Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830319

RESUMO

There is very little information on the transgenerational or genetic effects of low dose-rate ionizing radiation. We report the detection of the transgenerational effects of chronic low dose-rate irradiation in mice, at the molecular level in the whole genome, using array comparative genomic hybridization technology. We observed that the number of the mice with de novo copy number variations (specifically, deletions) was significantly increased in the offspring of C57BL/6J male mice exposed to 20 mGy/day gamma-rays for 400 days (total dose: 8000 mGy), as compared to non-irradiated controls. We did not detect any difference in the size of the de novo deletions between the irradiated and the non-irradiated groups. An analysis of the life span of the offspring suggested a possibility that de novo copy-number variations may be associated with shorter life spans.


Assuntos
Variações do Número de Cópias de DNA/efeitos da radiação , Raios gama/efeitos adversos , Longevidade/efeitos da radiação , Exposição Paterna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Hibridização Genômica Comparativa , Feminino , Genoma , Longevidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Doses de Radiação
2.
Anticancer Res ; 41(1): 55-70, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33419799

RESUMO

BACKGROUND/AIM: Our understanding of cancer risk from neutron exposure is limited. We aimed to reveal the characteristics of mammary carcinomas induced by neutrons. MATERIALS AND METHODS: Mammary carcinomas obtained from female Sprague-Dawley rats irradiated at 7 weeks of age with 0.97 Gy neutrons or 4 Gy γ-rays and from non-irradiated rats were classified into luminal and non-luminal subtypes by immunohistochemistry. Their mutational landscapes were determined by whole-exome sequencing. RESULTS: Neutrons significantly raised the incidence of luminal mammary carcinomas over the non-luminal subtype. Somatic mutations were identified in cancer genes involved in several signalling pathways, including Keap1/Nrf2, Pi3k/Akt and Wnt/ß-catenin. Focal copy-number losses involving cancer genes were observed mainly in carcinomas from the irradiated rats. CONCLUSION: Neutrons increase the incidence of luminal mammary carcinomas, probably through gene mutations similar to those found in human breast cancers, and focal copy-number losses including cancer genes that are characteristics of radiation-induced mammary carcinomas.


Assuntos
Variações do Número de Cópias de DNA/efeitos da radiação , Exoma , Neoplasias Mamárias Experimentais/genética , Mutação/efeitos da radiação , Radiação Ionizante , Animais , Biópsia , Biologia Computacional/métodos , Metilação de DNA , Análise Mutacional de DNA , Feminino , Humanos , Mutação INDEL , Imuno-Histoquímica , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/radioterapia , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/patologia , Ratos , Sequenciamento do Exoma
3.
Int J Oncol ; 56(3): 709-727, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31922240

RESUMO

Cholangiocarcinoma (CC) is an aggressive liver tumor with limited therapeutic options. Natrium­iodide symporter (NIS) mediates the uptake of iodine by the thyroid, representing a key component in metabolic radiotherapy using iodine­131 (131I) for the treatment of thyroid cancer. NIS expression is increased in CC, providing the opportunity for a novel therapeutic approach for this type of tumor. Thus, in this study, we aimed to evaluate therapeutic efficacy of 131I in two human CC cell lines. Uptake experiments analyzed the 131I uptake profiles of the tumor cell lines under study. The cells were irradiated with various doses of 131I to evaluate and characterize the effects of metabolic radiotherapy. NIS protein expression was assessed by immunofluorescence methods. Cell survival was evaluated by clonogenic assay and flow cytometry was used to assess cell viability, and the type of death and alterations in the cell cycle. The genomic and epigenetic characterization of both CC cells was performed before and after irradiation. NIS gene expression was evaluated in the CC cells by RT­qPCR. The results revealed that CC cells had a higher expression of NIS. 131I induced a decrease in cell survival in a dose­dependent manner. With the increasing irradiation dose, a decrease in cell viability was observed, with a consequent increase in cell death by initial apoptosis. Karyotype and array comparative genomic hybridization (aCGH) analyses revealed that both CC cell lines were near­triploid with several numerical and structural chromosomal rearrangements. NIS gene expression was increased in the TFK­1 and HuCCT1 cells in a time­dependent manner. On the whole, the findings of this study demonstrate that the presence of NIS in cholangiocarcinoma cell lines is crucial for the decreased cell viability and survival observed following the exposure of cholangiocarcinoma cells to 131I.


Assuntos
Neoplasias dos Ductos Biliares/radioterapia , Morte Celular/efeitos da radiação , Colangiocarcinoma/fisiopatologia , Variação Estrutural do Genoma/efeitos da radiação , Radioisótopos do Iodo/uso terapêutico , Simportadores/genética , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Colangiocarcinoma/radioterapia , Variações do Número de Cópias de DNA/efeitos da radiação , Metilação de DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Radioisótopos do Iodo/farmacocinética , Simportadores/metabolismo
4.
Int J Mol Sci ; 20(19)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554154

RESUMO

DNA copy number variation (CNV) occurs due to deletion or duplication of DNA segments resulting in a different number of copies of a specific DNA-stretch on homologous chromosomes. Implications of CNVs in evolution and development of different diseases have been demonstrated although contribution of environmental factors, such as mutagens, in the origin of CNVs, is poorly understood. In this review, we summarize current knowledge about mutagen-induced CNVs in human, animal and plant cells. Differences in CNV frequencies induced by radiation and chemical mutagens, distribution of CNVs in the genome, as well as adaptive effects in plants, are discussed. Currently available information concerning impact of mutagens in induction of CNVs in germ cells is presented. Moreover, the potential of CNVs as a new endpoint in mutagenicity test-systems is discussed.


Assuntos
Variações do Número de Cópias de DNA , Mutagênese , Animais , Cruzamento , Variações do Número de Cópias de DNA/efeitos dos fármacos , Variações do Número de Cópias de DNA/efeitos da radiação , Evolução Molecular , Mutação em Linhagem Germinativa/efeitos dos fármacos , Mutação em Linhagem Germinativa/efeitos da radiação , Humanos , Mutagênese/efeitos dos fármacos , Mutagênese/efeitos da radiação , Mutagênicos/farmacologia , Mutagênicos/toxicidade , Plantas/genética , Radiação Ionizante
5.
Sci Rep ; 8(1): 5914, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651024

RESUMO

The radiological accident in Goiania in 1987 caused a trail of human contamination, animal, plant and environmental by a radionuclide. Exposure to ionizing radiation results in different types of DNA lesions. The mutagenic effects of ionizing radiation on the germline are special concern because they can endures for several generations, leading to an increase in the rate of mutations in children of irradiated parents. Thus, to evaluate the biological mechanisms of ionizing radiation in somatic and germline cells, with consequent determination of the rate mutations, is extremely important for the estimation of genetic risks. Recently it was established that Chromosomal Microarray Analysis is an important tool for detecting wide spectra of gains or losses in the human genome. Here we present the results of the effect of accidental exposure to low doses of ionizing radiation on the formation of CNVs in the progeny of a human population accidentally exposed to Caesium-137 during the radiological accident in Goiânia, Brazil.


Assuntos
Radioisótopos de Césio/efeitos adversos , Variações do Número de Cópias de DNA/genética , Genoma Humano/efeitos da radiação , Liberação Nociva de Radioativos , Adulto , Animais , Brasil/epidemiologia , Variações do Número de Cópias de DNA/efeitos da radiação , Poluição Ambiental/efeitos adversos , Pai , Feminino , Genoma Humano/genética , Células Germinativas/efeitos da radiação , Humanos , Masculino , Análise em Microsséries , Mães , Mutação , Plantas/genética , Plantas/efeitos da radiação , Radiação Ionizante
6.
J Invest Dermatol ; 138(7): 1636-1644, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29476775

RESUMO

The melanoma transformation rate of an individual nevus is very low despite the detection of oncogenic BRAF or NRAS mutations in 100% of nevi. Acquired melanocytic nevi do, however, mimic melanoma, and approximately 30% of all melanomas arise within pre-existing nevi. Using whole-exome sequencing of 30 matched nevi, adjacent normal skin, and saliva we sought to identify the underlying genetic mechanisms for nevus development. All nevi were clinically, dermoscopically, and histopathologically documented. In addition to identifying somatic mutations, we found mutational signatures relating to UVR mirroring those found in cutaneous melanoma. In nevi we frequently observed the presence of the UVR mutation signature compared with adjacent normal skin (97% vs. 10%, respectively). Copy number aberration analysis showed that for nevi with copy number loss of tumor suppressor genes, this loss was balanced by loss of potent oncogenes. Moreover, reticular and nonspecific patterned nevi showed an increased (P < 0.0001) number of copy number aberrations compared with globular nevi. The mutation signature data generated in this study confirms that UVR strongly contributes to nevogenesis. Copy number changes reflect at a genomic level the dermoscopic differences of acquired melanocytic nevi. Finally, we propose that the balanced loss of tumor suppressor genes and oncogenes is a protective mechanism of acquired melanocytic nevi.


Assuntos
Carcinogênese/genética , Nevo Pigmentado/genética , Neoplasias Cutâneas/genética , Raios Ultravioleta/efeitos adversos , Adulto , Idoso , Austrália , Carcinogênese/efeitos da radiação , Variações do Número de Cópias de DNA/efeitos da radiação , Análise Mutacional de DNA , Genes Supressores de Tumor/efeitos da radiação , Humanos , Pessoa de Meia-Idade , Nevo Pigmentado/etiologia , Nevo Pigmentado/patologia , Nevo Pigmentado/cirurgia , Oncogenes/efeitos da radiação , Pele/patologia , Pele/efeitos da radiação , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/cirurgia , Sequenciamento do Exoma
7.
Radiat Res ; 188(5): 571-578, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28952879

RESUMO

Thirty years after the Chernobyl nuclear power plant accident we report on a patient who was a clean-up worker, who subsequently developed multiple cutaneous basal cell carcinomas (BCCs). We used several methods to assess the biological long-term effects related to low-dose external and internal radiation exposure. Specifically, because BCC risk may be increased with ionizing radiation exposure, we endeavored to determine whether the multifocal BCCs were related to the patient's past clean-up work. We assessed cytogenetic changes using peripheral blood, and internal incorporation was measured with a whole-body counter. Gene expression alterations were determined and array-based comparative genomic hybridization was performed for copy number aberration analysis of available BCC samples. In 1,053 metaphase cells, the dicentric yield of 0.005 dicentrics, with acentrics/cell, was significantly increased compared to the established calibration curve (P < 0.001). A 2.5-fold increase in total translocations was observed compared to the expected translocation rate. No internal contamination was detected with the whole-body counter. At the RNA level, two of seven genes (HNRNPA1, AGAP4/6/8) indicated internal plutonium exposure associated with the lowest dose category found in Mayak workers (>0-0.055 Gy). Relevant DNA copy number changes were only detected within the most aggressive BCC focus. Our results suggest that the examined worker had low and more recent radiation exposure with presumably internalized radionuclides that were below the detection level of a whole-body counter. The multifocal BCC could not be related to past occupational radiation exposure. The findings from our study suggest that integrating different methodologies potentially provides an improved overall assessment of individual health risks associated with or excluding occupational radiation exposure.


Assuntos
Carcinoma Basocelular/genética , Acidente Nuclear de Chernobyl , Exposição Ocupacional/efeitos adversos , Exposição à Radiação/efeitos adversos , Adulto , Carcinoma Basocelular/etiologia , Aberrações Cromossômicas/efeitos da radiação , Análise Citogenética , Variações do Número de Cópias de DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Masculino , Pessoa de Meia-Idade , Plutônio/efeitos adversos , Risco , Transcriptoma/efeitos da radiação , Contagem Corporal Total
8.
Radiat Res ; 187(2): 210-220, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28135125

RESUMO

Epidemiology studies have shown that children are at greater overall risk of radiation-induced cancer, but the modifying effect of age at exposure in different tissues is heterogeneous. Early epidemiology findings of increased lung cancer risk with increasing age at the time of exposure have been dismissed, with suggestions that the trend is an artefact from a failure to adequately correct for the effects of tobacco smoking. Yet, differing models used in subsequent analyses have shown that the increased susceptibility with age, counter to the overall solid tumor trend, can either be confirmed or discounted depending on the model parameters used. In this study, we analyzed the induction of tumors in female Wistar rats exposed to increasing thoracic doses of X-ray as neonates, juveniles or young adults, to allow the effect of age at exposure in this early period to be observed in the absence of any interactions with smoking. Histology was used to compare tumor subtypes among groups, and genomic DNA copy number alterations in a number of tumors arising after irradiation at different ages were examined. Induction of lung cancers increased with radiation dose, with the frequency of early occurring lung adenomas greater in rats irradiated at older ages. At the highest dose, the rats irradiated at 5 or 15 weeks of age showed increased age-specific rates of lung adenocarcinomas in later life compared to those irradiated at 1 week of age. However, thoracic mammary gland tumors induced by the highest dose at the later ages significantly decreased the lifespan in these groups, reducing the number of rats at risk of radiation-induced lung adenocarcinoma. There was no induction of mammary tumors outside of the irradiated field. Lung adenocarcinomas showed widespread DNA copy number aberrations at the chromosome level, but the only recurrent lesions were intragenic Fhit deletions and losses on chromosome 4. The results presented here suggest that the risk of radiation-induced lung cancer after irradiation may not monotonically decrease with age, and demonstrate that increasing lung cancer risk with exposure age can be observed independent of corrections for smoking, and that mammary tumors may show a similar relationship with age.


Assuntos
Envelhecimento/efeitos da radiação , Neoplasias Pulmonares/etiologia , Neoplasias Mamárias Experimentais/etiologia , Neoplasias Induzidas por Radiação/etiologia , Tórax/efeitos da radiação , Animais , Variações do Número de Cópias de DNA/efeitos da radiação , Feminino , Incidência , Neoplasias Pulmonares/genética , Neoplasias Mamárias Experimentais/genética , Neoplasias Induzidas por Radiação/genética , Ratos , Ratos Wistar , Raios X/efeitos adversos
9.
Nat Commun ; 7: 11428, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27109210

RESUMO

Radiotherapy is not currently informed by the genetic composition of an individual patient's tumour. To identify genetic features regulating survival after DNA damage, here we conduct large-scale profiling of cellular survival after exposure to radiation in a diverse collection of 533 genetically annotated human tumour cell lines. We show that sensitivity to radiation is characterized by significant variation across and within lineages. We combine results from our platform with genomic features to identify parameters that predict radiation sensitivity. We identify somatic copy number alterations, gene mutations and the basal expression of individual genes and gene sets that correlate with the radiation survival, revealing new insights into the genetic basis of tumour cellular response to DNA damage. These results demonstrate the diversity of tumour cellular response to ionizing radiation and establish multiple lines of evidence that new genetic features regulating cellular response after DNA damage can be identified.


Assuntos
Dano ao DNA , Neoplasias/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Variações do Número de Cópias de DNA/efeitos da radiação , Dano ao DNA/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Neoplasias/radioterapia , Tolerância a Radiação , Radiação Ionizante
10.
Oncogene ; 35(25): 3342-50, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-26477315

RESUMO

Ultraviolet radiation (UVR) exposure increases malignant melanoma (MM) risk, but in the context of acute, not cumulative exposure. C>T and CC>TT changes make up the overwhelming majority of single base substitutions (SBS) in MM DNA, as both precursor melanocytes and melanocytic lesions have incurred incidental exposures to sunlight. To study the mutagenic mechanisms by which acute sunburn accelerates MM, we sequenced the exomes of spontaneous and neonatal UVB-induced Cdk4-R24C::Tyr-NRASQ61K mouse MMs. UVR-induced MMs carried more SBSs than spontaneous MMs, but the levels of genomic instability, reflected by translocations and copy number changes, were not different. C>T/G>A was the most common SBS in spontaneous and UVR-induced MMs, only modestly increased in the latter. However, they tended to occur at the motif A/GpCpG (reflecting C>T transition due to spontaneous deamination of cytosine at CpG) in spontaneous MMs, and T/CpCpC/T (reflecting the effects of pyrimidine dimers on either side of the mutated C) in UVR-induced MMs. Unlike MMs associated with repetitive exposures, we observed no CC>TT changes. In addition, we also found UVR 'footprints' at T>A/A>Ts (at NpTpT) and T>C/A>G (at CpTpC). These footprints are also present in MMs from a chronic UVR mouse model, and in some human MMs, suggesting that they may be minor UVR signature changes. We found few significantly somatically mutated genes (~6 per spontaneous and 15 per UVR-induced melanoma) in addition to the Cdk4 and NRAS mutations already present. Trp53 was the most convincing recurrently mutated gene; however, in the UVR-induced MMs no Trp53 mutations were at C>T/G>A, suggesting that it was probably mutated during tumour progression, not directly induced by UVR photoproducts. The very low load of recurrent mutations convincingly induced by classical UVB-induced dimer photoproducts may support a role for cell extrinsic mechanisms, such as photoimmunosuppression and inflammation in driving MM after acute UVB exposure.


Assuntos
Melanoma/genética , Mutação Puntual/efeitos da radiação , Neoplasias Cutâneas/genética , Pele/efeitos da radiação , Raios Ultravioleta , Animais , Animais Recém-Nascidos , Variações do Número de Cópias de DNA/efeitos da radiação , Exoma/genética , Humanos , Mutação INDEL/efeitos da radiação , Estimativa de Kaplan-Meier , Camundongos , Análise de Sequência de DNA/métodos , Pele/metabolismo , Pele/patologia , Translocação Genética/efeitos da radiação , Proteínas Supressoras de Tumor/genética
11.
Nat Commun ; 6: 6684, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25809527

RESUMO

The ability to predict the genetic consequences of human exposure to ionizing radiation has been a long-standing goal of human genetics in the past 50 years. Here we present the results of an unbiased, comprehensive genome-wide survey of the range of germline mutations induced in laboratory mice after parental exposure to ionizing radiation and show irradiation markedly alters the frequency and spectrum of de novo mutations. Here we show that the frequency of de novo copy number variants (CNVs) and insertion/deletion events (indels) is significantly elevated in offspring of exposed fathers. We also show that the spectrum of induced de novo single-nucleotide variants (SNVs) is strikingly different; with clustered mutations being significantly over-represented in the offspring of irradiated males. Our study highlights the specific classes of radiation-induced DNA lesions that evade repair and result in germline mutation and paves the way for similarly comprehensive characterizations of other germline mutagens.


Assuntos
Variações do Número de Cópias de DNA/efeitos da radiação , DNA/efeitos da radiação , Genoma/efeitos da radiação , Células Germinativas/efeitos da radiação , Mutação em Linhagem Germinativa/efeitos da radiação , Radiação Ionizante , Animais , Feminino , Genoma/genética , Mutação em Linhagem Germinativa/genética , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Espermatogênese
12.
Exp Dermatol ; 23(3): 209-11, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24443988

RESUMO

Mitochondrial DNA (mtDNA) mutations are causatively associated with photo-ageing and are used as biomarkers of UV exposure. The most prominent mitochondrial mutation is the common deletion (CD), which is induced in many tissues by oxidative stress. More photo-specific mutations might be CC to TT tandem transitions which arise from UV-induced cyclobutane pyrimidine dimers. As nucleotide excision repair is absent in mitochondria, this DNA damage can presumably not be repaired resulting in high mitochondrial mutation levels. Here, we analysed levels of the CD, a mitochondrial and a chromosomal tandem transition in epidermis and dermis from exposed and less UV-exposed skin. We also analysed mtDNA copy number, for which changes as a result of oxidative stress have been described in different experimental settings. Whereas mitochondrial tandem transition levels were surprisingly low with no discernible correlation with UV exposure, mtDNA copy number and CD were significantly increased in UV-exposed samples.


Assuntos
Envelhecimento/efeitos da radiação , Sequência de Bases/efeitos da radiação , Variações do Número de Cópias de DNA/efeitos da radiação , DNA Mitocondrial/genética , Dímeros de Pirimidina/efeitos da radiação , Deleção de Sequência/efeitos da radiação , Pele/efeitos da radiação , Luz Solar/efeitos adversos , Abdome , Idoso , Envelhecimento/genética , Biomarcadores , Citosina , Testa , Humanos , Pescoço , Timina , Proteína Supressora de Tumor p53/genética
13.
Environ Mol Mutagen ; 55(2): 103-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24327335

RESUMO

Despite their importance to human genetic variation and disease, little is known about the molecular mechanisms and environmental risk factors that impact copy number variant (CNV) formation. While it is clear that replication stress can lead to de novo CNVs, for example, following treatment of cultured mammalian cells with aphidicolin (APH) and hydroxyurea (HU), the effect of different types of mutagens on CNV induction is unknown. Here we report that ionizing radiation (IR) in the range of 1.5-3.0 Gy effectively induces de novo CNV mutations in cultured normal human fibroblasts. These IR-induced CNVs are found throughout the genome, with the same hotspot regions seen after APH- and HU-induced replication stress. IR produces duplications at a higher frequency relative to deletions than do APH and HU. At most hotspots, these duplications are physically shifted from the regions typically deleted after APH or HU, suggesting different pathways involved in their formation. CNV breakpoint junctions from irradiated samples are characterized by microhomology, blunt ends, and insertions like those seen in spontaneous and APH/HU-induced CNVs and most nonrecurrent CNVs in vivo. The similarity to APH/HU-induced CNVs suggests that low-dose IR induces CNVs through a replication-dependent mechanism, as opposed to replication-independent repair of DSBs. Consistent with this mechanism, a lower yield of CNVs was observed when cells were held for 48 hr before replating after irradiation. These results predict that any environmental DNA damaging agent that impairs replication is capable of creating CNVs.


Assuntos
Variações do Número de Cópias de DNA/efeitos da radiação , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Pontos de Quebra do Cromossomo , Replicação do DNA , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Deleção de Genes , Duplicação Gênica , Genoma Humano , Humanos , Polimorfismo de Nucleotídeo Único
14.
Mol Reprod Dev ; 79(9): 651-63, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22777700

RESUMO

Hoechst 33342 (H342), in combination with ultraviolet (UV) irradiation, is frequently used to aid or confirm the enucleation of porcine oocytes in somatic cell nuclear transfer programs. The exposure of oocytes to H342 and UV irradiation has a deleterious effect on the development of in vitro-fertilized porcine oocytes, with increasing exposure to UV irradiation (up to 30 sec) having more drastic effects. It has been hypothesized that this decrease in embryonic development could be due to damage to the mitochondrial DNA (mtDNA). To investigate this hypothesis, we analyzed the mitochondrial distribution and DNA copy number of in vitro-matured porcine oocytes exposed to H342/UV and the subsequent embryonic development compared with the mitochondrial distribution and DNA copy number of in vivo-derived oocytes and embryos. Using quantitative, real-time polymerase chain reaction (qPCR) protocols to analyze mtDNA and confocal laser scanning microscopy with MitoTracker Deep Red to determine mitochondrial distribution, we demonstrated that the simultaneous exposure of in vitro-matured porcine oocytes to H342 staining and UV irradiation is associated with reduced oocyte developmental competence and abnormal mitochondrial distribution in the resulting cleaved embryos. In addition, 2- to 4-cell embryos derived from oocytes exposed to H342/UV showed a significant decrease in mtDNA copy number. These results should be considered when H342/UV procedure is used during nuclear transfer in recipient porcine oocytes.


Assuntos
Benzimidazóis/efeitos adversos , Blastocisto/metabolismo , Variações do Número de Cópias de DNA , DNA Mitocondrial/metabolismo , Corantes Fluorescentes/efeitos adversos , Mitocôndrias/metabolismo , Oócitos/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Benzimidazóis/farmacologia , Blastocisto/patologia , Variações do Número de Cópias de DNA/efeitos dos fármacos , Variações do Número de Cópias de DNA/efeitos da radiação , Feminino , Corantes Fluorescentes/farmacologia , Mitocôndrias/patologia , Oócitos/patologia , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Fatores de Tempo
16.
J Assist Reprod Genet ; 29(1): 53-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21898105

RESUMO

PURPOSE: Men are exposed to various doses of ionizing radiation due to living in regions with high natural background radiation, accidentally, occupationally or for cancer treatment. To study genomic instability of AZFc region to gamma radiation, blood samples from normal, oligozoospermia, and azoospermia individuals were irradiated by a Co-60 source. METHODS: Irradiated cells were kept for 48 h in order to repair initial DNA damages. Real time PCR was performed for three markers (SY 1206, SY 1197, SY 579) for testing copy number variation before and after irradiation. Copy number variations were compared by calculation of cycle threshold comparative method. RESULTS: Copy number variations of studied markers in AZFc region (microdeletion and duplication) in all samples after exposure to radiation increased with a dose dependent fashion. The frequency of instability was significantly higher in samples from infertile men in comparison with fertile ones (p < 0.001). CONCLUSION: No significant difference was seen between the two infertile groups (p > 0.05). This observation might be a possible explanation for induction of azoospermia and oligozoospermia after radiotherapy. Increased frequency of induced microdeletion and duplication in infertile men compared with normal might be attributed to the deficiency in repair systems and the genetic factors involved in incomplete spermatogenesis of infertile men.


Assuntos
Azoospermia/genética , Cromossomos Humanos Y/genética , Infertilidade Masculina/genética , Oligospermia/genética , Azoospermia/sangue , Isótopos do Cobalto/efeitos adversos , Variações do Número de Cópias de DNA/genética , Variações do Número de Cópias de DNA/efeitos da radiação , Raios gama/efeitos adversos , Instabilidade Genômica/efeitos da radiação , Humanos , Leucócitos/efeitos da radiação , Masculino , Oligospermia/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...