) glycoproteins are the main targets for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. Therefore, a molecular-level understanding of the nAb responses against HCV is imperative for the rational design of cross-genotype vaccine antigens. Here we summarize the recent advances in structural studies of HCV Env and Env-nAb complexes and how they improve our understanding of immune recognition of HCV. We review the structural data defining HCV neutralization epitopes and conformational plasticity of the Env proteins, and the knowledge applicable to rational vaccine design.


Assuntos
Epitopos/imunologia , Hepacivirus/imunologia , Antígenos da Hepatite C/química , Desenvolvimento de Vacinas , Vacinas contra Hepatite Viral/química , Animais , Anticorpos Neutralizantes/imunologia , Reações Cruzadas , Epitopos/química , Genótipo , Hepacivirus/genética , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Humanos , Camundongos , Eficácia de Vacinas , Vacinas contra Hepatite Viral/análise
6.
Viruses ; 13(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072451

RESUMO

An effective vaccine for the hepatitis C virus (HCV) is a major unmet medical and public health need, and it requires an antigen that elicits immune responses to multiple key conserved epitopes. Decades of research have generated a number of vaccine candidates; based on these data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice. One bottleneck in the development of an E1E2-based vaccine is that the antigen is challenging to produce in large quantities and at high levels of purity and antigenic/functional integrity. This review describes the production and characterization of E1E2-based vaccine antigens, both membrane-associated and a novel secreted form of E1E2, with a particular emphasis on the major challenges facing the field and how those challenges can be addressed.


Assuntos
Hepacivirus/química , Hepatite C/prevenção & controle , Proteínas do Envelope Viral/química , Vacinas contra Hepatite Viral/química , Animais , Epitopos/imunologia , Células HEK293 , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/virologia , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo
7.
Viruses ; 13(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070543

RESUMO

Development of preventive vaccines against hepatitis C virus (HCV) remains one of the main strategies in achieving global elimination of the disease. The effort is focused on the quest for vaccines capable of inducing protective cross-neutralizing humoral and cellular immune responses, which in turn dictate the need for rationally designed cross-genotype vaccine antigens and potent immunoadjuvants systems. This review provides an assessment of the current state of knowledge on immunopotentiating compounds and vaccine delivery systems capable of enhancing HCV antigen-specific immune responses, while focusing on the synergy and interplay of two modalities. Structural, physico-chemical, and biophysical features of these systems are discussed in conjunction with the analysis of their in vivo performance. Extreme genetic diversity of HCV-a well-known hurdle in the development of an HCV vaccine, may also present a challenge in a search for an effective immunoadjuvant, as the effort necessitates systematic and comparative screening of rationally designed antigenic constructs. The progress may be accelerated if the preference is given to well-defined molecular immunoadjuvants with greater formulation flexibility and adaptability, including those capable of spontaneous self-assembly behavior, while maintaining their robust immunopotentiating and delivery capabilities.


Assuntos
Sistemas de Liberação de Medicamentos , Hepacivirus/imunologia , Hepatite C/prevenção & controle , Imunogenicidade da Vacina , Vacinas contra Hepatite Viral/imunologia , Adjuvantes Imunológicos , Animais , Ensaios Clínicos como Assunto , Composição de Medicamentos , Hepatite C/imunologia , Humanos , Nanopartículas , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/química
8.
Macromol Biosci ; 21(4): e2000375, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624916

RESUMO

In a continuous effort to develop effective vaccines against hepatitis E (HE), oral vaccine nanoparticles using the truncated capsid protein p146 (aa460-605) are formulated and characterized. To improve the immunogenicity of p146, chitosan nanoparticles (CSNPs) are used as a mucosal delivery system. Next, the physical-chemical properties, cytotoxic effects in vitro, and immunogenicity in mice of the produced NPs are analyzed. The results show that the produced CS/p146 NPs are stable and well dispersive and display a near-spherical shape with a mean size of 200-300 nm. The findings also demonstrate high encapsulation efficiency (65-73.9%) and loading capacity (27.7-67.5%) of the formulated nanoparticles. Further, the CS/p146 NPs exhibit low cytotoxicity and an obvious sustained-release effect in vitro. Immunogenicity experiments in mice indicate that CS/p146 NPs can induce antigen-specific systemic and mucosal immune responses higher than the purified p146 do. Besides, the expression levels and mRNA transcription of Interleukin (IL)-4 in spleen cells of CS/p146 NPs-immunized mice are higher than those of p146, indicating that a Th2-mediated cellular immune response is activated by the CS/p146 NPs. Overall, the synthesized CS/p146 NPs display promising properties as a potential HE oral vaccine candidate.


Assuntos
Quitosana/química , Hepatite E/prevenção & controle , Nanopartículas/química , Vacinas contra Hepatite Viral/química , Proteínas Virais/química , Adjuvantes Imunológicos/química , Animais , Escherichia coli/metabolismo , Feminino , Imunidade Celular , Imunização , Imunoglobulina G/química , Técnicas In Vitro , Interleucina-4/química , Linfócitos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Peptídeos/química , RNA Mensageiro/metabolismo , Baço/metabolismo , Desenvolvimento de Vacinas
9.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431677

RESUMO

Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development. However, the E1E2 transmembrane domains that are critical for native assembly make it challenging to produce this complex in a homogenous soluble form that is reflective of its state on the viral envelope. To enable rational design of an E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a form closer to its expected size than full-length E1E2. Preservation of native structural elements was confirmed by high-affinity binding to a panel of conformationally specific monoclonal antibodies, including two neutralizing antibodies specific to native E1E2 and to its primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and serve as a platform for production of E1E2 for future structural and vaccine studies, enabling rational optimization of an E1E2-based antigen.


Assuntos
Hepacivirus/efeitos dos fármacos , Anticorpos Anti-Hepatite C/biossíntese , Hepatite C/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Feminino , Expressão Gênica , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite C/imunologia , Hepatite C/patologia , Hepatite C/virologia , Humanos , Imunogenicidade da Vacina , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas/métodos , Multimerização Proteica , Receptores Virais/genética , Receptores Virais/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Solubilidade , Tetraspanina 28/genética , Tetraspanina 28/imunologia , Vacinação , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/genética
10.
J Pharm Biomed Anal ; 177: 112880, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31546137

RESUMO

Hepatitis E, which is caused by infection with hepatitis E virus (HEV), is a global health problem in both developed and developing countries. An efficacious hepatitis E vaccine was licensed (by China) in 2011 with a trade name of Hecolin®. The antigen contained in this vaccine is a truncated version of the sole capsid protein encoded by open reading frame 2, which is designated p239. In this study, the real-time and real-condition stability and accelerated stability of five lots of hepatitis E vaccine products at the end of the designated shelf life, were assessed by a well-established quality analysis platform. The protein integrity of p239 that was recovered from the vaccine lots was demonstrated using CE-SDS, LC-MS and MALDI-TOF MS. The particle characteristics of the recovered vaccine antigen were assessed by TEM and HPSEC. The immunogenicity of hepatitis E vaccines was assessed by a mouse potency assay, which is part of product release and stability testing. Several methods were employed to assess the antigenicity of vaccines with or without adjuvant dissolution. Specifically, the well-established methods of sandwich ELISA and surface plasma resonance (SPR)-based BIAcore were used with unique murine monoclonal antibodies. Most interesting, two 'dissolution-free' immunoassays were also used for in situ antigenicity assessment of the vaccines. In addition to the confirmation of vaccine stability at the end of expiry dating, i.e., after storage in recommended conditions (2-8 °C) for 36 months, the mouse potency assay and sandwich ELISA were used to assess the accelerated stability of prefilled syringes to demonstrate the feasibility of out-of-cold-chain storage. In summary, molecular and functional characterization confirmed the shelf life stability of the vaccine at the end of expiry dating and the feasibility of transporting the hepatitis E vaccine for a given period of time out of cold chains.


Assuntos
Anticorpos Anti-Hepatite/sangue , Vírus da Hepatite E/imunologia , Hepatite E/prevenção & controle , Vacinas Sintéticas/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Estudos de Viabilidade , Feminino , Anticorpos Anti-Hepatite/imunologia , Antígenos de Hepatite/imunologia , Hepatite E/virologia , Humanos , Imunoensaio/métodos , Imunogenicidade da Vacina , Camundongos , Modelos Animais , Temperatura , Fatores de Tempo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/química , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/química
11.
J Infect Dis ; 221(8): 1304-1314, 2020 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-31074790

RESUMO

Despite the emergence of new direct-acting antivirals, hepatitis C virus (HCV) chronic infection and its consequent fibrosis and hepatocarcinoma remain a significant burden for public health, thus requiring an effective preventive vaccine. Our group previously showed that a subunit vaccine based on recombinant soluble E2 (sE2) can induce broadly neutralizing antibodies. To improve the immunogenicity of sE2, we designed and produced a fusion protein (sE2-ferritin) comprising sE2 and a ferritin unit in Drosophila S2 cells, which self-assembled into a nanoparticle with sE2 displayed on the surface. The sE2 moiety on the sE2-ferritin nanoparticle not only had nearly natural conformation but also had better affinities than the unfused sE2 to neutralizing antibodies, receptor, and patient serum. Mouse immunization studies showed that sE2-ferritin was more potent than sE2 in inducing anti-HCV broadly neutralizing antibodies. Our results demonstrate that sE2-ferritin is a vaccine candidate superior to previously developed sE2, providing a new possibility for controlling HCV.


Assuntos
Hepacivirus/imunologia , Hepatite C Crônica/microbiologia , Nanopartículas/química , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Drosophila/imunologia , Genótipo , Anticorpos Anti-Hepatite C/imunologia , Hepatite C Crônica/virologia , Imunização/métodos , Camundongos , Proteínas Recombinantes/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-31501263

RESUMO

Hepatitis C virus (HCV) represents an important and growing public health problem, chronically infecting an estimated 70 million people worldwide. This blood-borne pathogen is generating a new wave of infections in the United States, associated with increasing intravenous drug use over the last decade. In most cases, HCV establishes a chronic infection, sometimes causing cirrhosis, end-stage liver disease, and hepatocellular carcinoma. Although a curative therapy exists, it is extremely expensive and provides no barrier to reinfection; therefore, a vaccine is urgently needed. The virion is asymmetric and heterogeneous with the buoyancy and protein content similar to low-density lipoparticles. Core protein is unstructured, and of the two envelope glycoproteins, E1 and E2, the function of E1 remains enigmatic. E2 is responsible for specifically binding host receptors CD81 and scavenger receptor class B type I (SR-BI). This review will focus on structural progress on HCV virion, core protein, envelope glycoproteins, and specific host receptors.


Assuntos
Hepacivirus/química , Proteínas do Envelope Viral/química , Anticorpos Neutralizantes/química , Cristalografia por Raios X , Hepacivirus/imunologia , Hepacivirus/metabolismo , Humanos , Estrutura Terciária de Proteína , Tetraspanina 28/química , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia , Internalização do Vírus
13.
J Colloid Interface Sci ; 545: 259-268, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30897421

RESUMO

Hepatitis C virus-like particles (VLPs) are being developed as a quadrivalent vaccine candidate, eliciting both humoral and cellular immune responses in animal trials. Biophysical, biomechanical and biochemical properties are important for virus and VLP interactions with host cells and recognition by the immune system. Atomic force microscopy (AFM) is a powerful tool for visualizing surface topographies of cells, bionanoparticles and biomolecules, and for determining biophysical and biomechanical attributes such as size and elasticity. In this work, AFM was used to define morphological and nanomechanical properties of VLPs representing four common genotypes of hepatitis C virus. Significant differences in size of the VLPs were observed, and particles demonstrated a wide range of elasticity. Ordered packing of the core and potentially envelope glycoproteins was observed on the surfaces of the VLPs, but detailed structural characterization was hindered due to intrinsic dynamic fluctuations or AFM probe-induced damage of the VLPs. All VLPs were shown to be glycosylated in a manner similar to native viral particles. Together, the results presented in this study further our understanding of the nanostructure of hepatitis C VLPs, and should influence their uptake as viable vaccine candidates.


Assuntos
Nanopartículas/metabolismo , Vacinas contra Hepatite Viral/metabolismo , Vírion/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Linhagem Celular , Elasticidade , Genótipo , Hepacivirus/metabolismo , Humanos , Lectinas/química , Lectinas/metabolismo , Microscopia de Força Atômica/métodos , Nanopartículas/química , Tamanho da Partícula , Propriedades de Superfície , Proteínas do Envelope Viral/metabolismo , Vacinas contra Hepatite Viral/química , Vírion/química
14.
Curr Comput Aided Drug Des ; 15(2): 120-135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30280672

RESUMO

BACKGROUND: Hepatitis C virus (HCV) infection is a global burden. There is no peptide vaccine found as modality to cure the disease is available due to the weak cellular immune response and the limitation to induce humoral immune response. METHODS: Five predominated HCV subtypes in Indonesia (1a, 1b, 1c, 3a, and 3k) were aligned and the conserved regions were selected. Twenty alleles of class I MHC including HLA-A, HLA-B, and HLAC types were used to predict the potential epitopes by using NetMHCPan and IEDB. Eight alleles of HLA-DRB1, together with a combination of 3 alleles of HLA-DQA1 and 5 alleles of HLA-DQB1 were utilized for Class II MHC epitopes prediction using NetMHCIIPan and IEDB. LBtope and Ig- Pred were used to predict B cells epitopes. Moreover, proteasome analysis was performed by NetCTL and the stability of the epitopes in HLA was calculated using NetMHCStabPan for Class I. All predicted epitopes were analyzed for its antigenicity, toxicity, and stability. Population coverage, molecular docking and molecular dynamics were performed for several best epitopes. RESULTS: The results showed that two best epitopes from envelop protein, GHRMAWDMMMNWSP (E1) and PALSTGLIHLHQN (E2) were selected as promising B cell and CD8+ T cell inducers. Other two peptides, LGIGTVLDQAETAG and VLVLNPSVAATLGF, taken from NS3 protein were selected as CD4+ T cell inducer. CONCLUSION: This study suggested the utilization of all four peptides to make a combinational peptide vaccine for in vivo study to prove its ability in inducing secondary response toward HCV.


Assuntos
Hepacivirus/genética , Hepacivirus/imunologia , Peptídeos/imunologia , Vacinas contra Hepatite Viral/imunologia , Sequência de Aminoácidos , Sequência Conservada , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Antígenos HLA/genética , Antígenos HLA/imunologia , Hepatite C/imunologia , Hepatite C/prevenção & controle , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/farmacologia , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/farmacologia
15.
Proc Natl Acad Sci U S A ; 115(29): 7569-7574, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29954862

RESUMO

Elicitation of broadly neutralizing antibodies (bnAbs) is a leading strategy in rational vaccine design against antigenically diverse pathogens. Here, we studied a panel of monoclonal antibodies (mAbs) from mice immunized with the hepatitis C virus (HCV) envelope glycoproteins E1E2. Six of the mAbs recognize the conserved E2 antigenic site 412-423 (AS412) and cross-neutralize diverse HCV genotypes. Immunogenetic and structural analysis revealed that the antibodies originated from two different germline (GL) precursors and bind AS412 in a ß-hairpin conformation. Intriguingly, the anti-HCV activity of one antibody lineage is associated with maturation of the light chain (LC), whereas the other lineage is dependent on heavy-chain (HC) maturation. Crystal structures of GL precursors of the LC-dependent lineage in complex with AS412 offer critical insights into the maturation process of bnAbs to HCV, providing a scientific foundation for utilizing the mouse model to study AS412-targeting vaccine candidates.


Assuntos
Anticorpos Neutralizantes/química , Hepacivirus/química , Anticorpos Anti-Hepatite C/química , Cadeias Leves de Imunoglobulina/química , Anticorpos de Cadeia Única/química , Proteínas do Envelope Viral/química , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Cadeias Leves de Imunoglobulina/imunologia , Camundongos , Anticorpos de Cadeia Única/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia
16.
Int J Biol Macromol ; 116: 620-632, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29758309

RESUMO

HCV infection is a major threaten for human health as it affects hundreds of million people worldwide. Here we investigated the conformational properties of the 412-423 fragment of the envelope E2 protein, one of the most immunogenic regions of the virus proteome whose characterization may provide interesting insights for anti-HCV vaccine development. The spectroscopic characterization of the polypeptide unravels its unexpected tendency to form amyloid-like aggregates. When kept in monomeric state, it shows a limited tendency to adopt regular secondary structure. Enhanced molecular dynamics simulations, starting from four distinct conformational states, highlight its structural versatility. Interestingly, all multiform conformational states of the polypeptide detected in crystallographic complexes with antibodies are present in the structural ensemble of all simulations. This observation corroborates the idea that known antibodies recognize this region through a conformational selection mechanism. Accordingly, the design of effective anti-HCV vaccines should consider the intrinsic flexibility of this region. The structural versatility of the 412-423 region is particularly puzzling if its remarkable sequence conservation is considered. It is likely that flexibility and sequence conservation are important features that endow this epitope with the ability to accomplish distinct functions such as immunity escape and interaction with host receptors.


Assuntos
Epitopos/química , Hepacivirus/química , Simulação de Dinâmica Molecular , Vacinas contra Hepatite Viral/química , Proteínas Virais/química
17.
Biologicals ; 53: 63-71, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29519752

RESUMO

Hepatitis C virus (HCV) infects almost 150 million people and is a leading cause of liver disease worldwide. It has been classified into seven genotypes; the most common genotype affecting Indian population is genotype 3 (60-70%). Currently there is no vaccine for any genotype of HCV. In order to develop peptide based vaccine against HCV, it is important to identify the conservancy in the circulating genotypes, along with the Human Leucocyte Antigen (HLA) alleles in the target population. The present study aims to identify conserved CD4 and CD8 T cells and B cell epitopes against Indian HCV-genotype-3a using an in silico analysis. In the present study, 28 promiscuous CD4 T cell epitopes and some CD8 epitopes were identified. The NS4 region was predicted to be the most antigenic with maximum number of conserved and promiscuous CD4 T cell epitopes and CD8 T cell epitopes having strong and intermediate affinity towards a number of HLA alleles prevalent in Indian population. Additionally, some linear B cell epitopes were also identified, which could generate neutralizing antibodies. In order to ascertain the binding pattern of the identified epitopes with HLA alleles, molecular docking analysis was carried out. The authors suggest further experimental validation to investigate the immunogenicity of the identified epitopes.


Assuntos
Simulação por Computador , Epitopos de Linfócito B/química , Epitopos de Linfócito T/química , Genótipo , Hepacivirus/química , Simulação de Acoplamento Molecular , Vacinas contra Hepatite Viral/química , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Hepacivirus/genética , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/química , Anticorpos Anti-Hepatite C/imunologia , Humanos , Índia , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia
18.
Antiviral Res ; 145: 168-174, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28778831

RESUMO

Hepatitis C virus (HCV) has a devastating impact on human health, and infections can progress into liver fibrosis, cirrhosis, and hepatocellular carcinoma. There is no effective HCV vaccine. In this study, we rescued a recombinant PR8 influenza viral vector, called rgFLU-HCVCE1E2, carrying the core and envelope glycoprotein (C/E1/E2) epitopes of HCV inserted into the influenza nonstructural protein 1 gene. The morphological characteristics of rgFLU-HCVCE1E2 and the expression of the C/E1/E2 epitopes of HCV were examined. rgFLU-HCVCE1E2 replicated in various cell lines, including MDCK, A549, and Huh7.5 cells. More importantly, in BALB/c mice immunized intranasally twice at a 21-day interval with 104, 105, or 106 TCID50 rgFLU-HCVCE1E2, the viral vector induced a robust antibody response to influenza and HCV and potent IFN-γ and IL-4 secretion in response to HCV antigens in a dose-dependent manner. The rgFLU-HCVCE1E2 virus also stimulated IFN-γ production by virus-specific peripheral blood mononuclear cells in patients with chronic HCV infection. The study demonstrated that rgFLU-HCVCE1E2 carrying HCV antigens is immunogenic in vivo and has potential for the development of a HCV vaccine.


Assuntos
Epitopos/imunologia , Hepacivirus/imunologia , Imunogenicidade da Vacina , Vacinas contra Hepatite Viral/imunologia , Células A549 , Administração Intranasal , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Cães , Vetores Genéticos , Hepacivirus/genética , Humanos , Imunização , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-4/imunologia , Interleucina-4/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/genética
19.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28794021

RESUMO

Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, as well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines.IMPORTANCE Hepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world's population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus's high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that is the target of broadly neutralizing antibodies. In vivo results in mice indicated that these antigens elicited epitope-specific neutralizing antibodies, with various degrees of potency and breadth. These promising results suggest that a rational design approach can be used to generate an effective vaccine for this virus.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Epitopos/imunologia , Hepacivirus/imunologia , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Desenho de Fármacos , Epitopos/química , Camundongos , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/administração & dosagem
20.
PLoS One ; 12(7): e0181723, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28746382

RESUMO

BACKGROUND: Development of an effective non-viral vaccine against hepatitis C virus infection is of a great importance. Gelatin nanoparticles (Gel.NPs) have an attention and promising approach as a viable carrier for delivery of vaccine, gene, drug and other biomolecules in the body. AIM OF WORK: The present study aimed to develop stable Gel.NPs conjugated with nonstructural protein 2 (NS2) gene of Hepatitis C Virus genotype 4a (HCV4a) as a safe and an efficient vaccine delivery system. METHODS AND RESULTS: Gel.NPs were synthesized and characterized (size: 150±2 nm and zeta potential +17.6 mv). NS2 gene was successfully cloned and expressed into E. coli M15 using pQE-30 vector. Antigenicity of the recombinant NS2 protein was confirmed by Western blotting to verify the efficiency of NS2 as a possible vaccine. Then NS2 gene was conjugated to gelatin nanoparticles and a successful conjugation was confirmed by labeling and imaging using Confocal Laser Scanning Microscope (CLSM). Interestingly, the transformation of the conjugated NS2/Gel.NPs complex into E. coli DH5-α was 50% more efficient than transformation with the gene alone. In addition, conjugated NS2/Gel.NPs with ratio 1:100 (w/w) showed higher transformation efficiency into E. coli DH5-α than the other ratios (1:50 and 2:50). CONCLUSION: Gel.NPs effectively enhanced the gene delivery in bacterial cells without affecting the structure of NS2 gene and could be used as a safe, easy, rapid, cost-effective and non-viral vaccine delivery system for HCV.


Assuntos
Gelatina/química , Hepacivirus/metabolismo , Nanopartículas/química , Proteínas não Estruturais Virais/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Genótipo , Hepacivirus/genética , Hepatite C/imunologia , Hepatite C/prevenção & controle , Hepatite C/virologia , Humanos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Tamanho da Partícula , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...