Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Biomater Sci ; 12(10): 2717-2729, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38619816

RESUMO

Polymeric heart valves (PHVs) present a promising alternative for treating valvular heart diseases with satisfactory hydrodynamics and durability against structural degeneration. However, the cascaded coagulation, inflammatory responses, and calcification in the dynamic blood environment pose significant challenges to the surface design of current PHVs. In this study, we employed a surface-initiated polymerization method to modify polystyrene-block-isobutylene-block-styrene (SIBS) by creating three hydrogel coatings: poly(2-methacryloyloxy ethyl phosphorylcholine) (pMPC), poly(2-acrylamido-2-methylpropanesulfonic acid) (pAMPS), and poly(2-hydroxyethyl methacrylate) (pHEMA). These hydrogel coatings dramatically promoted SIBS's hydrophilicity and blood compatibility at the initial state. Notably, the pMPC and pAMPS coatings maintained a considerable platelet resistance performance after 12 h of sonication and 10 000 cycles of stretching and bending. However, the sonication process induced visible damage to the pHEMA coating and attenuated the anti-coagulation property. Furthermore, the in vivo subcutaneous implantation studies demonstrated that the amphiphilic pMPC coating showed superior anti-inflammatory and anti-calcification properties. Considering the remarkable stability and optimal biocompatibility, the amphiphilic pMPC coating constructed by surface-initiated polymerization holds promising potential for modifying PHVs.


Assuntos
Materiais Revestidos Biocompatíveis , Hidrogéis , Fosforilcolina , Propriedades de Superfície , Fosforilcolina/química , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Teste de Materiais , Poli-Hidroxietil Metacrilato/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Metacrilatos/química , Polímeros/química , Polímeros/farmacologia , Próteses Valvulares Cardíacas , Valvas Cardíacas/efeitos dos fármacos , Humanos , Camundongos , Interações Hidrofóbicas e Hidrofílicas
2.
ACS Appl Mater Interfaces ; 13(29): 33862-33873, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34256560

RESUMO

For atherosclerosis (AS) management, a therapeutic drug intervention is the most widely used strategy. However, there are some problems such as low location specificity, high intake, and side effects. Nanomedicine can prolong the half-life of drug solubilization, reduce toxic and side effects, and improve the distribution of drug objects. Herein, to overcome the challenges, an erythrocyte-based "plug and play" nanoplatform was developed by incorporating the vascular cell adhesion molecule-1 (VCAM-1) targeting and the acid stimulus responsibility. After the function moieties conjugated with DSPE-PEG, the targeting peptide and the acid-sensitive prodrug were conveniently integrated into red blood cells' surface for enhancing target AS drug delivery and controlling local drug release. As a proof of principle, a plug and play nanoplatform with targeted drug delivery and acid-control drug release is demonstrated, achieving a marked therapeutic effect for AS.


Assuntos
Aterosclerose/tratamento farmacológico , Docetaxel/uso terapêutico , Portadores de Fármacos/química , Membrana Eritrocítica/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Animais , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/patologia , Apolipoproteínas E/deficiência , Aterosclerose/patologia , Engenharia Celular/métodos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Docetaxel/química , Liberação Controlada de Fármacos , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligopeptídeos/química , Coelhos , Ratos , Peixe-Zebra
3.
Sci Rep ; 11(1): 13778, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215839

RESUMO

Patients requiring low-dose warfarin are more likely to suffer bleeding due to overdose. The goal of this work is to improve the feedforward neural network model's precision in predicting the low maintenance dose for Chinese in the aspect of training data construction. We built the model from a resampled dataset created by equal stratified sampling (maintaining the same sample number in three dose-groups with a total of 3639) and performed internal and external validations. Comparing to the model trained from the raw dataset of 19,060 eligible cases, we improved the low-dose group's ideal prediction percentage from 0.7 to 9.6% and maintained the overall performance (76.4% vs. 75.6%) in external validation. We further built neural network models on single-dose subsets to invest whether the subsets samples were sufficient and whether the selected factors were appropriate. The training set sizes were 1340 and 1478 for the low and high dose subsets; the corresponding ideal prediction percentages were 70.2% and 75.1%. The training set size for the intermediate dose varied and was 1553, 6214, and 12,429; the corresponding ideal prediction percentages were 95.6, 95.1%, and 95.3%. Our conclusion is that equal stratified sampling can be a considerable alternative approach in training data construction to build drug dosing models in the clinic.


Assuntos
Anticoagulantes/administração & dosagem , Doenças das Valvas Cardíacas/cirurgia , Valvas Cardíacas/efeitos dos fármacos , Varfarina/administração & dosagem , Adulto , Idoso , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , China/epidemiologia , Relação Dose-Resposta a Droga , Feminino , Doenças das Valvas Cardíacas/tratamento farmacológico , Doenças das Valvas Cardíacas/patologia , Próteses Valvulares Cardíacas , Valvas Cardíacas/fisiopatologia , Valvas Cardíacas/cirurgia , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação
4.
Mar Drugs ; 19(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073219

RESUMO

Cardiovascular diseases such as atherosclerosis and aortic valve sclerosis involve inflammatory reactions triggered by various stimuli, causing increased oxidative stress. This increased oxidative stress causes damage to the heart cells, with subsequent cell apoptosis or calcification. Currently, heart valve damage or heart valve diseases are treated by drugs or surgery. Natural antioxidant products are being investigated in related research, such as fucoxanthin (Fx), which is a marine carotenoid extracted from seaweed, with strong antioxidant, anti-inflammatory, and anti-tumor properties. This study aimed to explore the protective effect of Fx on heart valves under high oxidative stress, as well as the underlying mechanism of action. Rat heart valve interstitial cells under H2O2-induced oxidative stress were treated with Fx. Fx improved cell survival and reduced oxidative stress-induced DNA damage, which was assessed by cell viability analysis and staining with propidium iodide. Alizarin Red-S analysis indicated that Fx has a protective effect against calcification. Furthermore, Western blotting revealed that Fx abrogates oxidative stress-induced apoptosis via reducing the expression of apoptosis-related proteins as well as modulate Akt/ERK-related protein expression. Notably, in vivo experiments using 26 dogs treated with 60 mg/kg of Fx in combination with medical treatment for 0.5 to 2 years showed significant recovery in their echocardiographic parameters. Collectively, these in vitro and in vivo results highlight the potential of Fx to protect heart valve cells from high oxidative stress-induced damage.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Cardiotônicos/farmacologia , Valvas Cardíacas/efeitos dos fármacos , Xantofilas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Cães , Valvas Cardíacas/patologia , Peróxido de Hidrogênio , Estresse Oxidativo/efeitos dos fármacos , Ratos
5.
Sci Rep ; 11(1): 12299, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112893

RESUMO

Freeze-drying can be used to ensure off-the-shelf availability of decellularized heart valves for cardiovascular surgery. In this study, decellularized porcine aortic heart valves were analyzed by nitroblue tetrazolium (NBT) staining and Fourier transform infrared spectroscopy (FTIR) to identify oxidative damage during freeze-drying and subsequent storage as well as after treatment with H2O2 and FeCl3. NBT staining revealed that sucrose at a concentration of at least 40% (w/v) is needed to prevent oxidative damage during freeze-drying. Dried specimens that were stored at 4 °C depict little to no oxidative damage during storage for up to 2 months. FTIR analysis shows that fresh control, freeze-dried and stored heart valve specimens cannot be distinguished from one another, whereas H2O2- and FeCl3-treated samples could be distinguished in some tissue section. A feed forward artificial neural network model could accurately classify H2O2 and FeCl3 treated samples. However, fresh control, freeze-dried and stored samples could not be distinguished from one another, which implies that these groups are very similar in terms of their biomolecular fingerprints. Taken together, we conclude that sucrose can minimize oxidative damage caused by freeze-drying, and that subsequent dried storage has little effects on the overall biochemical composition of heart valve scaffolds.


Assuntos
Liofilização/métodos , Próteses Valvulares Cardíacas/normas , Valvas Cardíacas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Valvas Cardíacas/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Aprendizado de Máquina , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos
6.
Cardiovasc Res ; 117(9): 2016-2029, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-33576771

RESUMO

Calcification of the arterial wall and valves is an important part of the pathophysiological process of peripheral and coronary atherosclerosis, aortic stenosis, ageing, diabetes, and chronic kidney disease. This review aims to better understand how extracellular phosphates and their ability to be retained as calcium phosphates on the extracellular matrix initiate the mineralization process of arteries and valves. In this context, the physiological process of bone mineralization remains a human model for pathological soft tissue mineralization. Soluble (ionized) calcium precipitation occurs on extracellular phosphates; either with inorganic or on exposed organic phosphates. Organic phosphates are classified as either structural (phospholipids, nucleic acids) or energetic (corresponding to phosphoryl transfer activities). Extracellular phosphates promote a phenotypic shift in vascular smooth muscle and valvular interstitial cells towards an osteoblast gene expression pattern, which provokes the active phase of mineralization. A line of defense systems protects arterial and valvular tissue calcifications. Given the major roles of phosphate in soft tissue calcification, phosphate mimetics, and/or prevention of phosphate dissipation represent novel potential therapeutic approaches for arterial and valvular calcification.


Assuntos
Artérias/metabolismo , Calcinose/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Valvas Cardíacas/metabolismo , Organofosfatos/metabolismo , Osteogênese , Fosfatos/metabolismo , Calcificação Vascular/metabolismo , Animais , Artérias/efeitos dos fármacos , Artérias/patologia , Conservadores da Densidade Óssea/uso terapêutico , Calcinose/tratamento farmacológico , Calcinose/patologia , Quelantes/uso terapêutico , Doenças das Valvas Cardíacas/tratamento farmacológico , Doenças das Valvas Cardíacas/patologia , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/patologia , Humanos , Osteogênese/efeitos dos fármacos , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/patologia
7.
Cardiovasc Res ; 117(3): 663-673, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32170926

RESUMO

Heterogeneous macrophage lineages are present in the aortic and mitral valves of the heart during development and disease. These populations include resident macrophages of embryonic origins and recruited monocyte-derived macrophages prevalent in disease. Soon after birth, macrophages from haematopoietic lineages are recruited to the heart valves, and bone marrow transplantation studies in mice demonstrate that haematopoietic-derived macrophages continue to invest adult valves. During myxomatous heart valve disease, monocyte-derived macrophages are recruited to the heart valves and they contribute to valve degeneration in a mouse model of Marfan syndrome. Here, we review recent studies of macrophage lineages in heart valve development and disease with discussion of clinical significance and therapeutic applications.


Assuntos
Linhagem da Célula , Doenças das Valvas Cardíacas/patologia , Valvas Cardíacas/patologia , Macrófagos/patologia , Animais , Fármacos Cardiovasculares/uso terapêutico , Regulação da Expressão Gênica no Desenvolvimento , Doenças das Valvas Cardíacas/tratamento farmacológico , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/metabolismo , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Terapia de Alvo Molecular , Morfogênese , Fenótipo , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo
8.
Methods Mol Biol ; 2180: 593-605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32797437

RESUMO

Application of the original vitrification protocol used for pieces of heart valves to intact heart valves has evolved over time. Ice-free cryopreservation by Protocol 1 using VS55 is limited to small samples (1-3 mL total volume) where relatively rapid cooling and warming rates are possible. VS55 cryopreservation typically provides extracellular matrix preservation with approximately 80% cell viability and tissue function compared with fresh untreated tissues. In contrast, ice-free cryopreservation using VS83, Protocols 2 and 3, permits preservation of large samples (80-100 mL total volume) with several advantages over conventional cryopreservation methods and VS55 preservation, including long-term preservation capability at -80 °C; better matrix preservation than freezing with retention of material properties; very low cell viability, reducing the risks of an immune reaction in vivo; reduced risks of microbial contamination associated with use of liquid nitrogen; improved in vivo functions; no significant recipient allogeneic immune response; simplified manufacturing process; increased operator safety because liquid nitrogen is not used; and reduced manufacturing costs. More recently, we have developed Protocol 4 in which VS55 is supplemented with sugars resulting in reduced concerns regarding nucleation during cooling and warming. This method can be used for large samples resulting in retention of cell viability and permits short-term exposure to -80 °C with long-term storage preferred at or below -135 °C.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Valvas Cardíacas/citologia , Vitrificação , Animais , Sobrevivência Celular , Valvas Cardíacas/química , Valvas Cardíacas/efeitos dos fármacos , Humanos , Transição de Fase
9.
J Clin Endocrinol Metab ; 106(2): e711-e720, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33247916

RESUMO

BACKGROUND: Controversy exists as to whether low-dose cabergoline is associated with clinically significant valvulopathy. Few studies examine hard cardiac endpoint data, most relying on echocardiographic findings. OBJECTIVES: To determine the prevalence of valve surgery or heart failure in patients taking cabergoline for prolactinoma against a matched nonexposed population. DESIGN: Population-based cohort study based on North East London primary care records. METHODS: Data were drawn from ~1.5 million patients' primary care records. We identified 646 patients taking cabergoline for >6 months for prolactinoma. These were matched to up to 5 control individuals matched for age, gender, ethnicity, location, diabetes, hypertension, ischemic heart disease, and smoking status. Cumulative doses/durations of treatment were calculated. Cardiac endpoints were defined as cardiac valve surgery or heart failure diagnosis (either diagnostic code or prescription code for associated medications). RESULTS: A total of 18 (2.8%) cabergoline-treated patients and 62 (2.33%) controls reached a cardiac endpoint. Median cumulative cabergoline dose was 56 mg (interquartile range [IQR] 27-123). Median treatment duration was 27 months (IQR 15-46). Median weekly dose was 2.1 mg. Neither univariate nor multivariate analysis demonstrated a significant association between cabergoline treatment at any cumulative dosage/duration and an increased incidence of cardiac endpoints. In a matched analysis, the relative risk for cardiac complications in the cabergoline-treated group was 0.78 (95% CI, 0.41-1.48; P = 0.446). Reanalysis of echocardiograms for 6/18 affected cabergoline-treated patients showed no evidence of ergot-derived drug valvulopathy. CONCLUSIONS: The data did not support an association between clinically significant valvulopathy and low-dose cabergoline treatment and provide further evidence for a reduction in frequency of surveillance echocardiography.


Assuntos
Cabergolina/efeitos adversos , Doenças das Valvas Cardíacas/induzido quimicamente , Doenças das Valvas Cardíacas/epidemiologia , Neoplasias Hipofisárias , Prolactinoma , Adulto , Biomarcadores/análise , Cabergolina/uso terapêutico , Estudos de Casos e Controles , Estudos de Coortes , Ecocardiografia , Feminino , Doenças das Valvas Cardíacas/diagnóstico , Valvas Cardíacas/diagnóstico por imagem , Valvas Cardíacas/efeitos dos fármacos , Humanos , Hiperprolactinemia/diagnóstico , Hiperprolactinemia/tratamento farmacológico , Hiperprolactinemia/epidemiologia , Incidência , Londres/epidemiologia , Masculino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/epidemiologia , Atenção Primária à Saúde/estatística & dados numéricos , Prolactinoma/diagnóstico , Prolactinoma/tratamento farmacológico , Prolactinoma/epidemiologia
10.
Probl Radiac Med Radiobiol ; 25: 56-74, 2020 Dec.
Artigo em Inglês, Ucraniano | MEDLINE | ID: mdl-33361829

RESUMO

The review is devoted to the current issues of radiation-induced cardiovascular complications, their diagnostics andincidence depending on the radiation doses and exposure regimens, potential efficiency of the screening strategiesfor cardiotoxicity monitoring after radiotherapy in cancer patients by analyzing the data from literature and clinical trials, based on recommendations of European Society of Cardiology and European Society of Medical Oncology.


Assuntos
Cardiomiopatias/patologia , Cardiotoxicidade/patologia , Fibrose Endomiocárdica/patologia , Valvas Cardíacas/efeitos da radiação , Coração/efeitos da radiação , Cardiomiopatias/etiologia , Cardiomiopatias/prevenção & controle , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Relação Dose-Resposta à Radiação , Fibrose Endomiocárdica/etiologia , Fibrose Endomiocárdica/prevenção & controle , Endotélio Vascular/patologia , Endotélio Vascular/efeitos da radiação , Coração/efeitos dos fármacos , Coração/fisiopatologia , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/patologia , Humanos , Neoplasias/patologia , Neoplasias/radioterapia , Radiação Ionizante , Protetores contra Radiação/uso terapêutico
11.
Open Heart ; 7(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32747455

RESUMO

BACKGROUND: Heart valves often undergo a degenerative process leading to mechanical dysfunction that requires valve replacement. This process has been compared with atherosclerosis because of shared pathology and risk factors. In this study, we aimed to elucidate the role of inflammation triggered by cholesterol infiltration and cholesterol crystals formation causing mechanical and biochemical injury in heart valves. METHODS: Human and atherosclerotic rabbit heart valves were evaluated. New Zealand White male rabbits were fed an enriched cholesterol diet alone or with simvastatin and ezetimibe simultaneous or after 6 months of initiating cholesterol diet. Inflammation was measured using C-reactive protein (CRP) and RAM 11 of tissue macrophage content. Cholesterol crystal presence and content in valves was evaluated using scanning electron microscopy. RESULTS: Cholesterol diet alone induced cholesterol infiltration of valves with associated increased inflammation. Tissue cholesterol, CRP levels and RAM 11 were significantly lower in simvastatin and ezetimibe rabbit groups compared with cholesterol diet alone. However, the treatment was effective only when initiated with a cholesterol diet but not after lipid infiltration in valves. Aortic valve cholesterol content was significantly greater than all other cardiac valves. Extensive amounts of cholesterol crystals were noted in rabbit valves on cholesterol diet and in diseased human valves. CONCLUSIONS: Prevention of valve infiltration with cholesterol and reduced inflammation by simvastatin and ezetimibe was effective only when given during the initiation of high cholesterol diet but was not effective when given following infiltration of cholesterol into the valve matrix.


Assuntos
Colesterol na Dieta , Endocardite/prevenção & controle , Combinação Ezetimiba e Simvastatina/farmacologia , Doenças das Valvas Cardíacas/prevenção & controle , Valvas Cardíacas/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipercolesterolemia/tratamento farmacológico , Animais , Modelos Animais de Doenças , Endocardite/etiologia , Endocardite/metabolismo , Endocardite/patologia , Doenças das Valvas Cardíacas/etiologia , Doenças das Valvas Cardíacas/metabolismo , Doenças das Valvas Cardíacas/patologia , Valvas Cardíacas/metabolismo , Valvas Cardíacas/ultraestrutura , Humanos , Hipercolesterolemia/etiologia , Hipercolesterolemia/metabolismo , Masculino , Coelhos , Esclerose
12.
ACS Appl Mater Interfaces ; 12(37): 41113-41126, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32833422

RESUMO

In recent years, valvular heart disease has become a serious disease threatening human life and is a major cause of death worldwide. However, the glutaraldehyde (GLU)-treated biological heart valves (BHVs) fail to meet all requirements of clinical application due to disadvantages such as valve thrombus, cytotoxicity, endothelialization difficulty, immune response, and calcification. Encouragingly, there are a large number of carboxyls as well as a few amino groups on the surface of GLU-treated BHVs that can be modified to enhance biocompatibility. Inspired by natural biological systems, we report a novel approach in which the heart valve was cross-linked with erythrocyte membrane biomimetic drug-loaded nanoparticles. Such modified heart valves not only preserved the structural integrity, stability, and mechanical properties of the GLU-treated BHVs but also greatly improved anti-coagulation, anti-inflammation, anti-calcification, and endothelialization. The in vitro results demonstrated that the modified heart valves had long-term anti-coagulation properties and enhanced endothelialization processes. The modified heart valves also showed good biocompatibility, including blood and cell biocompatibility. Most importantly, the modified heart valves reduced the TNF-α levels and increased IL-10 compared to GLU-treated BHVs. In vivo animal experiments also confirmed that the modified heart valves had an ultrastrong resistance to calcification after implantation in rats for 120 days. The mechanism of anti-calcification in vivo was mainly due to the controlled release of anti-inflammatory drugs that reduced the inflammatory response after valve implantation. In summary, this therapeutic approach based on BHVs cross-linking with erythrocyte membrane biomimetic nanoparticles sparks a novel design for valvular heart disease therapy.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Membrana Eritrocítica/química , Valvas Cardíacas/efeitos dos fármacos , Nanopartículas/química , Animais , Anti-Inflamatórios não Esteroides/química , Atorvastatina/química , Atorvastatina/farmacologia , Reagentes de Ligações Cruzadas/química , Células Endoteliais/efeitos dos fármacos , Humanos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Ratos , Ratos Sprague-Dawley , Sirolimo/química , Sirolimo/farmacologia , Propriedades de Superfície
13.
Biol Pharm Bull ; 43(6): 951-958, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32475917

RESUMO

The fungal 13-membered cyclodepsipeptides, beauveriolides I and III, were previously reported to be atheroprotective activity in mouse models via inhibiting sterol O-acyltransferase (SOAT) activity. A total of 149 beauveriolide derivatives (BVDs) synthesized combinatorially were evaluated in in silico absorption, distribution, metabolism and excretion (ADME) analysis and inhibitory activity toward the two SOAT isozymes, SOAT1 and SOAT2. Hence, only 11 BVDs exhibited SOAT2-selective inhibition. Among these, we chose BVD327, which had the highest ADME score, for further evaluation. BVD327 administration (50 mg/kg/d, per os (p.o.)) significantly decreased atherosclerotic lesions in the aorta and heart (25.4 ± 6.9 and 20.6 ± 2.9%, respectively) in apolipoprotein E knockout (Apoe-/-) mice fed a cholesterol-enriched diet (0.2% cholesterol and 21% fat) for 12 weeks. These findings indicate that beauveriolide derivatives can be used as anti-atherosclerotic agents.


Assuntos
Aterosclerose/tratamento farmacológico , Esterol O-Aciltransferase/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteínas Sanguíneas/metabolismo , Barreira Hematoencefálica/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Canal de Potássio ERG1/genética , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/patologia , Humanos , Absorção Intestinal , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Knockout para ApoE , Esterol O-Aciltransferase/metabolismo , Esterol O-Aciltransferase 2
14.
Artif Organs ; 44(11): E482-E493, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32364253

RESUMO

The objective of this study was to evaluate the effect of chemical treatment with glutamic acid to avoid calcification of biological cardiac valves. The bovine pericardium (BP) tissues were fixed with 0.5% glutaraldehyde (BP/GA), followed by treatment with glutamic acid (BP/GA + Glu) for neutralization of the free aldehyde groups. Microscopic analysis showed that the wavy structure of collagen fibrils was preserved, but changes in elastin's integrity occurred. However, the treatment did not promote undesirable changes in the thermal and mechanical properties of the modified BPs. These samples were systematically studied in rat subcutaneous tissue: control (BP/GA) and anticalcificant (BP/GA + Glu). After 60 days, both groups induced similar inflammatory reactions. In terms of calcification, BP/GA + Glu remained more stable with a lower index (3.1 ± 0.2 µg Ca2+ /mg dry tissue), whereas for BP/GA it was 5.7 ± 1.3 µg Ca2+ /mg dry tissue. Bioprostheses made from BP/GA + Glu were implanted in the pulmonary position in sheep, and in vivo echocardiographic analyses revealed maintenance of valvar function after 180 days, with low gradients and minimal valve insufficiency. The explanted tissues of the BP/GA + Glu group had a lower average calcium content 3.8 ± 3.0 µg Ca2+ /mg dry tissue. The results indicated high anticalcification efficiency of BP/GA + Glu in both subcutaneous implant in rats and in the experimental sheep model, which is an advantage that should encourage the industrial application of these materials for the manufacture of bioprostheses.


Assuntos
Bioprótese , Calcificação Fisiológica/efeitos dos fármacos , Bovinos , Ácido Glutâmico/farmacologia , Próteses Valvulares Cardíacas , Animais , Bovinos/fisiologia , Glutaral/farmacologia , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/fisiologia , Pericárdio/efeitos dos fármacos , Pericárdio/fisiologia
15.
Cardiovasc Pathol ; 47: 107210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32142924

RESUMO

Nonbacterial thrombotic endocarditis is a form of a thrombotic angiopathy involving the endothelial lined endocardial surfaces of the heart which includes valves and the chamber walls. Underlying etiologies for nonbacterial thrombotic endocarditis include autoimmune diseases, hypercoagulable states, in the setting of certain malignant neoplasms, and physical injury. The pathogenesis for these processes is that of primary endothelial injury resulting in a thrombotic angiopathy. We present a patient with heart failure being evaluated before hematopoietic stem cell transplantation who had previously been provided with chemotherapy and whose cardiac magnetic resonance imaging reveals findings suggestive of amyloidosis. A subsequent endomyocardial biopsy instead showed nonbacterial thrombotic endocarditis characterized by the endocardium with fibromyxoid thickening and overlying fresh fibrin. This case highlights histopathologic findings of chemotherapy-associated nonbacterial thrombotic endocarditis involving the right ventricle wall of the endocardium, therefore expanding the radiological differential in patients with cardiac magnetic resonance imaging findings suggestive of amyloidosis.


Assuntos
Amiloidose/patologia , Antineoplásicos/efeitos adversos , Endocardite não Infecciosa/induzido quimicamente , Cardiopatias/patologia , Valvas Cardíacas/efeitos dos fármacos , Trombose/induzido quimicamente , Amiloidose/diagnóstico por imagem , Biópsia , Cardiotoxicidade , Diagnóstico Diferencial , Endocardite não Infecciosa/diagnóstico por imagem , Endocardite não Infecciosa/patologia , Cardiopatias/diagnóstico por imagem , Valvas Cardíacas/diagnóstico por imagem , Valvas Cardíacas/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Trombose/diagnóstico por imagem , Trombose/patologia
16.
Xenotransplantation ; 27(2): e12571, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31769101

RESUMO

BACKGROUND: Limited availability of decellularized allogeneic heart valve substitutes restricts the clinical application thereof. Decellularized xenogeneic valves might constitute an attractive alternative; however, increased immunological hurdles have to be overcome. This study aims for the in vivo effect in sheep of decellularized porcine pulmonary heart valves (dpPHV) enzymatically treated for N-glycan and DNA removal. METHODS: dpPHV generated by nine different decelluarization methods were characterized in respect of DNA, hydroxyproline, GAGs, and SDS content. Orthotopic implantation in sheep for six months of five groups of dpPHV (n = 3 each; 3 different decellularization protocols w/o PNGase F and DNase I treatment) allowed the analysis of function and immunological reaction in the ovine host. Allogenic doPHV implantations (n = 3) from a previous study served as control. RESULTS: Among the decellularization procedures, Triton X-100 & SDS as well as trypsin & Triton X-100 resulted in highly efficient removal of cellular components, while the extracellular matrix remained intact. In vivo, the functional performance of dpPHV was comparable to that of allogeneic controls. Removal of N-linked glycans and DNA by enzymatic PNGase F and DNase I treatment had positive effects on the clinical performance of Triton X-100 & SDS dpPHV, whereas this treatment of trypsin & Triton X-100 dpPHV induced the lowest degree of inflammation of all tested xenogeneic implants. CONCLUSION: Functional xenogeneic heart valve substitutes with a low immunologic load can be produced by decellularization combined with enzymatic removal of DNA and partial deglycosylation of dpPHV.


Assuntos
DNA/metabolismo , Próteses Valvulares Cardíacas/efeitos adversos , Valvas Cardíacas/metabolismo , Polissacarídeos/metabolismo , Engenharia Tecidual , Animais , Bioprótese/efeitos adversos , Ácido Desoxicólico/farmacologia , Detergentes/farmacologia , Matriz Extracelular/efeitos dos fármacos , Valvas Cardíacas/efeitos dos fármacos , Ovinos , Suínos , Engenharia Tecidual/métodos , Transplante Heterólogo/métodos
17.
Am J Med Genet A ; 179(8): 1408-1409, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31355539
18.
PLoS One ; 14(6): e0214656, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31194770

RESUMO

Glutaraldehyde-fixed bovine pericardium is currently the most popular biomaterial utilized in the creation of bioprosthetic heart valves. However, recent studies indicate that glutaraldehyde fixation results in calcification and structural valve deterioration, limiting the longevity of bioprosthetic heart valves. Additionally, glutaraldehyde fixation renders the tissue incompatible with constructive recipient cellular repopulation, remodeling and growth. Use of unfixed xenogeneic biomaterials devoid of antigenic burden has potential to overcome the limitations of current glutaraldehyde-fixed biomaterials. Heart valves undergo billion cycles of opening and closing throughout the patient's lifetime. Therefore, understanding the response of unfixed tissues to cyclic loading is crucial to these in a heart valve leaflet configuration. In this manuscript we quantify the effect of cyclic deformation on cycle dependent strain, structural, compositional and mechanical properties of fixed and unfixed tissues. Glutaraldehyde-fixed bovine pericardium underwent marked cyclic dependent strain, resulting from significant changes in structure, composition and mechanical function of the material. Conversely, unfixed bovine pericardium underwent minimal strain and maintained its structure, composition and mechanical integrity. This manuscript demonstrates that unfixed bovine pericardium can withstand cyclic deformations equivalent to 6 months of in vivo heart valve leaflet performance.


Assuntos
Fenômenos Biomecânicos , Glutaral/farmacologia , Valvas Cardíacas/fisiologia , Preservação de Órgãos/veterinária , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Bioprótese , Bovinos , Análise de Elementos Finitos , Próteses Valvulares Cardíacas , Valvas Cardíacas/efeitos dos fármacos , Suínos , Fixação de Tecidos
19.
J Adolesc Young Adult Oncol ; 8(4): 410-416, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31017511

RESUMO

Purpose: The purpose of our work was to study late cardiac complications after treatment for Hodgkin's lymphoma (HL) in children and adolescents. Methods: Sixty-seven patients were examined in the long term (>5 years) after chemoradiotherapy for HL according to two different programs of treatment (groups I and II). Mean total doses of radiotherapy (RT) to the mediastinum were 37.2 and 28.9 Gy, respectively. The status of the heart was assessed at the mean age of 22.7 years with electrocardiography (ECG) and echocardiography (EchoCG). Mean terms of follow-up were 16.4 and 9.5 years for group I and group II, respectively. Results: Incidence of ECG changes was equal between the groups (88% and 90%). The prevalence of signs of valvular calcifications and fibrosis was 70.9% after mediastinal doses ≥30 Gy, and 16.6% after lower doses (p = 0.002). Those changes led to considerable valvular dysfunction in four patients. EchoCG signs of pulmonary hypertension were seen in 33.3% patients of group I versus 4.8% in group II (p = 0.047). Pericardial effusion was observed in 7.4% and 5.1%, respectively (p = 1.0). Left ventricular ejection fraction decreased slightly only in two patients (one in each group). Conclusions: The RT mediastinal dose level is the important risk factor of late heart complications. Nevertheless, the differences in the rate and severity of those complications between the groups should be viewed with caution because of differences in the age at baseline and in follow-up terms. The survivors of HL should undergo life-long regular examinations of the heart status.


Assuntos
Sobreviventes de Câncer/estatística & dados numéricos , Doenças das Valvas Cardíacas/etiologia , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/efeitos da radiação , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/radioterapia , Adolescente , Adulto , Calcinose/induzido quimicamente , Calcinose/etiologia , Calcinose/patologia , Quimiorradioterapia , Criança , Pré-Escolar , Feminino , Seguimentos , Doenças das Valvas Cardíacas/induzido quimicamente , Doenças das Valvas Cardíacas/patologia , Valvas Cardíacas/patologia , Doença de Hodgkin/patologia , Humanos , Masculino , Prognóstico , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Estudos Retrospectivos , Adulto Jovem
20.
Thromb Haemost ; 119(5): 786-796, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30731490

RESUMO

The mechanisms or host factors involved in septic thrombus or vegetation formation in Staphylococcus aureus-induced infective endocarditis (IE) are unclear. Using an experimental endocarditis rat model, here we demonstrated that S. aureus HG001-induced vegetation was composed of bacterial floes encased in aggregated platelets and surrounded by neutrophil extracellular traps (NETs). In vitro data demonstrated that platelets contribute to both biofilm and NET formation. Prophylactic administration of DNase I significantly reduced the size of vegetation induced by methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains, even though MRSA and MSSA isolates express different biofilm phenotypes and NET-induction abilities in the presence of platelets. Moreover, delivery of both DNase I and daptomycin prophylactically and therapeutically produced synergistic effects by reducing vegetation size and bacterial numbers on damaged valve tissues in MRSA-induced IE. Together, these data suggest that NETs contribute to vegetation formation in S. aureus endocarditis and DNase I has the potential to control S. aureus-induced IE in the clinic.


Assuntos
Endocardite/imunologia , Armadilhas Extracelulares/fisiologia , Valvas Cardíacas/patologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Neutrófilos/fisiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Animais , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Células Cultivadas , Daptomicina/farmacologia , Desoxirribonuclease I/metabolismo , Armadilhas Extracelulares/microbiologia , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/microbiologia , Humanos , Modelos Animais , Ratos , Infecções Estafilocócicas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...