Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
Radiat Res ; 196(6): 611-622, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34330145

RESUMO

The mechanism(s) of vascular regression in adult organs remains an unexplored gap. Irradiation to the kidney results in vascular regression and renal failure. The goal of this work was to determine molecular mechanism(s) of radiation-induced vascular regression and its mitigation by the drug lisinopril. Female WAG/RijCmcr rats received either 13 Gy X-ray irradiation, sparing one leg, or no irradiation, the latter serving as age-matched controls. Some irradiated animals received lisinopril. Kidney miRNA-seq was performed 35 days postirradiation, before symptoms of nephropathy. MicroRNA expression profiles were compared with data from humans. MicroRNA targets were predicted using TargetScan and confirmed by qRT-PCR and Western blot. Renal vascular endothelial cell density was evaluated at 100 days to confirm vascular regression. The normal rat kidney microRNA profile resembled that of humans. MiR-34a was increased >7-fold and emerged as the predominant rat microRNA altered by radiation. Expression of Jagged1, a ligand in the Notch pathway of vascular development and a target of miR-34a-5p was decreased by radiation but not in irradiated rats receiving lisinopril. Radiation decreased endothelial cells in the kidneys at 100 days, confirming vascular regression. In conclusion, the results of this study showed that radiation greatly increased miRNA34-a in rat kidneys, while lisinopril mitigated radiation-induced decrease of the Notch ligand, Jagged1, a molecular target of miRNA34-a.


Assuntos
Vasos Sanguíneos/efeitos da radiação , Rim/efeitos da radiação , MicroRNAs/genética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Vasos Sanguíneos/efeitos dos fármacos , Feminino , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Lisinopril/farmacologia , Ratos
2.
Int J Radiat Oncol Biol Phys ; 110(1): 21-34, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30836165

RESUMO

PURPOSE: To review the radiobiological mechanisms of stereotactic body radiation therapy stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS). METHODS AND MATERIALS: We reviewed previous reports and recent observations on the effects of high-dose irradiation on tumor cell survival, tumor vasculature, and antitumor immunity. We then assessed the potential implications of these biological changes associated with SBRT and SRS. RESULTS: Irradiation with doses higher than approximately 10 Gy/fraction causes significant vascular injury in tumors, leading to secondary tumor cell death. Irradiation of tumors with high doses has also been reported to increase the antitumor immunity, and various approaches are being investigated to further elevate antitumor immunity. The mechanism of normal tissue damage by high-dose irradiation needs to be further investigated. CONCLUSIONS: In addition to directly killing tumor cells, high-dose irradiation used in SBRT and SRS induces indirect tumor cell death via vascular damage and antitumor immunity. Further studies are warranted to better understand the biological mechanisms underlying the high efficacy of clinical SBRT and SRS and to further improve the efficacy of SBRT and SRS.


Assuntos
Morte Celular , Neoplasias/radioterapia , Radiocirurgia/métodos , Animais , Vasos Sanguíneos/patologia , Vasos Sanguíneos/efeitos da radiação , Carcinoma 256 de Walker/irrigação sanguínea , Carcinoma 256 de Walker/patologia , Carcinoma 256 de Walker/radioterapia , Morte Celular/genética , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Fracionamento da Dose de Radiação , Endotélio Vascular/citologia , Humanos , Morte Celular Imunogênica , Camundongos , Camundongos Nus , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Órgãos em Risco/irrigação sanguínea , Órgãos em Risco/efeitos da radiação , Radiobiologia , Ratos , Hipóxia Tumoral/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Surg Res ; 257: 213-220, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858322

RESUMO

Angiosarcomas (AS) are a diverse group of soft tissue sarcomas, arising from blood and lymphatic vessels. They frequently present in the elderly, and in patients with previous radiation or lymphedema. A wide range of genetic derangements contribute to their development, and AS histology is often high-grade in keeping with aggressive disease biology. The clinical presentation, while often innocuous, is marked by its infiltrative and aggressive nature, with a proclivity for metastatic spread, and outcomes are often poor. Surgery is performed for localized, resectable cases. A multidisciplinary approach, appropriately employing surgery, radiation, chemotherapy, or potentially recently approved immune-oncology agents, can result in positive outcomes.


Assuntos
Hemangiossarcoma/terapia , Recidiva Local de Neoplasia/prevenção & controle , Equipe de Assistência ao Paciente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Vasos Sanguíneos/patologia , Vasos Sanguíneos/efeitos da radiação , Quimioterapia Adjuvante , Ensaios Clínicos Fase II como Assunto , Hemangiossarcoma/genética , Hemangiossarcoma/mortalidade , Hemangiossarcoma/patologia , Humanos , Vasos Linfáticos/patologia , Vasos Linfáticos/efeitos da radiação , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Intervalo Livre de Progressão , Radioterapia Adjuvante , Procedimentos Cirúrgicos Operatórios
4.
Lasers Med Sci ; 36(3): 529-540, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32519204

RESUMO

The presence of intra-articular crystals is detected in different articular pathologies of acute or chronic nature. The aim of this work was to analyze the action of the indium gallium aluminum and phosphorus (InGaAlP) (λ = 670 nm) laser on the synovial membrane present in the knee joint in experimentally induced microcrystalline arthritis in male adult Wistar rats. The animals were divided into three experimental groups (n = 24): control (A), experimentally induced arthritis (B), experimentally induced arthritis+InGaAlP laser therapy (C). The laser treatment was made daily in the patellar region of the right knee after 48 h of the experimental induction. After 7, 14, and 21 days of therapy, the rats were euthanized and the right knees were removed and processed for histomorphometric, immunohistochemical, ultrastructural, and biochemical investigation of the synovium. The number of granulocytes on the 14th and 21st days was higher in B and lower in C and, lastly, in A. The number of fibroblasts on the 14th and 21st days was similar between A and C and below B. The number of blood vessels on the 21st day was higher in B than in the other groups. The positive number of cells for the TUNEL test was higher on the 14th and 21st days in B compared to the others. The percentage of tissue area occupied by birefringent collagen fibers was higher in B on the 21st day than in the others. The ultrastructure of cells showed fibroblast-like morphology in all groups and periods evaluated. The quantification of glycosaminoglycans did not present significant differences between the groups in all the experimental periods. The amount of hydroxyproline was higher in B compared to the other groups on the 14th and 21st days. The content of non-collagen proteins was higher in B on the 21st day in relation to the other groups. Quantification of TNF-α on the 21st day was higher in A and B than in C. For TGF-ß on the 21st day, groups B and C presented similar and higher values than A. For MMP-13, groups A and B presented data similar to and above C. In relation to ADAMT-S4, on the 21st day, groups B and C presented data similar to and lower than A. InGaAlP-670 nm therapy reduced the inflammatory process and tissue injuries of the synovial membrane in comparison to the untreated group, indicating its potential utilization in clinical studies aiming in the recovery of acute arthritis in patients.


Assuntos
Artrite Experimental/cirurgia , Terapia a Laser , Membrana Sinovial/patologia , Membrana Sinovial/efeitos da radiação , Proteína ADAMTS4/metabolismo , Animais , Apoptose/efeitos da radiação , Vasos Sanguíneos/patologia , Vasos Sanguíneos/efeitos da radiação , Cristalização , Articulação do Joelho/patologia , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Ratos Wistar , Membrana Sinovial/ultraestrutura , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Radiat Oncol Biol Phys ; 109(5): 1440-1453, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186615

RESUMO

PURPOSE: To investigate whether the vascular collapse in tumors by conventional dose rate (CONV) irradiation (IR) would also occur by the ultra-high dose rate FLASH IR. METHODS AND MATERIALS: Lewis lung carcinoma (LLC) cells were subcutaneously implanted in mice. This was followed by CONV or FLASH IR at 15 Gy. Tumors were harvested at 6 or 48 hours after IR and stained for CD31, phosphorylated myosin light chain (p-MLC), γH2AX (a surrogate marker for DNA double strand break), intracellular reactive oxygen species (ROS), or immune cells such as myeloid and CD8α T cells. Cell lines were irradiated with CONV IR for Western blot analyses. ML-7 was intraperitoneally administered daily to LLC-bearing mice for 7 days before 15 Gy CONV IR. Tumors were similarly harvested and analyzed. RESULTS: By immunostaining, we observed that CONV IR at 6 hours resulted in constricted vessel morphology, increased expression of p-MLC, and much higher numbers of γH2AX-positive cells in tumors, which were not observed with FLASH IR. Mechanistically, MLC activation by ROS is unlikely, because FLASH IR produced significantly more ROS than CONV IR in tumors. In vitro studies demonstrated that ML-7, an inhibitor of MLC kinase, abrogated IR-induced γH2AX formation and disappearance kinetics. Lastly, we observed that CONV IR when combined with ML-7 produced some effects similar to FLASH IR, including reduction in the vasculature collapse, fewer γH2AX-positive cells, and increased immune cell influx to the tumors. CONCLUSIONS: FLASH IR produced novel changes in the tumor microenvironment that were not observed with CONV IR. We believe that MLC activation in tumors may be responsible for some of the microenvironmental changes differentially regulated between CONV and FLASH IR.


Assuntos
Carcinoma Pulmonar de Lewis/radioterapia , Cadeias Leves de Miosina/efeitos da radiação , Microambiente Tumoral/efeitos da radiação , Animais , Azepinas/administração & dosagem , Vasos Sanguíneos/patologia , Vasos Sanguíneos/efeitos da radiação , Linfócitos T CD8-Positivos/citologia , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/metabolismo , Histonas/metabolismo , Histonas/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Leves de Miosina/antagonistas & inibidores , Cadeias Leves de Miosina/metabolismo , Naftalenos/administração & dosagem , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/efeitos da radiação , Radioterapia/métodos , Dosagem Radioterapêutica , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/efeitos da radiação
6.
PLoS One ; 15(10): e0241388, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33119677

RESUMO

Radiation for pelvic cancers can result in severe bladder damage and radiation cystitis (RC), which is characterized by chronic inflammation, fibrosis, and vascular damage. RC development is poorly understood because bladder biopsies are difficult to obtain. The goal of this study is to gain understanding of molecular changes that drive radiation-induced cystitis in cancer survivors using urine samples from prostate cancer survivors with history of radiation therapy. 94 urine samples were collected from prostate cancer survivors with (n = 85) and without (n = 9) history of radiation therapy. 15 patients with radiation history were officially diagnosed with radiation cystitis. Levels of 47 different proteins were measured using Multiplex Luminex. Comparisons were made between non-irradiated and irradiated samples, and within irradiated samples based on radiation cystitis diagnosis, symptom scores or hematuria. Statistical analysis was performed using Welch's t-test. In prostate cancer survivors with history of radiation therapy, elevated levels of PAI 1, TIMP1, TIMP2, HGF and VEGF-A were detected in patients that received a radiation cystitis diagnosis. These proteins were also increased in patients suffering from hematuria or high symptom scores. No inflammatory proteins were detected in the urine, except in patients with gross hematuria and end stage radiation cystitis. Active fibrosis and vascular distress is detectable in the urine through elevated levels of associated proteins. Inflammation is only detected in urine of patients with end-stage radiation cystitis disease. These results suggest that fibrosis and vascular damage drive the development of radiation cystitis and could lead to the development of more targeted treatments.


Assuntos
Vasos Sanguíneos/efeitos da radiação , Sobreviventes de Câncer , Cistite/urina , Neoplasias da Próstata/radioterapia , Proteinúria/complicações , Lesões por Radiação/urina , Cistite/complicações , Cistite/etiologia , Cistite/patologia , Fibrose , Humanos , Masculino , Pessoa de Meia-Idade , Lesões por Radiação/complicações , Lesões por Radiação/etiologia , Lesões por Radiação/patologia
7.
Br J Radiol ; 93(1113): 20200217, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32706989

RESUMO

The effects of various forms of ionising radiation are known to be mediated by interactions with cellular and molecular targets in irradiated and in some cases non-targeted tissue volumes. Despite major advances in advanced conformal delivery techniques, the probability of normal tissue complication (NTCP) remains the major dose-limiting factor in escalating total dose delivered during treatment. Potential strategies that have shown promise as novel delivery methods in achieving effective tumour control whilst sparing organs at risk involve the modulation of critical dose delivery parameters. This has led to the development of techniques using high dose spatial fractionation (GRID) and ultra-high dose rate (FLASH) which have translated to the clinic. The current review discusses the historical development and biological basis of GRID, microbeam and FLASH radiotherapy as advanced delivery modalities that have major potential for widespread implementation in the clinic in future years.


Assuntos
Fracionamento da Dose de Radiação , Neoplasias/radioterapia , Vasos Sanguíneos/efeitos da radiação , Efeito Espectador , História do Século XX , História do Século XXI , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Órgãos em Risco/efeitos da radiação , Fótons/uso terapêutico , Terapia com Prótons/métodos , Terapia com Prótons/tendências , Lesões por Radiação/prevenção & controle , Radiobiologia , Radioterapia/história , Radioterapia/instrumentação
8.
Int J Radiat Oncol Biol Phys ; 108(5): 1319-1328, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32712257

RESUMO

PURPOSE: We aim to characterize the quantitative dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters associated with advanced mandibular osteoradionecrosis (ORN) compared with the contralateral normal mandible. METHODS AND MATERIALS: Patients with a diagnosis of advanced ORN after curative-intent radiation treatment of head and neck cancer were prospectively enrolled after institutional review board approval and study-specific informed consent were obtained. Quantitative maps generated with the Tofts and extended Tofts pharmacokinetic models were used for analysis. Manual segmentation of advanced ORN 3-dimensional volume was done using anatomic sequences to create ORN volumes of interest (VOIs). Subsequently, normal mandibular VOIs were segmented on the contralateral healthy mandible of similar volume and anatomic location to create control VOIs. Finally, anatomic sequences were coregistered to DCE sequences, and contours were propagated to the respective parameter maps. RESULTS: Thirty patients were included. The median time to ORN diagnosis after completion of IMRT was 38 months (range, 6-184 months), whereas median time to ORN progression to advanced grade after initial diagnosis was 5.6 months (range, 0-128 months). There were statistically significant higher Ktrans and Ve in ORN-VOIs compared with controls (0.23 vs 0.07 min-1, and 0.34 vs 0.15; P < .0001 for both). The average relative increase of Ktrans in ORN-VOIs was 3.2-fold higher than healthy mandibular control VOIs. Moreover, the corresponding rise of Ve in ORN-VOIs was 2.7-fold higher than in the controls. Using combined Ktrans and Ve parameters, 27 patients (90%) had at least a 200% increase of either of the studied parameters in the ORN-VOIs compared with their healthy mandible VOIs. CONCLUSIONS: Our results confirm that there is a quantitatively significant higher degree of leakiness in the mandibular vasculature as measured using DCE-MRI parameters of areas with advanced ORN versus healthy mandible.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Mandíbula/diagnóstico por imagem , Doenças Mandibulares/diagnóstico por imagem , Osteorradionecrose/diagnóstico por imagem , Adulto , Idoso , Vasos Sanguíneos/efeitos da radiação , Fracionamento da Dose de Radiação , Feminino , Neoplasias de Cabeça e Pescoço/irrigação sanguínea , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Mandíbula/irrigação sanguínea , Doenças Mandibulares/patologia , Pessoa de Meia-Idade , Osteorradionecrose/patologia , Estudos Prospectivos , Lesões por Radiação , Radioterapia de Intensidade Modulada/efeitos adversos , Carcinoma de Células Escamosas de Cabeça e Pescoço/irrigação sanguínea , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Estatísticas não Paramétricas , Fatores de Tempo , Adulto Jovem
9.
J Cell Mol Med ; 24(14): 7717-7729, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32536032

RESUMO

Radiation-induced myocardial fibrosis (RIMF) is a potentially lethal clinical complication of chest radiotherapy (RT) and a final stage of radiation-induced heart disease (RIHD). RIMF is characterized by decreased ventricular elasticity and distensibility, which can result in decreased ejection fraction, heart failure and even sudden cardiac death. Together, these conditions impair the long-term health of post-RT survivors and limit the dose and intensity of RT required to effectively kill tumour cells. Although the exact mechanisms involving in RIMF are unclear, increasing evidence indicates that the occurrence of RIMF is related to various cells, regulatory molecules and cytokines. However, accurately diagnosing and identifying patients who may progress to RIMF has been challenging. Despite the urgent need for an effective treatment, there is currently no medical therapy for RIMF approved for routine clinical application. In this review, we investigated the underlying pathophysiology involved in the initiation and progression of RIMF before outlining potential preventative and therapeutic strategies to counter this toxicity.


Assuntos
Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Animais , Biomarcadores , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/efeitos da radiação , Cardiomiopatias/metabolismo , Cardiomiopatias/terapia , Gerenciamento Clínico , Suscetibilidade a Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos da radiação , Fibrose , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Terapia de Alvo Molecular , Neuroimunomodulação , Lesões por Radiação/metabolismo , Lesões por Radiação/terapia , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
10.
Int J Radiat Oncol Biol Phys ; 108(3): 734-744, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32473180

RESUMO

This review, mostly of preclinical data, summarizes the evidence that radiation at doses relevant to radiation therapy initiates a pathway that promotes the reconstitution of the tumor vasculature leading to tumor recurrence. The pathway is not specific to tumors; it promotes repair of damaged and ischemic normal tissues by attracting proangiogenic cells from the bone marrow. For irradiated tumors the pathway comprises: (1) loss of endothelial cells and reduced tumor blood perfusion leading to increased tumor hypoxia and increased levels of hypoxia inducible factor-1 (HIF-1). Alternatively, increased HIF-1 levels may arise by reactive oxygen species (ROS) production caused by tumor reoxygenation. (2) Increased HIF-1 levels lead to increased levels in the tumor of the chemokine stromal cell-derived factor-1 (SDF-1, CXCL12), which captures monocytes/macrophages expressing the CXCR4 receptor of CXCL12. (3) The increased levels of tumor-associated macrophages (TAMs) become highly proangiogenic (M2 polarized) and restore the tumor vasculature, thereby promoting tumor recurrence. The relevance of this pathway for radiation therapy is that it can be blocked in a number of different ways including by inhibitors of monocytes/macrophages, of HIF-1, of CXCL12, of CXCR4, and of CSF-1R, the latter of which is responsible for the M2 polarization of the TAMs. All of these inhibitors produce a robust enhancement of the radiation response of a wide variety of preclinical tumor models. Further, the same inhibitors actually provide protection against radiation damage of several normal tissues. Some of these pathway inhibitors are available clinically, and a first-in-human trial of the CXCR4 inhibitor, plerixafor, with radiation therapy of glioblastoma has yielded promising results, including an impressive increase in local tumor control. Further clinical trials are warranted.


Assuntos
Vasos Sanguíneos/efeitos da radiação , Fator 1 Induzível por Hipóxia/metabolismo , Recidiva Local de Neoplasia/etiologia , Neoplasias/irrigação sanguínea , Neoplasias/radioterapia , Hipóxia Tumoral , Benzilaminas/farmacologia , Células da Medula Óssea , Polaridade Celular , Quimiocina CXCL12/metabolismo , Ciclamos/farmacologia , Células Endoteliais/efeitos da radiação , Humanos , Fator 1 Induzível por Hipóxia/genética , Recidiva Local de Neoplasia/irrigação sanguínea , Neoplasias/metabolismo , Dosagem Radioterapêutica , Espécies Reativas de Oxigênio/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Macrófagos Associados a Tumor/citologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos da radiação
11.
Lasers Med Sci ; 35(7): 1589-1597, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32277406

RESUMO

Laser therapy has been widely used to treat port-wine stain (PWS) and other cutaneous vascular lesions via selective photothermolysis. High incident laser fluence is always prohibited in clinic to prevent the thermal damage in normal skin tissue, leading to insufficient energy deposition on the target blood vessel and incomplete clearance of PWS lesion. In this study, repeated multipulse laser (RMPL) irradiation was proposed to induce acute thermal damage to target blood vessels with low incident fluence (40 J/cm2 for 1064-nm Nd:YAG laser). The feasibility of the method was investigated using animal models. Repeated multipulse irradiation cycles with 10-min intervals were performed in RMPL. A hamster dorsal skin chamber model with a visualization system was constructed to investigate the instant generation of thermal coagulum and relevant hemostasis by thrombus formation during and after irradiation under 1064 nm Nd:YAG single multipulse laser (SMPL) and RMPL irradiation. The diameter of the target blood vessel and the size of thermal coagula were measured before and after laser irradiation. The reflectance spectra of the dorsal skin were measured by a reflectance spectrometer during RMPL. Stasis thermal coagula that clogged the vessel lumen were generated during SMPL irradiation with low incident fluence. However, there was no acute thermal damage of blood vessels. Reflectance spectra measurement showed that the generation of thermal coagula and subsequent thrombus formation increases blood absorption by more than 10% within the first 10 min after laser irradiation. Acute vessel thermal damage could be induced in the target blood vessel by RMPL with low incident fluence of 40 J/cm2. Compared with our previous SMPL study, nearly 30% reduction in incident laser fluence was achieved by RMPL. Low fluence RMPL may be a promising approach to improve the therapeutic outcome for patients with cutaneous vascular lesions by improving energy deposition on the target blood vessel.


Assuntos
Vasos Sanguíneos/efeitos da radiação , Hemostasia/efeitos da radiação , Lasers de Estado Sólido/uso terapêutico , Pele/irrigação sanguínea , Pele/efeitos da radiação , Temperatura , Animais , Cricetinae , Feminino , Humanos , Camundongos , Mancha Vinho do Porto/cirurgia
12.
Br J Radiol ; 93(1110): 20190351, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32233939

RESUMO

OBJECTIVE: Our study aimed to compare regional node coverage and doses to the organ at risk (OAR) using conventional technique (CT) vs "AMAROS" (AT) vs intensity-modulated radiation therapy (IMRT) techniques in patients receiving regional nodal irradiation (RNI) for breast cancer (BC). METHODS: We included 30 consecutive patients with BC who received RNI including axillary nodes. Two independent and blinded dosimetric RNI plans were generated for all patients. For target volume coverage, we analyzed the V95%, the D95%, the mean and the minimal dose within the nodal station. For hotspots within nodal target volume, we used the V105%, the V108% and the maximal doses. For OAR, lung V20, mean lung and heart doses, the maximal dose to the brachial plexus and the axillary-lateral thoracic vessel junction region were compared between the three techniques. RESULTS: Target volume coverage and hotspots: Mean V95% in stations I, II, III and IV were 35.8% and 75% respectively with CV, 22.59 and 59.9% respectively with AT technique and 45.58 and 99.6% respectively with IMRT with statistically significant differences (p < 0.001). Mean V105% (cc) in axillary and supraclavicular stations were 21.3 and 6.4 respectively with CV, 1.2 and 0.02 respectively with AT technique and 0.5 and 0.4 respectively with IMRT with statistically significant differences (p < 0.001)..OARs: The mean ipsilateral lung V20 was 16.9%, 16.4 and 13.3% with CT, AT and IMRT respectively. The mean heart dose (Gy) was 0.3, 0.2 and 0.2 with CT, AT and IMRT respectively. The maximal dose to the plexus brachial (Gy) was 50.3, 46.3 and 47.3 with CT, AT and IMRT respectively. The maximal dose to the axillary-lateral thoracic vessel junction (Gy) was 52.3, 47.3 and 47.6 with CT, AT and IMRT respectively. The differences were statistically significant for all OAR (p < 0.001). CONCLUSION: AT is a valuable technique for RNI including axilla in patients with limited sentinel lymph node biopsy involvement without additional axillary lymph node dissection since it decreases hotspots in the target volume and lowers the radiation exposure of the OAR. For more advanced tumors or patients who did not respond to primary systemic therapy, CT or IMRT should be considered because of their better coverage of the potentially residual nodal disease. IMRT combines several advantages of offering high conformal plans, limited hotspots and protection of main OAR. The clinical impact of these dosimetric differences need to be addressed. ADVANCES IN KNOWLEDGE: This study is to our knowledge the first to compare conventional three-dimensional and IMRT techniques for regional nodal irradiation for each nodal station in breast cancer in a context of increasing utilization of axillary irradiation.


Assuntos
Neoplasias da Mama/radioterapia , Irradiação Linfática/métodos , Órgãos em Risco/efeitos da radiação , Radioterapia de Intensidade Modulada/métodos , Biópsia de Linfonodo Sentinela , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Axila/irrigação sanguínea , Vasos Sanguíneos/efeitos da radiação , Plexo Braquial/efeitos da radiação , Feminino , Coração/efeitos da radiação , Humanos , Pulmão/efeitos da radiação , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Tórax/irrigação sanguínea , Adulto Jovem
13.
Cancer Radiother ; 24(2): 153-158, 2020 Apr.
Artigo em Francês | MEDLINE | ID: mdl-32089502

RESUMO

The radiobiological concepts described for conventional doses per fraction (1.8 to 2Gy) seem difficult to translate to high doses per fraction radiobiology. In fact, specific mechanisms are involved during high dose per fraction irradiation, involving vascular microenvironment damage and anti tumor immune response. The "5R's" of "classical" radiobiology (factors influencing the response of healthy or cancer cells to irradiation) seem to play a less important role in case of high doses per fraction. In addition, applicability of the linear quadratic model in this context is debated. It is therefore difficult to obtain reliable equivalent doses, hence the importance of including our patients in clinical trials, especially in case of concomitant systemic treatments. In addition to stereotactic radiotherapy, flash irradiations defined by a dose rate approximately 2000 times faster than "conventional" irradiation can also deliver high doses per fraction, with a much better tolerance for normal tissue without loss of anti tumor efficacy. Finally, availability of robust prospective data is a prerequisite to answer the question of short and long-term risk/benefit ratio of these different irradiation techniques.


Assuntos
Fracionamento da Dose de Radiação , Neoplasias/radioterapia , Radiobiologia , Radiocirurgia , Vasos Sanguíneos/efeitos da radiação , Ciclo Celular/efeitos da radiação , Morte Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Imunidade Celular/efeitos da radiação , Modelos Teóricos , Consumo de Oxigênio , Tolerância a Radiação , Radiobiologia/legislação & jurisprudência , Radioimunoterapia/métodos , Radiocirurgia/legislação & jurisprudência , Medição de Risco
14.
Lasers Med Sci ; 35(7): 1555-1566, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32060655

RESUMO

Laser has been widely used in the treatment of vascular skin diseases, such as port wine stain, due to the effect of selective photothermolysis in laser on biological tissue. The 755 nm alexandrite laser was expected to achieve better curative effect than the commonly used 585 or 595 nm pulsed dye laser (PDL) because of its deeper tissue penetration. In this study, the dorsal chamber model and microscopic visualization system were used to observe morphology changes on 42 blood vessels before and after irradiation with the 755 nm laser. Results showed that thermal effects of blood vessels intensified with the increase in energy, and high energy was required to produce the same thermal effect as the extension of pulse width. Different from 595 and 1064 nm lasers, partial vessel contraction was dominant thermal effect caused by the 755 nm laser. The bleeding injury rate and thermal effect of the 755 nm laser were between those of 595 nm PDL and 1064 nm Nd:YAG laser. The simulation results proved that 595 nm PDLs were effective for small and shallow target blood vessels. The 755 nm alexandrite lasers were effective in the treatment of hypertrophic and resistant blood vessels to PDL in the skin with low or moderate melanin concentration. The 1064 nm Nd:YAG laser was effective in the treatment of deeply buried and enlarged target blood vessels in the skin with high melanin concentration. The simulation results were supported by published clinical observations.


Assuntos
Vasos Sanguíneos/efeitos da radiação , Lasers de Corante/uso terapêutico , Lasers de Estado Sólido/uso terapêutico , Temperatura , Absorção de Radiação , Animais , Simulação por Computador , Humanos , Masculino , Camundongos , Análise Numérica Assistida por Computador , Mancha Vinho do Porto/cirurgia , Pele/efeitos da radiação , Fatores de Tempo
15.
Biomed Phys Eng Express ; 6(5): 055027, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33444258

RESUMO

Vasculature is necessary to the healthy function of most tissues. In radiation therapy, injury of the vasculature can have both beneficial and detrimental effects, such as tumor starvation, cardiac fibrosis, and white-matter necrosis. These effects are caused by changes in blood flow due to the vascular injury. Previously, research has focused on simulating the radiation injury of vasculature in small volumes of tissue, ignoring the systemic effects of local damage on blood flow. Little is known about the computational feasibility of simulating the radiation injury to whole-organ vascular networks. The goal of this study was to test the computational feasibility of simulating the dose deposition to a whole-organ vascular network and the resulting change in blood flow. To do this, we developed an amorphous track-structure model to transport radiation and combined this with existing methods to model the vasculature and blood flow rates. We assessed the algorithm's computational scalability, execution time, and memory usage. The data demonstrated it is computationally feasible to calculate the radiation dose and resulting changes in blood flow from 2 million protons to a network comprising 8.5 billion blood vessels (approximately the number in the human brain) in 87 hours using a 128-node cluster. Furthermore, the algorithm demonstrated both strong and weak scalability, meaning that additional computational resources can reduce the execution time further. These results demonstrate, for the first time, that it is computationally feasible to calculate radiation dose deposition in whole-organ vascular networks. These findings provide key insights into the computational aspects of modeling whole-organ radiation damage. Modeling the effects radiation has on vasculature could prove useful in the study of radiation effects on tissues, organs, and organisms.


Assuntos
Algoritmos , Vasos Sanguíneos/efeitos da radiação , Sistema Cardiovascular/patologia , Circulação Cerebrovascular/efeitos da radiação , Simulação por Computador , Hemodinâmica , Lesões por Radiação/fisiopatologia , Sistema Cardiovascular/efeitos da radiação , Biologia Computacional , Estudos de Viabilidade , Humanos , Prótons/efeitos adversos , Lesões por Radiação/etiologia
16.
Phys Med Biol ; 65(5): 055006, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31715592

RESUMO

Recently, new studies have shown that combined laser and ultrasound, or photo-mediated ultrasound therapy (PUT), can enhance cavitation in optically absorptive targets to disrupt tissues through photoacoustic (PA) effect. These studies, including both experimental and theoretical investigations, have largely focused on blood vessels, which are modeled as cylindrically-shaped optical absorbers for PA wave generation and propagation. However, in many clinical situations, target tissues may not be cylindrically-shaped. In this paper we investigated the effect of PUT on a slab-shaped optical absorber, much larger than the size of the laser beam or the ultrasound focal point. Our results demonstrated that laser light could generate a PA wave that could enhance cavitation not only at the surface of a slab, but also at depths when combined with ultrasound, suggesting that PUT may be effective in enhancing cavitation in a large range of soft tissues. Our results also demonstrated that the cavitation enhancement was based on the optical absorption of the targeted tissue, allowing for self-targeting treatments when optical contrast is present. Additionally, we demonstrated that for the greatest cavitation enhancement in deeper layers a focused laser beam geometry would be most effective.


Assuntos
Técnicas Fotoacústicas/métodos , Terapia por Ultrassom/métodos , Absorção de Radiação , Vasos Sanguíneos/efeitos da radiação , Humanos , Óptica e Fotônica
17.
J Photochem Photobiol B ; 201: 111634, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31715551

RESUMO

Skin Flap is used in reconstructive plastic surgery. However, complications such as ischemia followed by local necrosis may occur, requiring a new surgical procedure. It is well known that photobiomodulation therapy (PBMT) is an effective technique for improving microcirculation and neoangiogenesis, which contributes positively to the blood supply in the pre and post surgical period. Thus, the objective of the present study was to investigate the effects of preemptive treatment with laser PBMT with different energies on the viability in skin flaps in rats. Sixty-three Wistar rats, male, were randomized into five groups: Control Group (CG) (n = 15): PBMT simulation; Preemptive group 1.1 J laser (GP1) (n = 15): preemptive laser PBMT with 1.1 J of energy per point; Preemptive group 4 J laser (GP4) (n = 15): preemptive PBMT with 4 J of energy per point; Laser group 11 J (G1) (n = 9): PBMT immediately after surgery with 1.1 J of energy per point; Laser group 4 J (G4) (n = 9): TFMB immediately after surgery with 4 J of energy per point. The CG, GP1 and GP4 groups started treatment 72 h prior to surgery and were subdivided into two experimental periods, one of them on the day of the flap and the other along with the other groups on the seventh postoperative day. Three days after the randomization, the animals underwent random skin flap surgery. PBMT was performed with a 660 nm laser at three points. In the first experimental period, a greater number of vessels were found, as well as mast cells in GP1 compared to the CG and greater expression of fibroblast growth factor and vascular endothelial growth factor in the GP1 and GP4 groups compared to the CG. In the second experimental period, GP1 presented a lower percentage of necrotic tissue, a higher number of vessels and a percentage of cells labeled with both VEGF and hypoxia indicible factor alpha (HIF-1α) compared to the CG, FGF in GP1, GP4 and G4 when compared to the CG. Thus, it was concluded that preemptive treatment with PBMT with the application of 1.1 J of energy per point is effective in improving the viability of the skin flap.


Assuntos
Lasers Semicondutores , Retalhos Cirúrgicos , Animais , Masculino , Ratos , Vasos Sanguíneos/patologia , Vasos Sanguíneos/efeitos da radiação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mastócitos/citologia , Mastócitos/metabolismo , Mastócitos/efeitos da radiação , Necrose , Distribuição Aleatória , Ratos Wistar , Retalhos Cirúrgicos/irrigação sanguínea , Retalhos Cirúrgicos/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Cell Death Dis ; 10(11): 816, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659157

RESUMO

Glioblastomas (GBM) are brain tumors with a poor prognosis despite treatment that combines surgical resection and radio-chemotherapy. These tumors are characterized by abundant vascularization and significant cellular heterogeneity including GBM stem-like cells (GSC) which contribute to tumor aggressiveness, resistance, and recurrence. Recent data has demonstrated that GSC are directly involved in the formation of new vessels via their transdifferentiation into Tumor Derived Endothelial Cells (TDEC). We postulate that cellular stress such as ionizing radiation (IR) could enhance the transdifferentiation of GSC into TDEC. GSC neurospheres isolated from 3 different patients were irradiated or not and were then transdifferentiated into TDEC. In fact, TDEC obtained from irradiated GSC (TDEC IR+) migrate more towards VEGF, form more pseudotubes in MatrigelTM in vitro and develop more functional blood vessels in MatrigelTM plugs implanted in Nude mice than TDEC obtained from non-irradiated GSC. Transcriptomic analysis allows us to highlight an overexpression of Tie2 in TDEC IR+. All IR-induced effects on TDEC were abolished by using a Tie2 kinase inhibitor, which confirms the role of the Tie2 signaling pathway in this process. Finally, by analyzing Tie2 expression in patient GBMs by immunohistochemistry, we demonstrated that the number of Tie2+ vessels increases in recurrent GBM compared with matched untreated tumors. In conclusion, we demonstrate that IR potentiates proangiogenic features of TDEC through the Tie2 signaling pathway, which indicates a new pathway of treatment-induced tumor adaptation. New therapeutic strategies that associate standard treatment and a Tie2 signaling pathway inhibitor should be considered for future trials.


Assuntos
Transdiferenciação Celular/genética , Glioblastoma/genética , Recidiva Local de Neoplasia/genética , Receptor TIE-2/genética , Animais , Vasos Sanguíneos/patologia , Vasos Sanguíneos/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Transdiferenciação Celular/efeitos da radiação , Células Endoteliais/patologia , Células Endoteliais/efeitos da radiação , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Camundongos , Recidiva Local de Neoplasia/patologia , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Neovascularização Patológica , Radiação Ionizante , Transdução de Sinais/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Breast Cancer Res ; 21(1): 116, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640747

RESUMO

BACKGROUND: Triple-negative breast cancer has extremely high risk of relapse due to the lack of targeted therapies, intra- and inter-tumoral heterogeneity, and the inherent and acquired resistance to therapies. In this study, we evaluate the potential of prostate-specific membrane antigen (PSMA) as target for radio-ligand therapy (RLT). METHODS: Tube formation was investigated after incubation of endothelial HUVEC cells in tumor-conditioned media and monitored after staining using microscopy. A binding study with 68Ga-labeled PSMA-addressing ligand was used to indicate targeting potential of PSMA on tumor-conditioned HUVEC cells. For mimicking of the therapeutic application, tube formation potential and vitality of tumor-conditioned HUVEC cells were assessed following an incubation with radiolabeled PSMA-addressing ligand [177Lu]-PSMA-617. For in vivo experiments, NUDE mice were xenografted with triple-negative breast cancer cells MDA-MB231 or estrogen receptor expressing breast cancer cells MCF-7. Biodistribution and binding behavior of [68Ga]-PSMA-11 was investigated in both tumor models at 30 min post injection using µPET. PSMA- and CD31-specific staining was conducted to visualize PSMA expression and neovascularization in tumor tissue ex vivo. RESULTS: The triple-negative breast cancer cells MDA-MB231 showed a high pro-angiogenetic potential on tube formation of endothelial HUVEC cells. The induced endothelial expression of PSMA was efficiently addressed by radiolabeled PSMA-specific ligands. 177Lu-labeled PSMA-617 strongly impaired the vitality and angiogenic potential of HUVEC cells. In vivo, as visualized by µPET, radiolabeled PSMA-ligand accumulated specifically in the triple-negative breast cancer xenograft MDA-MB231 (T/B ratio of 43.3 ± 0.9), while no [68Ga]-PSMA-11 was detected in the estrogen-sensitive MCF-7 xenograft (T/B ratio of 1.1 ± 0.1). An ex vivo immunofluorescence analysis confirmed the localization of PSMA on MDA-MB231 xenograft-associated endothelial cells and also on TNBC cells. CONCLUSIONS: Here we demonstrate PSMA as promising target for two-compartment endogenous radio-ligand therapy of triple-negative breast cancer.


Assuntos
Radioisótopos de Gálio/uso terapêutico , Glutamato Carboxipeptidase II/antagonistas & inibidores , Lutécio/uso terapêutico , Radioisótopos/uso terapêutico , Neoplasias de Mama Triplo Negativas/radioterapia , Animais , Antígenos de Superfície/metabolismo , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/fisiologia , Vasos Sanguíneos/efeitos da radiação , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Dipeptídeos/metabolismo , Dipeptídeos/uso terapêutico , Ácido Edético/análogos & derivados , Ácido Edético/metabolismo , Ácido Edético/uso terapêutico , Isótopos de Gálio , Glutamato Carboxipeptidase II/metabolismo , Compostos Heterocíclicos com 1 Anel/metabolismo , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Humanos , Ligantes , Células MCF-7 , Camundongos Nus , Oligopeptídeos/metabolismo , Oligopeptídeos/uso terapêutico , Antígeno Prostático Específico , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
20.
Anticancer Res ; 39(10): 5495-5504, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570443

RESUMO

BACKGROUND/AIM: Most patients with hepatocellular carcinoma (HCC) cannot be treated using traditional therapies. Boron neutron capture therapy (BNCT) may provide a new treatment for HCC. In this study, the therapeutic efficacy and radiobiological effects of boric acid (BA)-mediated BNCT in a VX2 multifocal liver tumor-bearing rabbit model are investigated. MATERIALS AND METHODS: Rabbits were irradiated with neutrons at the Tsing Hua Open Pool Reactor 35 min following an intravenous injection of BA (50 mg 10B/kg BW). The tumor size following BNCT treatment was determined by ultrasonography. The radiobiological effects were identified by histopathological examination. RESULTS: A total of 92.85% of the tumors became undetectable in the rabbits after two fractions of BNCT treatment. The tumor cells were selectively eliminated and the tumor vasculature was collapsed and destroyed after two fractions of BA-mediated BNCT, and no injury to the hepatocytes or blood vessels was observed in the adjacent normal liver regions. CONCLUSION: Liver tumors can be cured by BA-mediated BNCT in the rabbit model of a VX2 multifocal liver tumor. BA-mediated BNCT may be a breakthrough therapy for hepatocellular carcinoma.


Assuntos
Ácidos Bóricos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/radioterapia , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/efeitos da radiação , Terapia por Captura de Nêutron de Boro/métodos , Hepatócitos/efeitos dos fármacos , Hepatócitos/efeitos da radiação , Fígado/efeitos dos fármacos , Fígado/efeitos da radiação , Masculino , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...