Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35050341

RESUMO

Angiogenesis is a stepwise process leading to blood vessel formation. In the vertebrate retina, endothelial cells are guided by astrocytes migrating along the inner surface, and the two processes are coupled by a tightly regulated cross-talks between the two cell types. Here, I have investigated how the FAT1 cadherin, a regulator of tissue morphogenesis that governs tissue cross-talk, influences retinal vascular development. Late-onset Fat1 inactivation in the neural lineage in mice, by interfering with astrocyte progenitor migration polarity and maturation, delayed postnatal retinal angiogenesis, leading to persistent vascular abnormalities in adult retinas. Impaired astrocyte migration and polarity were not associated with alterations of retinal ganglion cell axonal trajectories or of the inner limiting membrane. In contrast, inducible Fat1 ablation in postnatal astrocytes was sufficient to alter their migration polarity and proliferation. Altogether, this study uncovers astrocyte-intrinsic and -extrinsic Fat1 activities that influence astrocyte migration polarity, proliferation and maturation, disruption of which impacts retinal vascular development and maintenance.


Assuntos
Astrócitos/metabolismo , Caderinas/metabolismo , Neovascularização Fisiológica , Retina/metabolismo , Animais , Astrócitos/citologia , Caderinas/genética , Diferenciação Celular , Camundongos , Retina/citologia , Retina/crescimento & desenvolvimento , Vasos Retinianos/crescimento & desenvolvimento
2.
Cutan Ocul Toxicol ; 40(4): 359-364, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34429007

RESUMO

BACKGROUND AND AIM: Retinopathy of prematurity (ROP) is the major ocular problem of preterm infants that occurs with abnormal proliferation of immature retinal vessels. Although pentoxifylline (PTX) was reported to inhibit vasculogenesis and neovascularization in experimental studies, there is no clinical data about the effects of PTX treatment on the development and severity of ROP. This clinical study aimed to investigate the possible effects of PTX on the development of ROP. MATERIALS AND METHODS: A single-centre retrospective study was conducted including preterm infants who were hospitalised in the neonatal intensive care unit between 2015-2017 years. Infants were divided into two groups in terms of PTX administration for adjuvant therapy, as PTX and non-PTX groups. RESULTS: A total of 211 infants were included in the study [gestational age 29 (27-31) weeks, birth weight 1140 (960-1340) g]. From these, 97 infants (46%) were given PTX treatment. The two groups were similar in terms of demographic data and baseline clinical characteristics. Any stage of ROP was detected in 47.4% of infants in the PTX group, which was significantly higher than those in the non-PTX group (27.2%) (p = 0.002). The incidence of advanced-stage ROP in the PTX group (10.3%) was also higher than in the non-PTX group (2.6%) (p = 0.021). Repeated usage of PTX was not found to be related to the development of ROP (p = 0.059). The time of PTX administration was similar between the ROP and no-ROP groups (median; one vs one week, p = 0.825). Surfactant therapy, duration of hospital stay, and PTX treatment were found as significant risk factors for ROP in the logistic regression analysis. CONCLUSIONS: In contrast to the experimental studies and also promising results of PTX treatment in some neonatal morbidities, it may be associated with increased incidence and stage of ROP.


Assuntos
Pentoxifilina/administração & dosagem , Vasos Retinianos/efeitos dos fármacos , Retinopatia da Prematuridade/terapia , Terapia Combinada/métodos , Transfusão de Eritrócitos , Feminino , Idade Gestacional , Humanos , Incidência , Lactente Extremamente Prematuro , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Unidades de Terapia Intensiva Neonatal , Masculino , Oxigênio/administração & dosagem , Surfactantes Pulmonares/administração & dosagem , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/patologia , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/patologia , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença
3.
Dev Biol ; 478: 144-154, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260962

RESUMO

Throughout the central nervous system, astrocytes adopt precisely ordered spatial arrangements of their somata and arbors, which facilitate their many important functions. Astrocyte pattern formation is particularly important in the retina, where astrocytes serve as a template that dictates the pattern of developing retinal vasculature. Thus, if astrocyte patterning is disturbed, there are severe consequences for retinal angiogenesis and ultimately for vision - as seen in diseases such as retinopathy of prematurity. Here we discuss key steps in development of the retinal astrocyte population. We describe how fundamental developmental forces - their birth, migration, proliferation, and death - sculpt astrocytes into a template that guides angiogenesis. We further address the radical changes in the cellular and molecular composition of the astrocyte network that occur upon completion of angiogenesis, paving the way for their adult functions in support of retinal ganglion cell axons. Understanding development of retinal astrocytes may elucidate pattern formation mechanisms that are deployed broadly by other axon-associated astrocyte populations.


Assuntos
Astrócitos/fisiologia , Retina/crescimento & desenvolvimento , Retina/fisiologia , Animais , Axônios/fisiologia , Morte Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Humanos , Neovascularização Fisiológica , Fibras Nervosas/fisiologia , Retina/citologia , Retina/embriologia , Células Ganglionares da Retina/fisiologia , Vasos Retinianos/embriologia , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/fisiologia , Retinopatia da Prematuridade/patologia , Retinopatia da Prematuridade/fisiopatologia
4.
Biomolecules ; 11(4)2021 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919531

RESUMO

Bone morphogenetic proteins (BMPs) play an important role in bone formation and repair. Recent studies underscored their essential role in the normal development of several organs and vascular homeostasis in health and diseases. Elevated levels of BMPs have been linked to the development of cardiovascular complications of diabetes mellitus. However, their particular role in the pathogenesis of microvascular dysfunction associated with diabetic retinopathy (DR) is still under-investigated. Accumulated evidence from our and others' studies suggests the involvement of BMP signaling in retinal inflammation, hyperpermeability and pathological neovascularization in DR and age-related macular degeneration (AMD). Therefore, targeting BMP signaling in diabetes is proposed as a potential therapeutic strategy to halt the development of microvascular dysfunction in retinal diseases, particularly in DR. The goal of this review article is to discuss the biological functions of BMPs, their underlying mechanisms and their potential role in the pathogenesis of DR in particular.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Retinopatia Diabética/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Humanos , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais
5.
J Vis Exp ; (170)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33871456

RESUMO

Oxygen-induced retinopathy (OIR) is widely used to study abnormal vessel growth in ischemic retinal diseases, including retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and retinal vein occlusion (RVO). Most OIR studies observe retinal neovascularization at specific time points; however, the dynamic vessel growth in live mice along a time course, which is essential for understanding the OIR-related vessel diseases, has been understudied. Here, we describe a step-by-step protocol for the induction of the OIR mouse model, highlighting the potential pitfalls, and providing an improved method to quickly quantify areas of vaso-obliteration (VO) and neovascularization (NV) using immunofluorescence staining. More importantly, we monitored vessel regrowth in live mice from P15 to P25 by performing fluorescein fundus angiography (FFA) in the OIR mouse model. The application of FFA to the OIR mouse model allows us to observe the remodeling process during vessel regrowth.


Assuntos
Retinopatia Diabética , Modelos Animais de Doenças , Neovascularização Retiniana , Vasos Retinianos/crescimento & desenvolvimento , Retinopatia da Prematuridade , Animais , Animais Recém-Nascidos , Feminino , Angiofluoresceinografia , Masculino , Camundongos Endogâmicos C57BL , Oxigênio
6.
Invest Ophthalmol Vis Sci ; 62(2): 21, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33595613

RESUMO

Purpose: Pathological blood vessel growth in the eye is implicated in several diseases that result in vision loss, including age-related macular degeneration and diabetic retinopathy. The limits of current disease therapies have created the need to identify and characterize new antiangiogenic drugs. Here, we identify the secreted chemorepellent semaphorin-3fa (Sema3fa) as an endogenous anti-angiogenic in the eye. Methods: We generated a CRISPR/Cas9 sema3fa zebrafish mutant line, sema3faca304/304. We assessed the retinal and choroidal vasculature in both larval and adult wild-type and sema3fa mutant zebrafish. Results: We find sema3fa mRNA is expressed by the ciliary marginal zone, neural retina, and retinal pigment epithelium of zebrafish larvae as choroidal vascularization emerges and the hyaloid/retinal vasculature is remodeled. The hyaloid vessels of sema3fa mutants develop appropriately but fail to remodel during the larval period, with adult mutants exhibiting a denser network of capillaries in the retinal periphery than seen in wild-type. The choroid vasculature is also defective in that it develops precociously, and aberrant, leaky sprouts are present in the normally avascular outer retina of both sema3faca304/304 larvae and adult fish. Conclusions: Sema3fa is a key endogenous signal for maintaining an avascular retina and preventing pathologic vascularization. Furthermore, we provide a new experimentally accessible model for studying choroid neovascularization (CNV) resulting from primary changes in the retinal environment that lead to downstream vessel infiltration.


Assuntos
Capilares/crescimento & desenvolvimento , DNA/genética , Degeneração Macular/genética , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/genética , Epitélio Pigmentado da Retina/metabolismo , Vasos Retinianos/crescimento & desenvolvimento , Animais , Capilares/metabolismo , Corioide/metabolismo , Corioide/patologia , Análise Mutacional de DNA , Modelos Animais de Doenças , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Epitélio Pigmentado da Retina/patologia , Vasos Retinianos/metabolismo , Peixe-Zebra
7.
Angiogenesis ; 24(2): 363-377, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33201372

RESUMO

NADPH oxidase 4 (Nox4) is a major isoform of NADPH oxidases playing an important role in many biological processes. Previously we have shown that Nox4 is highly expressed in retinal blood vessels and is upregulated in oxygen-induced retinopathy (OIR). However, the exact role of endothelial Nox4 in retinal angiogenesis remains elusive. Herein, using endothelial cell (EC)-specific Nox4 knockout (Nox4EC-KO) mice, we investigated the impact of endothelial Nox4 deletion on retinal vascular development and pathological angiogenesis during OIR. Our results show that deletion of Nox4 in ECs led to retarded retinal vasculature development with fewer, blunted-end tip cells and sparser, dysmorphic filopodia at vascular front, and reduced density of vascular network in superficial, deep, and intermediate layers in postnatal day 7 (P7), P12, and P17 retinas, respectively. In OIR, loss of endothelial Nox4 had no effect on hyperoxia-induced retinal vaso-obliteration at P9 but significantly reduced aberrant retinal neovascularization at P17 and decreased the deep layer capillary density at P25. Ex vivo study confirmed that lack of Nox4 in ECs impaired vascular sprouting. Mechanistically, loss of Nox4 significantly reduced expression of VEGF, p-VEGFR2, integrin αV, angiopoietin-2, and p-ERK1/2, attenuating EC migration and proliferation. Taken together, our results indicate that endothelial Nox4 is important for retinal vascular development and contributes to pathological angiogenesis, likely through regulation of VEGF/VEGFR2 and angiopoietin-2/integrin αV/ERK pathways. In addition, our study suggests that endothelial Nox4 appears to be essential for intraretinal revascularization after hypoxia. These findings call for caution on targeting endothelial Nox4 in ischemic/hypoxic retinal diseases.


Assuntos
Células Endoteliais/enzimologia , Endotélio Vascular/enzimologia , Deleção de Genes , NADPH Oxidase 4/metabolismo , Neovascularização Fisiológica , Neovascularização Retiniana/enzimologia , Vasos Retinianos/crescimento & desenvolvimento , Animais , Camundongos , Camundongos Knockout , NADPH Oxidase 4/genética , Neovascularização Retiniana/genética
8.
PLoS One ; 15(12): e0242667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33259500

RESUMO

BACKGROUND: To prospectively investigate retinal vascular changes in patients undergoing epiretinal membrane (ERM) and internal limiting membrane (ILM) peeling using swept source optical coherence tomography angiography (SSOCTA). METHODS: Consecutive patients were grouped based on ERM severity and followed using SSOCTA up to month 3 after surgical intervention. Superficial and deep foveal avascular zone (s/dFAZ) as well as foveal and parafoveal vessel density (VD) were correlated with ERM severity and visual acuity. Differences between groups were evaluated. RESULTS: Significant correlations were found between ERM severity and baseline sFAZ, dFAZ and best corrected visual acuity (BCVA), central retinal subfield thickness (CST) and ΔCST (r = -0.52, r = -0.43, r = -0.42, r = 0.58, r = 0.39; all p<0.05). Vascular flow parameters did not correlate with age, peeling size, pseudophakia or CST, but correlated with intraretinal cysts presence. No associations of BCVA with any of the OCTA parameters across time were found. Significant differences between ERM severity groups 1 and 2 were found for sFAZ at baseline (p = 0.005) and at the 3-month follow-up (p = 0.014), and for dFAZ at baseline (p = 0.017). Superficial foveal and parafoveal VD were not significantly different between groups (all p>0.05). CONCLUSIONS: This study clearly shows that ERM severity based on ERM staging has to be taken into account when undertaking studies in patients with idiopathic ERM using SSOCTA. Further, specific changes in the superficial and deep retinal vasculature in eyes undergoing ERM and ILM peeling were found. However, the clinical usefulness and prognostic value for post-surgical treatment BCVA of the SSOCTA-derived variables (sFAZ and dFAZ area, as well as foveal and parafoveal VD) used remains questionable.


Assuntos
Membrana Epirretiniana/fisiopatologia , Retina/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem , Tomografia de Coerência Óptica , Idoso , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/fisiopatologia , Membrana Epirretiniana/diagnóstico por imagem , Feminino , Angiofluoresceinografia , Fóvea Central/irrigação sanguínea , Fóvea Central/fisiopatologia , Humanos , Macula Lutea/irrigação sanguínea , Macula Lutea/diagnóstico por imagem , Macula Lutea/fisiopatologia , Masculino , Pessoa de Meia-Idade , Retina/fisiopatologia , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/fisiopatologia , Acuidade Visual/fisiologia , Vitrectomia
9.
Sci Rep ; 10(1): 18601, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139746

RESUMO

To investigate the effects of a high-fat diet (HFD) and apolipoprotein E (Apoe) deficiency on retinal structure and function in mice. Apoe KO mice and wild-type C57BL/6J mice were given a low-fat diet (LFD) or a HFD for 32 weeks. Blood glucose, serum lipids, body weight and visceral fat weight were evaluated. Retinal sterol quantification was carried out by isotope dilution gas chromatography-mass spectrometry. The cholesterol metabolism related genes SCAP-SREBP expressions were detected by qRT-PCR. Retinal function was recorded using an electroretinogram. The thickness of each layer of the retina was measured by optical coherence tomography. Fundus fluorescein angiography was performed to detect retinal vasculature changes. Immunohistochemical staining was used to determine the expression of NF-κB, TNF-α and VEGFR2 in the retina among HFD, HFD Apoe-/-, LFD Apoe-/- and WT mice retinas. HFD feeding caused the mice to gain weight and develop hypercholesterinemia, while Apoe-/- abnormalities also affected blood lipid metabolism. Both HFD and Apoe deficiency elevated retinal cholesterol, especially in the HFD Apoe-/- mice. No up-regulated expression of SCAP-SREBP was observed as a negative regulator. Impaired retinal functions, thinning retinas and abnormal retinal vasculature were observed in the peripheral retinas of the HFD and Apoe-/- mice compared with those in the normal chow group, particularly in the HFD Apoe-/- mice. Moreover, the expression of NF-κB in the retinas of the HFD and Apoe-/- mice was increased, together with upregulated TNF-α mRNA levels and TNF-α expression in the layer of retinal ganglion cells of the peripheral retina. At the same time, the expression level of VEGFR2 was elevated in the intervention groups, most notably in HFD Apoe-/- mice. HFD or Apoe gene deletion had certain adverse effects on retinal function and structure, which were far below the combined factors and induced harm to the retina. Furthermore, HFD caused retinal ischemia and hypoxia. Additionally, Apoe abnormality increased susceptibility to ischemia. These changes upregulated NF-κB expression in ganglion cells and activated downstream TNF-α. Simultaneously, they activated VEGFR2, accelerating angiogenesis and vascular permeability. All of the aforementioned outcomes initiated inflammatory responses to trigger ganglion cell apoptosis and aggravate retinal neovascularization.


Assuntos
Apolipoproteínas E/genética , Dieta Hiperlipídica , Retina/patologia , Retina/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica , Vasos Retinianos/crescimento & desenvolvimento
10.
CRISPR J ; 3(4): 284-298, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32833527

RESUMO

Humans carrying homozygous loss-of-function mutations in the Wnt co-receptor, low-density lipoprotein receptor-related protein 5 (LRP5), develop osteoporosis and a defective retinal vasculature known as familial exudative vitreoretinopathy (FEVR) due to disruption of the Wnt signaling pathway. The purpose of this study was to use CRISPR-Cas9-mediated gene editing to create strains of Lrp5-deficient rats and to determine whether knockout of Lrp5 resulted in phenotypes that model the bone and retina pathology in LRP5-deficient humans. Knockout of Lrp5 in rats produced low bone mass, decreased bone mineral density, and decreased bone size. The superficial retinal vasculature of Lrp5-deficient rats was sparse and disorganized, with extensive exudates and decreases in vascularized area, vessel length, and branch point density. This study showed that Lrp5 could be predictably knocked out in rats using CRISPR-Cas9, causing the expression of bone and retinal phenotypes that will be useful for studying the role of Wnt signaling in bone and retina development and for research on the treatment of osteoporosis and FEVR.


Assuntos
Osso e Ossos/metabolismo , Técnicas de Inativação de Genes , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Vasos Retinianos/metabolismo , Animais , Osso e Ossos/fisiopatologia , Feminino , Regulação da Expressão Gênica , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Mutação , Ratos , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/fisiopatologia , Via de Sinalização Wnt
11.
Sci Rep ; 10(1): 12901, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733052

RESUMO

This study investigates the hyaloid vascular regression and its relationship to the retinal and choroidal vascular developments using optical coherence tomography angiography (OCTA). Normal and oxygen-induced retinopathy (OIR) rat eyes at postnatal day 15, 18, 21, and 24 were longitudinally imaged using OCTA. At each day, two consecutive imaging for visualizing the hyaloid vasculature and the retinal and choroidal vasculatures were conducted. The hyaloid vessel volume and the retinal and choroidal vessel densities were measured. The hyaloid vessel volumes gradually decreased during the regression, although the OIR eyes exhibited large vessel volumes at all time points. A spatial relationship between persistent hyaloid vasculature and retardation of underlying retinal vascular development was observed in the OIR eyes. Furthermore, anti-vascular endothelial growth factor (VEGF) was administered intravitreally to additional OIR eyes to observe its effect on the vascular regression and development. The VEGF injection to OIR eyes showed reduced persistent hyaloid vessels in the injected eyes as well as in the non-injected fellow eyes. This study presents longitudinal imaging of intraocular vasculatures in the developing eye and shows the utility of OCTA that can be widely used in studies of vascular development and regression and preclinical evaluation of new anti-angiogenic drugs.


Assuntos
Corioide , Angiofluoresceinografia , Neovascularização Fisiológica , Vasos Retinianos , Tomografia de Coerência Óptica , Animais , Corioide/irrigação sanguínea , Corioide/diagnóstico por imagem , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/farmacologia
12.
Sci Rep ; 10(1): 9299, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518264

RESUMO

Ischemic proliferative retinopathy (IPR), such as proliferative diabetic retinopathy (PDR), retinal vein occlusion and retinopathy of prematurity is a major cause of vision loss. Our previous studies demonstrated that periostin (PN) and tenascin-C (TNC) are involved in the pathogenesis of IPR. However, the interactive role of PN and TNC in angiogenesis associated with IPR remain unknown. We found significant correlation between concentrations of PN and TNC in PDR vitreous humor. mRNA and protein expression of PN and TNC were found in pre-retinal fibrovascular membranes excised from PDR patients. Interleukin-13 (IL-13) promoted mRNA and protein expression of PN and TNC, and co-immunoprecipitation assay revealed binding between PN and TNC in human microvascular endothelial cells (HRECs). IL-13 promoted angiogenic functions of HRECs. Single inhibition of PN or TNC and their dual inhibition by siRNA suppressed the up-regulated angiogenic functions. Pathological pre-retinal neovessels of oxygen-induced retinopathy (OIR) mice were attenuated in PN knock-out, TNC knock-out and dual knock-out mice compared to wild-type mice. Both in vitro and in vivo, PN inhibition had a stronger inhibitory effect on angiogenesis compared to TNC inhibition, and had a similar effect to dual inhibition of PN and TNC. Furthermore, PN knock-out mice showed scant TNC expression in pre-retinal neovessels of OIR retinas. Our findings suggest that interaction of PN and TNC facilitates pre-retinal angiogenesis, and PN is an effective therapeutic target for IPR such as PDR.


Assuntos
Moléculas de Adesão Celular/metabolismo , Retinopatia Diabética/patologia , Neovascularização Patológica/patologia , Vasos Retinianos/crescimento & desenvolvimento , Tenascina/metabolismo , Vitreorretinopatia Proliferativa/patologia , Idoso , Animais , Moléculas de Adesão Celular/genética , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Humanos , Interleucina-13/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Tenascina/genética , Corpo Vítreo/metabolismo
13.
Am J Ophthalmol ; 219: 231-239, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32413409

RESUMO

PURPOSE: To quantify the macular microvasculature in healthy children of various ages by using optical coherence tomography angiography (OCTA). DESIGN: Prospective cross-sectional study. METHODS: A total of 333 normal children from 4 to 16 years old were included. OCTA was performed on a 3- × 3-mm area centered on the macular region. Vascular density, perfusion density, fovea avascular zone (FAZ) area, FAZ perimeter, and FAZ acircularity index (AI) were measured and adjusted for axial length. Differences were compared among various ages. RESULTS: Among the different age groups, both macular vascular density and perfusion density increased with age (P < .0001 and P = .0028, respectively). After adjustments were made for the spherical equivalent (SE) and axial length, macular vascular density was significantly associated with age (r = 0.183; P = .001) No factors were significantly correlated with the perfusion density after adjustment for the age, SE, or axial length. The FAZ area and FAZ perimeter did not change among groups of different ages. Nevertheless, the AI of FAZ in the 4.00-6.99-year-old group was smaller to that of the 13.00-15.99-year-old group (P = .03). Younger children had significantly higher rates of nonconsecutive vessels branched toward the macular center (P = .0002) and vascular loops contributing to irregular shapes of FAZ (P = .024). CONCLUSIONS: Macular vascular density and perfusion density continuously increase with age in children. Despite the fact that FAZ area and perimeter did not change, the microstructure of FAZ pruned and tended to form a smooth and regular avascular area during development.


Assuntos
Angiofluoresceinografia , Microvasos/crescimento & desenvolvimento , Vasos Retinianos/crescimento & desenvolvimento , Tomografia de Coerência Óptica , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Feminino , Fóvea Central/irrigação sanguínea , Voluntários Saudáveis , Humanos , Masculino , Microvasos/diagnóstico por imagem , Estudos Prospectivos , Valores de Referência , Vasos Retinianos/diagnóstico por imagem , Acuidade Visual/fisiologia
14.
Biol Pharm Bull ; 43(5): 859-863, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32378561

RESUMO

Pathological angiogenesis is a leading cause of blindness in several retinal diseases. The key driving factor inducing pathological angiogenesis is the pronounced hypoxia leading to a marked, increased production of vascular endothelial growth factor (VEGF). The aim of this study was to determine whether the abnormal vascular growth occurs in a manner dependent on the degree of the vascular defects. Vascular defects of two different degrees were created in the retina by subcutaneously treating neonatal rats with the VEGF receptor (VEGFR) tyrosine kinase inhibitor KRN633 on postnatal day (P) 4 and P5 (P4/5) or P7 and P8 (P7/8). The structure of the retinal vasculature changes was examined immunohistochemically. Prevention of vascular growth and regression of some preformed capillaries were observed on the next day, after completion of each treatment (i.e., P6 and P9). The vascular regrowth occurred as a result of eliminating the inhibitory effect on the VEGFR signaling pathway. KRN633 (P4/5)-treated rats exhibited a retinal vasculature with aggressive intravitreal neovascularization on P21. On the other hand, the appearance of tortuous arteries is a representative vascular pathological feature in retinas of KRN633 (P7/8)-treated groups. These results suggest that an interruption of the retinal vascular development at different time points induces different vascular pathological features in the retina. Pharmacological agents targeting the VEGF signaling pathway are useful for creating an abnormal retinal vasculature with various pathological features in order to evaluate the efficacy of anti-angiogenic compounds.


Assuntos
Compostos de Fenilureia/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Quinazolinas/administração & dosagem , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Vasos Retinianos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Fenótipo , Ratos Sprague-Dawley , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/patologia , Fatores de Tempo
15.
J Neuroendocrinol ; 32(11): e12858, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32449569

RESUMO

The hormone prolactin (PRL) is emerging as an important regulator of ocular blood vessels. PRL is pro-angiogenic and acquires anti-angiogenic properties after undergoing proteolytic cleavage to the PRL fragment, vasoinhibin. The vascularisation of the rodent retina develops after birth when it rapidly expands until completion at the end of the first postnatal week. Exposure of newborn mice to high oxygen levels lowers the rate of blood vessel growth. In the present study, we investigated whether PRL treatment modifies the vascularisation of the retina in newborn mice exposed to high oxygen or to normoxia and whether the retinal conversion of PRL to vasoinhibin may be altered in the neonate. Newborn mice and their nursing mothers were subjected to 75% oxygen or to normoxia from postnatal day (P) 6 to P8 (group 1) or from P2 to P5 (group 2). PRL (2 µg g-1 , i.p., twice a day) or vehicle was injected from P5 to P8 in group 1 and from P1 to P5 in group 2. PRL treatment reduced the retinal inhibition of blood vessel growth and the increase in vascular regression induced by hyperoxia as revealed by immunofluorescence staining of blood vessels and the expression of angiogenesis and apoptosis markers. The pro-angiogenic effect may involve a reduced conversion of PRL to vasoinhibin. Incubation of PRL with retinal extracts showed reduced activity of the PRL-cleaving protease, cathepsin D, in the neonate vs the adult retina that was further reduced under hyperoxia. PRL and the PRL receptor mRNA were expressed at higher levels in the retina at P8 than in the adult, whereas endogenous PRL was undetectable in the circulation at P8. We conclude that PRL has a pro-angiogenic effect in the neonate retina as a result of its reduced conversion to vasoinhibin and that PRL produced by the retina may help promote physiological vascularisation after birth.


Assuntos
Hiperóxia , Neovascularização Fisiológica , Prolactina , Vasos Retinianos , Animais , Feminino , Masculino , Camundongos , Gravidez , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Hiperóxia/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Prolactina/sangue , Prolactina/metabolismo , Prolactina/farmacologia , Receptores da Prolactina/efeitos dos fármacos , Receptores da Prolactina/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/crescimento & desenvolvimento , Retinopatia da Prematuridade/patologia
16.
Nat Commun ; 11(1): 986, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080187

RESUMO

Tissue microarchitecture and mechanics are important in development and pathologies of the Central Nervous System (CNS); however, their coordinating mechanisms are unclear. Here, we report that during colonization of the retina, microglia contacts the deep layer of high stiffness, which coincides with microglial bipolarization, reduction in TGFß1 signaling and termination of vascular growth. Likewise, stiff substrates induce microglial bipolarization and diminish TGFß1 expression in hydrogels. Both microglial bipolarization in vivo and the responses to stiff substrates in vitro require intracellular adaptor Kindlin3 but not microglial integrins. Lack of Kindlin3 causes high microglial contractility, dysregulation of ERK signaling, excessive TGFß1 expression and abnormally-patterned vasculature with severe malformations in the area of photoreceptors. Both excessive TGFß1 signaling and vascular defects caused by Kindlin3-deficient microglia are rescued by either microglial depletion or microglial knockout of TGFß1 in vivo. This mechanism underlies an interplay between microglia, vascular patterning and tissue mechanics within the CNS.


Assuntos
Microglia/fisiologia , Vasos Retinianos/inervação , Fator de Crescimento Transformador beta1/fisiologia , Actomiosina/fisiologia , Animais , Fenômenos Biomecânicos , Movimento Celular/fisiologia , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Feminino , Hidrogéis , Integrinas/fisiologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Comunicação Parácrina , Retina/crescimento & desenvolvimento , Vasos Retinianos/citologia , Vasos Retinianos/crescimento & desenvolvimento , Fator de Crescimento Transformador beta1/genética
17.
Biochem Biophys Res Commun ; 521(4): 939-946, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31718797

RESUMO

Crumbs proteins are transmembrane proteins that regulate cellular apico-basal polarity. Animals carrying mutated crb1 present retinal vascular abnormalities; this mutation is associated with progressive retinal degeneration with intraretinal cystoid fluid collection in humans. This study aimed to evaluate a potential role of crumbs proteins in retinal vascular development and maintenance. We demonstrated that crumbs homologues (CRBs) were differentially expressed and changed dramatically during mouse retinal vascular development. Intravitreal injection of CRB1 and CRB2 siRNA induced delayed development of the deep capillary plexus and premature development of the intermediate capillary plexus, resulting in disrupted vascular integrity. However, microfluidic chip assay using human retinal endothelial cells revealed that CRBs do not directly affect in vitro retinal angiogenesis. CRBs control retinal angiogenesis by regulating neuroglial vascular endothelial growth factor-A (VEGFA) and matrix metalloproteinase-3 expression. These findings demonstrate a pivotal role of CRBs in providing critical neurotrophic support through normal layered vascular network development and maintenance. This implies that preserving CRBs and restoring layered retinal vascular networks could be novel targets for preventing vision-threatening retinal diseases.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vasos Retinianos/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Células Cultivadas , Eletrorretinografia , Células Endoteliais , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Metaloproteinase 3 da Matriz/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neovascularização Fisiológica/genética , Proteínas do Tecido Nervoso/genética , Retina/citologia , Retina/efeitos dos fármacos , Retina/patologia , Vasos Retinianos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
18.
Biomed Res Int ; 2019: 6512195, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828115

RESUMO

PURPOSE: To investigate the longitudinal findings of fundus features and spectral-domain optical coherence tomography (SD-OCT) to characterize the morphologic features in a mouse model of defective glutamate/aspartate transporter (GLAST-/- mice). MATERIALS AND METHODS: The fundus findings and SD-OCT images were longitudinally recorded at five time points from postnatal (P) 22 to P156 in GLAST-/- mice. As a control wild type, age-matched C57BL/6J mice were employed. The mouse retina was subdivided into five layers, and the thickness of each layer was longitudinally measured by InSight® using SD-OCT pictures. The SD-OCT findings were compared with the histologic appearances. The diameter of the retinal blood vessels was measured by the ImageJ® software program using SD-OCT images. The data were statistically compared between both age-matched mouse groups. RESULTS: The retinal blood vessels appeared more dilated in GLAST-/- mice than in wild-type mice. This tendency was statistically significant at all time points after P44 by analyses using SD-OCT images. The ganglion cell complex (GCC) and outer nuclear layer (ONL) were significantly thinner in GLAST-/- mice at all time points after P80 than in the wild-type mice. This tendency was more clearly indicated by SD-OCT than histologic sections. DISCUSSION: In the present study, we found for the first time the dilation of the retinal blood vessels and the thinning of the ONL in GLAST-/- mice, in addition to the thinning of the GCC.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/genética , Ácido Glutâmico/metabolismo , Retina/metabolismo , Vasos Retinianos/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Modelos Animais de Doenças , Eletrorretinografia , Fundo de Olho , Humanos , Camundongos , Camundongos Knockout , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Retina/diagnóstico por imagem , Retina/crescimento & desenvolvimento , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/crescimento & desenvolvimento , Tomografia de Coerência Óptica
19.
Nat Commun ; 10(1): 5243, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748531

RESUMO

Familial exudative vitreoretinopathy (FEVR) is a human disease characterized by defective retinal angiogenesis and associated complications that can result in vision loss. Defective Wnt/ß-catenin signaling is an established cause of FEVR, whereas other molecular alterations contributing to the disease remain insufficiently understood. Here, we show that integrin-linked kinase (ILK), a mediator of cell-matrix interactions, is indispensable for retinal angiogenesis. Inactivation of the murine Ilk gene in postnatal endothelial cells results in sprouting defects, reduced endothelial proliferation and disruption of the blood-retina barrier, resembling phenotypes seen in established mouse models of FEVR. Retinal vascularization defects are phenocopied by inducible inactivation of the gene for α-parvin (Parva), an interactor of ILK. Screening genomic DNA samples from exudative vitreoretinopathy patients identifies three distinct mutations in human ILK, which compromise the function of the gene product in vitro. Together, our data suggest that defective cell-matrix interactions are linked to Wnt signaling and FEVR.


Assuntos
Barreira Hematorretiniana/metabolismo , Células Endoteliais/metabolismo , Vitreorretinopatias Exsudativas Familiares/genética , Neovascularização Fisiológica/genética , Proteínas Serina-Treonina Quinases/genética , Vasos Retinianos/crescimento & desenvolvimento , Animais , Células Endoteliais/citologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Proteínas dos Microfilamentos/genética , Fenótipo , Via de Sinalização Wnt/genética
20.
Psychiatry Clin Neurosci ; 73(12): 738-744, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31400288

RESUMO

AIM: Evidence suggests microvascular dysfunction (wider retinal venules and narrower arterioles) in schizophrenia (SCZ) and bipolar disorder (BD). The vascular development is synchronous with neuronal development in the retina and brain. The retinal vessel trajectory is related to retinal nerve fiber layer thinning and cerebrovascular abnormalities in SCZ and BD and has not yet been examined. Hence, in this study we examined the retinal vascular trajectory in SCZ and BD in comparison with healthy volunteers (HV). METHODS: Retinal images were acquired from 100 HV, SCZ patients, and BD patients, respectively, with a non-mydriatic fundus camera. Images were quantified to obtain the retinal arterial and venous trajectories using a validated, semiautomated algorithm. Analysis of covariance and regression analyses were conducted to examine group differences. A supervised machine-learning ensemble of bagged-trees method was used for automated classification of trajectory values. RESULTS: There was a significant difference among groups in both the retinal venous trajectory (HV: 0.17 ± 0.08; SCZ: 0.25 ± 0.17; BD: 0.27 ± 0.20; P < 0.001) and the arterial trajectory (HV: 0.34 ± 0.15; SCZ: 0.29 ± 0.10; BD: 0.29 ± 0.11; P = 0.003) even after adjusting for age and sex (P < 0.001). On post-hoc analysis, the SCZ and BD groups differed from the HV on retinal venous and arterial trajectories, but there was no difference between SCZ and BD patients. The machine learning showed an accuracy of 86% and 73% for classifying HV versus SCZ and BD, respectively. CONCLUSION: Smaller trajectories of retinal arteries indicate wider and flatter curves in SCZ and BD. Considering the relation between retinal/cerebral vasculatures and retinal nerve fiber layer thinness, the retinal vascular trajectory is a potential marker for SCZ and BD. As a relatively affordable investigation, retinal fundus photography should be further explored in SCZ and BD as a potential screening measure.


Assuntos
Transtorno Bipolar/fisiopatologia , Vasos Retinianos/crescimento & desenvolvimento , Esquizofrenia/fisiopatologia , Adulto , Algoritmos , Estudos de Casos e Controles , Feminino , Voluntários Saudáveis/estatística & dados numéricos , Humanos , Aprendizado de Máquina , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...