Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Anal Methods ; 15(10): 1355-1364, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36847157

RESUMO

Analogues of palytoxin (PLTX), one of the most potent marine biotoxins, are produced by some species of the marine dinoflagellates of the genus Ostreopsis. The proliferation of these species in different coastal zones represents a potential threat of seafood poisoning in humans because the produced toxins can be transferred through marine food webs. Thus, the determination of the concentration of PLTX analogues (ovatoxins-OVTXs, ostreocins-OSTs and isobaric PLTX) in different matrices (seawater, marine fauna, etc.) is necessary to protect human health. This study is addressed to overcome some of the challenges that the chemical complexity of these molecules poses to their quantification by ultra-high-performance liquid chromatography high-resolution mass spectrometry-based techniques (UHPLC-HRMS). In particular, the mass spectra of the palytoxin analogues show the presence of a large number of ions (including mono- and multiply charged ions) whose nature, relative abundances and behavior can lead to quantitation errors if the correct ions are not selected. In this work, the variability of the PLTX and OVTX profiles under different instrument conditions, including the use of diverse electrospray generation sources and different quantitation methods, is studied. Moreover, the extraction protocol in seawater containing Ostreopsis sp. ovata cells is also evaluated. The use of a heated electrospray operating at 350 °C and a quantitative method including ions from different multiply charged species provides a more robust and reliable method for overcoming the problems due to the variability in the toxin's mass spectrum profile. A single MeOH : H2O (80 : 20, v/v) extraction is proposed as the best and reliable procedure. The overall method proposed was applied to quantify OVTXs (-a to -g) and iso-PLTX along the 2019 Ostreopsis cf. ovata bloom. The cells contained a total toxin concentration of up to 20.39 pg per cell.


Assuntos
Venenos de Cnidários , Dinoflagellida , Humanos , Cromatografia Líquida de Alta Pressão , Venenos de Cnidários/análise , Toxinas Marinhas/análise , Toxinas Marinhas/química , Dinoflagellida/química
2.
Mar Drugs ; 20(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36135760

RESUMO

Pelagia noctiluca stings are common in Mediterranean coastal areas and, although the venom is non-lethal, they are painful. Due to its high toxicity and abundance, P. noctiluca is considered a target species for the focus of research on active ingredients to reduce the symptoms of its sting. To determine the effect of 31 substances and formulations on nematocyst discharge, we performed three tests: (1) screening of per se discharge activator solutions, (2) inhibitory test with nematocyst chemical stimulation (5% acetic acid) and (3) inhibitory test quantifying the hemolytic area. Ammonia, barium chloride, bleach, scented ammonia, carbonated cola, lemon juice, sodium chloride and papain triggered nematocyst discharge. All of them were ruled out as potential inhibitors. Butylene glycol showed a reduction in nematocyst discharge, while the formulations of 10% lidocaine in ethanol, 1.5% hydroxyacetophenone in distilled water + butylene glycol, and 3% Symsitive® in butylene glycol inhibited nematocyst discharge. These last results were subsequently correlated with a significant decrease in hemolytic area in the venom assays versus seawater, a neutral solution. The presented data represent a first step in research to develop preventive products for jellyfish stings while at the same time attempting to clarify some uncertainties about the role of various topical solutions in P. noctiluca first-aid protocols.


Assuntos
Mordeduras e Picadas , Cnidários , Venenos de Cnidários , Cifozoários , Amônia/análise , Amônia/farmacologia , Animais , Mordeduras e Picadas/prevenção & controle , Butileno Glicóis/análise , Butileno Glicóis/farmacologia , Venenos de Cnidários/análise , Venenos de Cnidários/farmacologia , Etanol/farmacologia , Hemólise , Lidocaína/farmacologia , Nematocisto/química , Papaína/farmacologia , Cifozoários/química , Cloreto de Sódio/farmacologia , Água
3.
Mar Drugs ; 18(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371176

RESUMO

Venomics, the study of biological venoms, could potentially provide a new source of therapeutic compounds, yet information on the venoms from marine organisms, including cnidarians (sea anemones, corals, and jellyfish), is limited. This study identified the putative toxins of two species of jellyfish-edible jellyfish Rhopilema esculentum Kishinouye, 1891, also known as flame jellyfish, and Amuska jellyfish Sanderia malayensis Goette, 1886. Utilizing nano-flow liquid chromatography tandem mass spectrometry (nLC-MS/MS), 3000 proteins were identified from the nematocysts in each of the above two jellyfish species. Forty and fifty-one putative toxins were identified in R. esculentum and S. malayensis, respectively, which were further classified into eight toxin families according to their predicted functions. Amongst the identified putative toxins, hemostasis-impairing toxins and proteases were found to be the most dominant members (>60%). The present study demonstrates the first proteomes of nematocysts from two jellyfish species with economic and environmental importance, and expands the foundation and understanding of cnidarian toxins.


Assuntos
Cnidários/genética , Venenos de Cnidários/genética , Nematocisto , Proteômica/métodos , Animais , Cnidários/química , Venenos de Cnidários/análise , Nematocisto/química , Espectrometria de Massas em Tandem/métodos , Toxinas Biológicas/análise , Toxinas Biológicas/genética
4.
Toxicon ; 184: 94-98, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32533959

RESUMO

The emergence of novel venom extraction techniques over the last half-century has greatly facilitated advances in the field of cnidarian research. A new recovery protocol utilizing ethanol as the primary stimulant in nematocyst discharge was recently published, however in vitro examination of the venom on organic models was not performed. This present study reports an original comparison of the chemically-induced discharge technique in vitro with a commonly used saltwater extraction method. Size-exclusion chromatography revealed distinct differences in venom profiles between the two methods: the saltwater recovery method FPLC profile and SDS-PAGE gel were similar to previously published results, whereas the ethanol-induced method was not. SDS-PAGE gel revealed distinct 40-55 kDa bands of previously identified cardiotoxic proteins recovered from the saltwater method, whereas the ethanol-induced method yielded degraded venom protein bands. A concentration-response curve generated through xCELLigence Real-Time Cell Analysis (RTCA) revealed a dramatic decrease in human cardiomyocyte activity when venom recovered via saltwater discharge was applied to these cells. With the exception of one sample, all ethanol-induced recovered venom failed to prompt a concentration-dependent decrease in cell survival when applied to human cardiomyocytes, resulting in a significant difference in IC50 concentrations between the compared venom samples. The data presented here facilitates an improved understanding of the parameters and analyses that are essential when developing and utilizing novel techniques for future cnidarian venom extraction research and supports the conclusion that recovery of venom from the tentacles of the box jellyfish Chironex fleckeri by ethanol is not an effective, efficient, or comprehensive extraction method compared to the published method of saltwater degradation of tentacles and bead mill extraction.


Assuntos
Venenos de Cnidários/análise , Cubomedusas , Animais , Sobrevivência Celular , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Miócitos Cardíacos , Nematocisto
5.
Toxicon ; 175: 57-63, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32056696

RESUMO

Natural substances produced by venomous marine organisms are thought to be possible sources of useful compounds and new drugs having the potential to open new ways for pharmacology, nutrition and environmental applications. In this framework, cnidarians are very interesting being widely distributed and all are venomous organisms; so, a deep knowledge of their occurrence, morphology of venomous structures and of effects of venoms at cellular level is fundamental to evaluate the possible utilization of venomous compounds or extracts. In this research, the morphology and occurrence of nematocysts in two cnidarian species (Aurelia aurita, Velella velella), and the preliminary evaluation of the cytotoxicity of V. velella crude extract, of which cytotoxicity on cell cultures at present is unknown, were considered. The specimens were sampled in Güllük Bay, Southwestern coast of Turkey, and in the Gulf of Genova, Northwestern coast of Italy. Six nematocyst types (a-isorhiza, A-isorhiza, O-isorhiza, eurytele, polyspiras, birhopaloid) having different sizes, were observed in A. aurita, and two types (eurytele and stenotele) in V. velella. The crude extract from V. velella showed cytotoxic activity against cultured fibroblasts L929 at high doses, while inducing cell proliferation at low doses. The protein content in the extract increased remarkably after disruption of nematocysts.


Assuntos
Venenos de Cnidários/análise , Hidrozoários , Nematocisto/química , Cifozoários , Animais , Cnidários , Itália , Mar Mediterrâneo , Turquia
6.
Toxicon ; 167: 117-122, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31211958

RESUMO

Marine isolates such as palytoxin (PTX) are of concern within the Caribbean region due to their toxicity. PTX for example has been described as a one of the most known potent marine toxins, known to prevent predation from larger species (e.g. vertebrates) as well as the prevention of being overgrown from other coral species. PTX is a polyhydroxylated polyether toxin with a very large and complex chemical structure that possesses both hydrophilic and lipophilic properties. Previous acute toxicity tests using brine shrimp (Artemia salina) and PTX extract had shown it to be moderately toxic. In humans, PTX has been credited to be responsible for extreme symptoms such anaphylactic shock, rapid cardiac failure and eventual death occurring within minutes. Extrapolation for human dose ranges has therefore been suggested to be between 2.3 and 31.5 µg. This study isolates a potentially PTX-enriched extract from Palythoa caribaeorum and examines its organic extract toxicity from a biogeography perspective from a within-colony to a variety of reef sites around Trinidad and Tobago that are popular for marine visitors. This research represents an acute study with a high level of crude organic extract toxicity on A. salina whilst postulating potential factors which may contribute to its extreme toxicity and the risk posed to users of these environments.


Assuntos
Acrilamidas/toxicidade , Antozoários/química , Artemia/efeitos dos fármacos , Venenos de Cnidários/toxicidade , Toxinas Marinhas/toxicidade , Acrilamidas/análise , Acrilamidas/isolamento & purificação , Animais , Região do Caribe , Venenos de Cnidários/análise , Venenos de Cnidários/isolamento & purificação , Recifes de Corais , Dose Letal Mediana , Toxinas Marinhas/análise , Toxinas Marinhas/isolamento & purificação , Água do Mar/química , Testes de Toxicidade Aguda , Trinidad e Tobago , Movimentos da Água
7.
Toxins (Basel) ; 10(12)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558165

RESUMO

Palytoxin (PlTX) and analogues are produced by certain dinoflagellates, sea anemones, corals and cyanobacteria. PlTX can accumulate in the food chain and when consumed it may cause intoxication with symptoms like myalgia, weakness, fever, nausea, and vomiting. The analysis of PlTXs is challenging, and because of the large molecular structure, it is difficult to develop a sensitive and selective liquid chromatography-mass spectrometry (LC-MS/MS) method. In this work, an LC-MS/MS method was developed to analyse PlTXs with use of lithium iodine and formic acid as additives in the mobile phase. For method development, initially, LC-hrMS was used to accurately determine the elemental composition of the precursor and product ions. The main adduct formed was [M + H + 2Li]3+. Fragments were identified with LC-hrMS and these were incorporated in the LC-MS/MS method. A method of 10 min was developed and a solid phase extraction clean-up procedure was optimised for shellfish matrix. The determined limits of detection were respectively 8 and 22 µg PlTX kg-1 for mussel and oyster matrix. Oysters gave a low recovery of approximately 50% for PlTX during extraction. The method was successfully in-house validated, repeatability had a relative standard deviation less than 20% (n = 5) at 30 µg PlTX kg-1 in mussel, cockle, and ensis, and at 60 µg PlTX kg-1 in oyster.


Assuntos
Acrilamidas/análise , Bivalves/química , Venenos de Cnidários/análise , Contaminação de Alimentos/análise , Animais , Cátions , Cromatografia Líquida , Limite de Detecção , Lítio/química , Extração em Fase Sólida , Espectrometria de Massas em Tandem
8.
Chem Phys Lipids ; 216: 132-141, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30194925

RESUMO

Sphingomyelin (SM) is a major sphingolipid in mammalian cells whereas its analog, ceramide phosphoethanolamine (CPE) is found in trace amounts in mammalian cells and in larger amounts in invertebrates such as insect cells like Drosophila melanogaster. To visualize endogenous SM or CPE, we need specific probes able to recognize the chemical structure of the lipid, rather than its physical property. A limited number of proteins is known to specifically and strongly bind SM or CPE. These proteins are either toxins produced by non-mammalian organisms, subunits or fragments of toxins or a protein that has similar structure to a toxin. These proteins labeled with small fluorophore (e.g. Alexa Fluor) or conjugated to fluorescent proteins (e.g. mCherry) or other types of markers (e.g. 125I, maltose-binding protein) are used to detect SM or CPE. Here we summarize the characteristics of specific SM-binding proteins, lysenin and equinatoxin II; CPE- and SM/cholesterol (Chol) binding aegerolysin proteins, pleurotolysin A2, ostreolysin and erylysin A and SM/Chol-binding protein, nakanori. Then we give examples of their applications including their limitations related not only to their lipid specificity and binding constants, but also to the lipid organization in the membrane.


Assuntos
Venenos de Cnidários/química , Proteínas Fúngicas/química , Proteínas Hemolisinas/química , Sondas Moleculares/análise , Sondas Moleculares/química , Esfingomielinas/análise , Toxinas Biológicas/química , Animais , Venenos de Cnidários/análise , Proteínas Fúngicas/análise , Proteínas Hemolisinas/análise , Humanos , Toxinas Biológicas/análise
9.
Toxins (Basel) ; 10(8)2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110919

RESUMO

The marine algal toxin palytoxin (PLTX) and its analogues are some of the most toxic marine compounds. Their accumulation in edible marine organisms and entrance into the food chain represent their main concerns for human health. Indeed, several fatal human poisonings attributed to these compounds have been recorded in tropical and subtropical areas. Due to the increasing occurrence of PLTX in temperate areas such as the Mediterranean Sea, the European Food Safety Authority (EFSA) has suggested a maximum limit of 30 µg PLTX/kg in shellfish meat, and has recommended the development of rapid, specific, and sensitive methods for detection and quantitation of PLTX in seafood. Thus, a novel, sensitive cell-based ELISA was developed and characterized for PLTX quantitation in mussels. The estimated limits of detection (LOD) and quantitation (LOQ) were 1.2 × 10-11 M (32.2 pg/mL) and 2.8 × 10-11 M (75.0 pg/mL), respectively, with good accuracy (bias = 2.5%) and repeatability (15% and 9% interday and intraday relative standard deviation of repeatability (RSDr), respectively). Minimal interference of 80% aqueous methanol extract allows PLTX quantitation in mussels at concentrations lower than the maximum limit suggested by EFSA, with an LOQ of 9.1 µg PLTX equivalent/kg mussel meat. Given its high sensitivity and specificity, the cell-based ELISA should be considered a suitable method for PLTX quantitation.


Assuntos
Acrilamidas/análise , Bivalves , Venenos de Cnidários/análise , Contaminação de Alimentos/análise , Acrilamidas/imunologia , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Venenos de Cnidários/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Limite de Detecção
10.
Anal Chem ; 89(14): 7438-7446, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28648045

RESUMO

Palytoxin (PLTX) is a complex marine toxin produced by Zoanthids (Palyhtoa), dinoflagellates (Ostreopsis), and cyanobacteria (Trichodesmium). Contact with PLTX-like compounds present in aerosols or marine organisms has been associated with adverse effects on humans. The worldwide distribution of producer species and seafood contaminated with PLTX-like molecules illustrates the global threat to human health. The identification of species capable of palytoxin production is critical for human safety. We studied the presence of PLTX analogues in Palythoa canariensis, a coral species collected in the Atlantic Ocean never described as a PLTX-producer before. Two methodologies were used for the detection of these toxins: a microsphere-based immunoassay that offered an estimation of the content of PLTX-like molecules in a Palythoa canariensis extract and an ultrahigh-pressure liquid chromatography coupled to an ion trap with a time-of-flight mass spectrometer (UPLC-IT-TOF-MS) that allowed the characterization of the toxin profile. The results demonstrated the presence of PLTX, hydroxy-PLTX and, at least, two additional compounds with PLTX-like profile in the Palythoa canariensis sample. The PLTX content was estimated in 0.27 mg/g of lyophilized coral using UPLC-IT-TOF-MS. Therefore, this work demonstrates that Palythoa canariensis produces a mixture of PLTX-like molecules. This is of special relevance to safeguard human health considering Palythoa species are commonly used for decoration by aquarium hobbyists.


Assuntos
Acrilamidas/análise , Venenos de Cnidários/análise , Animais , Antozoários , Estrutura Molecular
11.
Protein J ; 36(2): 77-97, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28258523

RESUMO

Pelagia noctiluca is the most venomous jellyfish in the Mediterranean Sea where it forms dense blooms. Although there is several published research on this species, until now none of the works has been focused on a complete protein profile of the all body constituents of this organism. Here, we have performed a detailed proteomics characterization of the major protein components expressed by P. noctiluca. With that aim, we have considered the study of jellyfish proteins involved in defense, body constituents and metabolism, and furthered explore the significance and potential application of such bioactive molecules. P. noctiluca body proteins were separated by1D SDS-PAGE and 2DE followed by characterization by nanoLC-MS/MS and MALDI-TOF/TOF techniques. Altogether, both methods revealed 68 different proteins, including a Zinc Metalloproteinase, a Red Fluorescent Protein (RFP) and a Peroxiredoxin. These three proteins were identified for the first time in P. noctiluca. Zinc Metalloproteinase was previously reported in the venom of other jellyfish species. Besides the proteins described above, the other 65 proteins found in P. noctiluca body content were identified and associated with its clinical significance. Among all the proteins identified in this work we highlight: Zinc metalloproteinase, which has a ShK toxin domain and therefore should be implicated in the sting toxicity of P. noctiluca.; the RFP which are a very important family of proteins due to its possible application as molecular markers; and last but not least the discovery of a Peroxiredoxin in this organism makes it a new natural resource of antioxidant and anti-UV radiation agents.


Assuntos
Proteínas Luminescentes/análise , Metaloproteases/análise , Peroxirredoxinas/análise , Proteoma/análise , Cifozoários/metabolismo , Animais , Venenos de Cnidários/análise , Venenos de Cnidários/química , Eletroforese , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Mar Mediterrâneo , Metaloproteases/química , Metaloproteases/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Domínios Proteicos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Zinco , Proteína Vermelha Fluorescente
12.
Environ Sci Technol ; 50(2): 1023-30, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26655059

RESUMO

Anecdotal reports exist of aquarium hobbyists that experienced severe respiratory distress and/or skin injury following cleaning operation of home aquaria containing Palythoa sp. soft corals. Hundreds of cases of respiratory illness and/or dermatitis have been recorded in proximity to the sea concomitantly with algal blooms of Ostreopsis spp. in the Mediterranean area. Both Palythoa spp. and Ostreopsis spp. contain congeners of palytoxin, a highly potent toxin whose inhalation hazard is however unknown. In this study, we demonstrate the presence of high levels of palytoxins (palytoxin and hydroxypalytoxin) in both soft coral and seawater from a home marine aquarium involved in the poisoning of a whole family. Due to the high toxin levels found in seawater, a procedure for a rapid and efficient determination of palytoxin in seawater was setup. A comparison of symptoms of Palythoa- and Ostreopsis-related inhalatory poisonings showed many similarities including fever, respiratory distress, nausea, and flu-like symptoms. From the chemical and symptomatological data reported herein it is reasonable to hold palytoxins responsible for respiratory disorders following inhalation. Although the exact mechanism through which palytoxin congeners exert their inhalatory toxicity is still unknown, this represents a step toward demonstrating that palytoxin congeners exert toxic effects through inhalation both in natural environments and in the surroundings of private and public aquaria.


Assuntos
Acrilamidas/análise , Acrilamidas/intoxicação , Antozoários/química , Dinoflagellida/química , Acrilamidas/administração & dosagem , Administração por Inalação , Adolescente , Adulto , Animais , Venenos de Cnidários/análise , Venenos de Cnidários/intoxicação , Exposição Ambiental/efeitos adversos , Humanos , Piranos/análise , Piranos/intoxicação , Água do Mar/química , Extração em Fase Sólida
13.
Mol Biol Evol ; 32(3): 740-53, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25518955

RESUMO

Nematocytes, the stinging cells of cnidarians, are the most evolutionarily ancient venom apparatus. These nanosyringe-like weaponry systems reach pressures of approximately 150 atmospheres before discharging and punching through the outer layer of the prey or predator at accelerations of more than 5 million g, making them one of the fastest biomechanical events known. To gain better understanding of the function of the complex, phylum-specific nematocyst organelle, and its venom payload, we compared the soluble nematocyst's proteome from the sea anemone Anemonia viridis, the jellyfish Aurelia aurita, and the hydrozoan Hydra magnipapillata, each belonging to one of the three basal cnidarian lineages which diverged over 600 Ma. Although the basic morphological and functional characteristics of the nematocysts of the three organisms are similar, out of hundreds of proteins identified in each organism, only six are shared. These include structural proteins, a chaperone which may help maintain venon activity over extended periods, and dickkopf, an enigmatic Wnt ligand which may also serve as a toxin. Nevertheless, many protein domains are shared between the three organisms' nematocyst content suggesting common proteome functionalities. The venoms of Hydra and Aurelia appear to be functionally similar and composed mainly of cytotoxins and enzymes, whereas the venom of the Anemonia is markedly unique and based on peptide neurotoxins. Cnidarian venoms show evidence for functional recruitment, yet evidence for diversification through positive selection, common to other venoms, is lacking. The final injected nematocyst payload comprises a mixture of dynamically evolving proteins involved in the development, maturation, maintenance, and discharge of the nematocysts, which is unique to each organism and potentially to each nematocyst type.


Assuntos
Cnidários/metabolismo , Venenos de Cnidários/metabolismo , Nematocisto/metabolismo , Proteoma/metabolismo , Animais , Venenos de Cnidários/análise , Evolução Molecular , Proteoma/análise , Transcriptoma
14.
Anal Chem ; 86(17): 8742-50, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25138527

RESUMO

Snake venom consists of toxin proteins with multiple disulfide linkages to generate unique structures and biological functions. Determination of these cysteine connections usually requires the purification of each protein followed by structural analysis. In this study, dimethyl labeling coupled with LC-MS/MS and RADAR algorithm was developed to identify the disulfide bonds in crude snake venom. Without any protein separation, the disulfide linkages of several cytotoxins and PLA2 could be solved, including more than 20 disulfide bonds. The results show that this method is capable of analyzing protein mixture. In addition, the approach was also used to compare native cytotoxin 3 (CTX III) and its scrambled isomer, another category of protein mixture, for unknown disulfide bonds. Two disulfide-linked peptides were observed in the native CTX III, and 10 in its scrambled form, X-CTX III. This is the first study that reports a platform for the global cysteine connection analysis on a protein mixture. The proposed method is simple and automatic, offering an efficient tool for structural and functional studies of venom proteins.


Assuntos
Dissulfetos/análise , Venenos de Serpentes/química , Espectrometria de Massas em Tandem , Algoritmos , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Venenos de Cnidários/análise , Venenos de Cnidários/química , Bases de Dados de Proteínas , Isomerismo , Peptídeos/análise
15.
Artigo em Inglês | LILACS | ID: lil-724673

RESUMO

Although the hydrozoan Olindias sambaquiensis is the most common jellyfish associated with human envenomation in southeastern and southern Brazil, information about the composition of its venom is rare. Thus, the present study aimed to analyze pharmacological aspects of O. sambaquiensis venom as well as clinical manifestations observed in affected patients. Crude protein extracts were prepared from the tentacles of animals; peptides and proteins were sequenced and submitted to circular dichroism spectroscopy. Creatine kinase, cytotoxicity and hemolytic activity were evaluated by specific methods.


Assuntos
Animais , Anemia Hemolítica , Citotoxinas/análise , Intoxicação , Venenos de Cnidários/análise
16.
J. venom. anim. toxins incl. trop. dis ; 20: 1-6, 04/02/2014. ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484562

RESUMO

Although the hydrozoan Olindias sambaquiensis is the most common jellyfish associated with human envenomation in southeastern and southern Brazil, information about the composition of its venom is rare. Thus, the present study aimed to analyze pharmacological aspects of O. sambaquiensis venom as well as clinical manifestations observed in affected patients. Crude protein extracts were prepared from the tentacles of animals; peptides and proteins were sequenced and submitted to circular dichroism spectroscopy. Creatine kinase, cytotoxicity and hemolytic activity were evaluated by specific methods.


Assuntos
Animais , Anemia Hemolítica , Citotoxinas/análise , Intoxicação , Venenos de Cnidários/análise
17.
PLoS One ; 7(12): e47866, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236347

RESUMO

The nematocyst is a complex intracellular structure unique to Cnidaria. When triggered to discharge, the nematocyst explosively releases a long spiny, tubule that delivers an often highly venomous mixture of components. The box jellyfish, Chironex fleckeri, produces exceptionally potent and rapid-acting venom and its stings to humans cause severe localized and systemic effects that are potentially life-threatening. In an effort to identify toxins that could be responsible for the serious health effects caused by C. fleckeri and related species, we used a proteomic approach to profile the protein components of C. fleckeri venom. Collectively, 61 proteins were identified, including toxins and proteins important for nematocyte development and nematocyst formation (nematogenesis). The most abundant toxins identified were isoforms of a taxonomically restricted family of potent cnidarian proteins. These toxins are associated with cytolytic, nociceptive, inflammatory, dermonecrotic and lethal properties and expansion of this important protein family goes some way to explaining the destructive and potentially fatal effects of C. fleckeri venom. Venom proteins and their post-translational modifications (PTMs) were further characterized using toxin-specific antibodies and phosphoprotein/glycoprotein-specific stains. Results indicated that glycosylation is a common PTM of the toxin family while a lack of cross-reactivity by toxin-specific antibodies infers there is significant divergence in structure and possibly function among family members. This study provides insight into the depth and diversity of protein toxins produced by harmful box jellyfish and represents the first description of a cubozoan jellyfish venom proteome.


Assuntos
Venenos de Cnidários/metabolismo , Cubomedusas/metabolismo , Nematocisto/metabolismo , Proteoma/metabolismo , Animais , Venenos de Cnidários/análise , Nematocisto/química , Proteoma/análise
18.
Toxicon ; 57(5): 721-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21333668

RESUMO

It is well known that jellyfish are producers of complex mixtures of proteinaceous toxins for prey capture and defence. Nevertheless, studies on boreal scyphozoans concerning venom composition and toxic effects are rare. Here the isolation of a novel cytotoxic protein from the fishing tentacle venom of Cyanea capillata (L. 1758) using bioactivity-guided, multidimensional liquid chromatography is described. The crude venom was purified utilising preparative size-exclusion, ion-exchange, and reversed-phase chromatography. The cytotoxicity of resulting chromatographic fractions has been proven by a dye-uptake assay with the human hepatocyte cell line HepG2. The final purification step yielded, among other fractions, a fraction containing a single protein (named CcTX-1) with a molecular weight of its main isoform of 31.17 kDa The purification process leads to an increased cytotoxic activity per protein equivalents and the finally isolated CcTX-1 caused a nearly total loss of cell viability at a protein concentration of 1.3 µg mL⁻¹ corresponding to 0.4 µg/105 cells. De novo sequencing of CcTX-1 was conducted after enzymatic digestion and subsequent matrix-assisted laser desorption ionisation time-of-flight/time-of-flight mass spectrometry (MALDI-ToF/ToF MS/MS). The obtained sequence data provide an approximate 85% description of the amino acid sequence. This sequence information partially matched that of two known haemolytic proteins of two cubozoan species: CaTX-1 from Carybdea alata Reynaud, 1830 and CrTX-1 from Carybdea rastonii Haacke, 1886.


Assuntos
Venenos de Cnidários/análise , Citotoxinas/química , Citotoxinas/isolamento & purificação , Cifozoários/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Fracionamento Químico , Cromatografia em Gel , Cromatografia por Troca Iônica , Cromatografia Líquida , Biologia Computacional , Citotoxinas/genética , Proteínas Hemolisinas/química , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
Toxicon ; 56(2): 150-62, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19505494

RESUMO

Palytoxin (PTX) was first isolated from the zoanthid Palythoa toxica. Evaluation of PTX toxicity using various animal models determined that PTX was extremely potent through intravenous, intraperitoneal, and intratracheal exposure. PTX was less potent by direct intragastric exposure. PTX also caused significant, non-lethal effects through dermal and ocular exposure. PTX and PTX-like compounds have now been found in additional zoanthid species, red alga, a sea anemone, and several dinoflagellates. PTXs are found throughout certain reef associated food webs, including in fish and crabs responsible for human illness and death. Many of the organisms found to contain PTXs in the environment are also sold in the home aquarium trade, and recent evidence suggests poisonings have occurred through exposure to these organisms. Due to co-occurrence with other seafood toxins, such as ciguatoxins, saxitoxins, and tetrodotoxin, it has been difficult to assess the true risk of PTX poisoning through seafood consumption in humans, but limited cases have been well documented, some involving human fatalities. Recent evidence also suggests that humans are negatively impacted through PTX exposure by inhalation and dermal routes. Continued research into the distribution and occurrence of PTX and PTX-like compounds both in seafood and marine organisms sold in the aquarium trade appears warranted.


Assuntos
Acrilamidas/intoxicação , Cnidários/fisiologia , Venenos de Cnidários/intoxicação , Venenos/efeitos adversos , Acrilamidas/análise , Administração Cutânea , Animais , Animais de Laboratório , Cromatografia Líquida de Alta Pressão , Venenos de Cnidários/análise , Monitoramento Ambiental , Cadeia Alimentar , Humanos , Exposição por Inalação , Masculino , Fitoplâncton/química , Venenos/análise , Medição de Risco , Alimentos Marinhos/efeitos adversos , Alimentos Marinhos/análise , Espectrometria de Massas por Ionização por Electrospray , Testes de Toxicidade Aguda
20.
J Am Soc Mass Spectrom ; 19(1): 111-20, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18063381

RESUMO

In this article we report on the liquid chromatography tandem mass spectrometry (LC-MS) investigation of plankton samples collected in the summer of 2006 along the Ligurian coasts, coinciding with a massive bloom of the tropical microalga Ostreopsis ovata. LC-MS analyses indicated the occurrence of putative palytoxin along with a much more abundant palytoxin-like compound never reported so far, which we named ovatoxin-a. On the basis of molecular formula, fragmentation pattern, and chromatographic behavior, the structure of ovatoxin-a appeared to be strictly related to that of palytoxin. We report also on the analysis of cultured O. ovata, which was necessary to unequivocally demonstrate that putative palytoxin and ovatoxin-a contained in field samples were actually produced by O. ovata itself.


Assuntos
Acrilamidas/química , Venenos de Cnidários/química , Dinoflagellida/química , Eucariotos/química , Fitoplâncton/química , Poluentes da Água/química , Acrilamidas/análise , Animais , Cromatografia Líquida , Venenos de Cnidários/análise , Eucariotos/metabolismo , Itália , Mar Mediterrâneo , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem , Poluentes da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...