Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
1.
Sci Rep ; 14(1): 7684, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561372

RESUMO

Peptide toxins found in sea anemones venom have diverse properties that make them important research subjects in the fields of pharmacology, neuroscience and biotechnology. This study used high-throughput sequencing technology to systematically analyze the venom components of the tentacles, column, and mesenterial filaments of sea anemone Heteractis crispa, revealing the diversity and complexity of sea anemone toxins in different tissues. A total of 1049 transcripts were identified and categorized into 60 families, of which 91.0% were proteins and 9.0% were peptides. Of those 1049 transcripts, 416, 291, and 307 putative proteins and peptide precursors were identified from tentacles, column, and mesenterial filaments respectively, while 428 were identified when the datasets were combined. Of these putative toxin sequences, 42 were detected in all three tissues, including 33 proteins and 9 peptides, with the majority of peptides being ShKT domain, ß-defensin, and Kunitz-type. In addition, this study applied bioinformatics approaches to predict the family classification, 3D structures, and functional annotation of these representative peptides, as well as the evolutionary relationships between peptides, laying the foundation for the next step of peptide pharmacological activity research.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Humanos , Anêmonas-do-Mar/metabolismo , Peptídeos/química , Perfilação da Expressão Gênica , Venenos de Cnidários/química
2.
Mar Drugs ; 22(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38393042

RESUMO

The venoms of various sea anemones are rich in diverse toxins, which usually play a dual role in capturing prey and deterring predators. However, the complex components of such venoms have not been well known yet. Here, venomics of integrating transcriptomic and proteomic technologies was applied for the first time to identify putative protein and peptide toxins from different tissues of the representative sea anemone, Heteractis magnifica. The transcriptomic analysis of H. magnifica identified 728 putative toxin sequences, including 442 and 381 from the tentacles and the column, respectively, and they were assigned to 68 gene superfamilies. The proteomic analysis confirmed 101 protein and peptide toxins in the venom, including 91 in the tentacles and 39 in the column. The integrated venomics also confirmed that some toxins such as the ShK-like peptides and defensins are co-expressed in both the tentacles and the column. Meanwhile, a homology analysis was conducted to predict the three-dimensional structures and potential activity of seven representative toxins. Altogether, this venomics study revealed the venom complexity of H. magnifica, which will help deepen our understanding of cnidarian toxins, thereby supporting the in-depth development of valuable marine drugs.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Toxinas Biológicas , Animais , Peçonhas/metabolismo , Anêmonas-do-Mar/metabolismo , Proteômica/métodos , Peptídeos/genética , Peptídeos/metabolismo , Venenos de Cnidários/química
3.
Toxicon ; 238: 107571, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141971

RESUMO

Non-viral gene delivery systems offer significant potential for gene therapy due to their versatility, safety, and cost advantages over viral vectors. However, their effectiveness can be hindered by the challenge of efficiently releasing the genetic cargo from endosomes to prevent degradation in lysosomes. To overcome this obstacle, functional components can be incorporated into these systems. Sticholysin II (StII) is one of the pore-forming proteins derived from the sea anemone Stichodactyla helianthus, known for its high ability to permeabilize cellular and model membranes. In this study, we aimed to investigate the interaction between StII, and a model plasmid (pDNA) as an initial step towards designing an improved vector with enhanced endosomal escape capability. The electrophoretic mobility shift assay (EMSA) confirmed the formation of complexes between StII and pDNA. Computational predictions identified specific residues involved in the StII-DNA interaction interface, highlighting the importance of electrostatic interactions and hydrogen bonds in mediating the binding. Atomic force microscopy (AFM) of StII-pDNA complexes revealed the presence of nodular fiber and toroid shapes. These complexes were found to have a predominantly micrometer size, as confirmed by dynamic light scattering (DLS) measurements. Despite increase in the overall charge, the complexes formed at the evaluated nitrogen-to-phosphorus (N/P) ratios still maintained a negative charge. Moreover, StII retained its pore-forming capacity regardless of its binding to the complexes. These findings suggest that the potential ability of StII to permeabilize endosomal membranes could be largely maintained when combined with nucleic acid delivery systems. Additionally, the still remaining negative charge of the complexes would enable the association of another positively charged component to compact pDNA. However, to minimize non-specific cytotoxic effects, it is advisable to explore methods to regulate the protein's activity in response to the microenvironment.


Assuntos
Venenos de Cnidários , Venenos de Cnidários/química , DNA , Plasmídeos
4.
J Proteomics ; 288: 104984, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37536522

RESUMO

Millepora alcicornis is a reef-forming cnidarian widely distributed in the Mexican Caribbean. Millepora species or "fire corals" inflict a painful stinging reaction in humans when touched. Even though hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, there are few reports regarding the diversity of toxins synthesized by fire corals. Here, based on transcriptomic analysis of M. alcicornis, several predicted proteins that show amino acid sequence similarity to toxins were identified, including neurotoxins, metalloproteases, hemostasis-impairing toxins, serin proteases, cysteine-rich venom proteins, phospholipases, complement system-impairing toxins, phosphodiesterases, pore-forming toxins, and L-aminoacid oxidases. The soluble nematocyst proteome of this organism was shown to induce hemolytic, proteolytic, and phospholipase A2 effects by gel zymography. Protein bands or spots on 1D- and 2D-PAGE gels corresponding to zones of hemolytic and enzymatic activities were excised, subjected to in-gel digestion with trypsin, and analyzed by mass spectrometry. These proteins exhibited sequence homology to PLA2s, metalloproteinases, pore-forming toxins, and neurotoxins, such as actitoxins and CrTX-A. The complex array of venom-related transcripts that were identified in M. alcicornis, some of which are first reported in "fire corals", provide novel insight into the structural richness of Cnidarian toxins and their distribution among species. SIGNIFICANCE: Marine organisms are a promising source of bioactive compounds with valuable contributions in diverse fields such as human health, pharmaceuticals, and industrial application. Currently, not much attention has been paid to the study of fire corals, which possess a variety of molecules that exhibit diverse toxic effects and therefore have great pharmaceutical and biotechnological potential. The isolation and identification of novel marine-derived toxins by classical approaches are time-consuming and have low yields. Thus, next-generation strategies, like base-'omics technologies, are essential for the high-throughput characterization of venom compounds such as those synthesized by fire corals. This study moves the field forward because it provides new insights regarding the first occurrence of diverse toxin groups in Millepora alcicornis. The findings presented here will contribute to the current understanding of the mechanisms of action of Millepora toxins. This research also reveals important information related to the potential role of toxins in the defense and capture of prey mechanisms and for designing appropriate treatments for fire coral envenomation. Moreover, due to the lack of information on the taxonomic identification of Millepora, the insights presented here can advise the taxonomic classification of the species of this genus.


Assuntos
Antozoários , Venenos de Cnidários , Animais , Humanos , Transcriptoma , Proteômica/métodos , Antozoários/genética , Toxinas Marinhas , Perfilação da Expressão Gênica , Neurotoxinas , Metaloproteases/química , Venenos de Cnidários/química
5.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240317

RESUMO

Jellyfish stings pose a major threat to swimmers and fishermen worldwide. These creatures have explosive cells containing one large secretory organelle called a nematocyst in their tentacles, which contains venom used to immobilize prey. Nemopilema nomurai, a venomous jellyfish belonging to the phylum Cnidaria, produces venom (NnV) comprising various toxins known for their lethal effects on many organisms. Of these toxins, metalloproteinases (which belong to the toxic protease family) play a significant role in local symptoms such as dermatitis and anaphylaxis, as well as systemic reactions such as blood coagulation, disseminated intravascular coagulation, tissue injury, and hemorrhage. Hence, a potential metalloproteinase inhibitor (MPI) could be a promising candidate for reducing the effects of venom toxicity. For this study, we retrieved the Nemopilema nomurai venom metalloproteinase sequence (NnV-MPs) from transcriptome data and modeled its three-dimensional structure using AlphaFold2 in a Google Colab notebook. We employed a pharmacoinformatics approach to screen 39 flavonoids and identify the most potent inhibitor against NnV-MP. Previous studies have demonstrated the efficacy of flavonoids against other animal venoms. Based on our analysis, Silymarin emerged as the top inhibitor through ADMET, docking, and molecular dynamics analyses. In silico simulations provide detailed information on the toxin and ligand binding affinity. Our results demonstrate that Silymarin's strong inhibitory effect on NnV-MP is driven by hydrophobic affinity and optimal hydrogen bonding. These findings suggest that Silymarin could serve as an effective inhibitor of NnV-MP, potentially reducing the toxicity associated with jellyfish envenomation.


Assuntos
Cnidários , Venenos de Cnidários , Cifozoários , Silimarina , Toxinas Biológicas , Animais , Venenos de Cnidários/química , Cifozoários/química , Proteínas/análise , Metaloproteases/metabolismo
6.
J Chem Inf Model ; 63(10): 3043-3053, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37143234

RESUMO

Peptide toxins that adopt the ShK fold can inhibit the voltage-gated potassium channel KV1.3 with IC50 values in the pM range and are therefore potential leads for drugs targeting autoimmune and neuroinflammatory diseases. Nuclear magnetic resonance (NMR) relaxation measurements and pressure-dependent NMR have shown that, despite being cross-linked by disulfide bonds, ShK itself is flexible in solution. This flexibility affects the local structure around the pharmacophore for the KV1.3 channel blockade and, in particular, the relative orientation of the key Lys and Tyr side chains (Lys22 and Tyr23 in ShK) and has implications for the design of KV1.3 inhibitors. In this study, we have performed molecular dynamics (MD) simulations on ShK and a close homologue, HmK, to probe the conformational space occupied by the Lys and Tyr residues, and docked the different conformations with a recently determined cryo-EM structure of the KV1.3 channel. Although ShK and HmK have 60% sequence identity, their dynamic behaviors are quite different, with ShK sampling a broad range of conformations over the course of a 5 µs MD simulation, while HmK is relatively rigid. We also investigated the importance of conformational dynamics, in particular the distance between the side chains of the key dyad Lys22 and Tyr23, for binding to KV1.3. Although these peptides have quite different dynamics, the dyad in both adopts a similar configuration upon binding, revealing a conformational selection upon binding to KV1.3 in the case of ShK. Both peptides bind to KV1.3 with Lys22 occupying the pore of the channel. Intriguingly, the more flexible peptide, ShK, binds with significantly higher affinity than HmK.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Canal de Potássio Kv1.3/química , Canal de Potássio Kv1.3/metabolismo , Venenos de Cnidários/química , Venenos de Cnidários/metabolismo , Venenos de Cnidários/farmacologia , Anêmonas-do-Mar/química , Anêmonas-do-Mar/metabolismo , Peptídeos/química , Conformação Molecular , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química , Canal de Potássio Kv1.2/metabolismo
7.
Toxicon ; 229: 107126, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054994

RESUMO

Jellyfish stings pose a significant threat to humans in coastal areas worldwide, with venomous jellyfish species stinging millions of individuals annually. Nemopilema nomurai is one of the largest jellyfish species, with numerous tentacles rich in nematocysts. N. nomurai venom (NnV) is a complex mixture of proteins, peptides, and small molecules that serve as both prey-capture and defense mechanisms. Yet, the molecular identity of its cardiorespiratory and neuronal toxic components of NnV has not been clearly identified yet. Here, we isolated a cardiotoxic fraction, NnTP (Nemopilema nomurai toxic peak), from NnV using chromatographic methods. In the zebrafish model, NnTP exhibited strong cardiorespiratory and moderate neurotoxic effects. LC-MS/MS analysis identified 23 toxin homologs, including toxic proteinases, ion channel toxins, and neurotoxins. The toxins demonstrated a synergistic effect on the zebrafish, leading to altered swimming behavior, hemorrhage in the cardiorespiratory region, and histopathological changes in organs such as the heart, gill, and brain. These findings provide valuable insights into the mechanisms underlying the cardiorespiratory and neurotoxic effects of NnV, which could be useful in developing therapeutic strategies for venomous jellyfish stings.


Assuntos
Cnidários , Venenos de Cnidários , Cifozoários , Toxinas Biológicas , Animais , Humanos , Venenos de Cnidários/toxicidade , Venenos de Cnidários/química , Peixe-Zebra , Cromatografia Líquida , Espectrometria de Massas em Tandem
8.
Mar Drugs ; 21(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36976217

RESUMO

Nowadays, major attention is being paid to curing different types of cancers and is focused on natural resources, including oceans and marine environments. Jellyfish are marine animals with the ability to utilize their venom in order to both feed and defend. Prior studies have displayed the anticancer capabilities of various jellyfish. Hence, we examined the anticancer features of the venom of Cassiopea andromeda and Catostylus mosaicus in an in vitro situation against the human pulmonary adenocarcinoma (A549) cancer cell line. The MTT assay demonstrated that both mentioned venoms have anti-tumoral ability in a dose-dependent manner. Western blot analysis proved that both venoms can increase some pro-apoptotic factors and reduce some anti-apoptotic molecules that lead to the inducing of apoptosis in A549 cells. GC/MS analysis demonstrated some compounds with biological effects, including anti-inflammatory, antioxidant and anti-cancer activities. Molecular docking and molecular dynamic showed the best position of each biologically active component on the different death receptors, which are involved in the process of apoptosis in A549 cells. Ultimately, this study has proven that both venoms of C. andromeda and C. mosaicus have the capability to suppress A549 cells in an in vitro condition and they might be utilized in order to design and develop brand new anticancer agents in the near future.


Assuntos
Adenocarcinoma , Cnidários , Venenos de Cnidários , Neoplasias Pulmonares , Cifozoários , Animais , Humanos , Venenos de Cnidários/farmacologia , Venenos de Cnidários/química , Células A549 , Simulação de Acoplamento Molecular , Adenocarcinoma/tratamento farmacológico , Apoptose , Neoplasias Pulmonares/tratamento farmacológico
9.
Mar Drugs ; 21(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36976246

RESUMO

Sea anemones are sessile invertebrates of the phylum Cnidaria and their survival and evolutive success are highly related to the ability to produce and quickly inoculate venom, with the presence of potent toxins. In this study, a multi-omics approach was applied to characterize the protein composition of the tentacles and mucus of Bunodosoma caissarum, a species of sea anemone from the Brazilian coast. The tentacles transcriptome resulted in 23,444 annotated genes, of which 1% showed similarity with toxins or proteins related to toxin activity. In the proteome analysis, 430 polypeptides were consistently identified: 316 of them were more abundant in the tentacles while 114 were enriched in the mucus. Tentacle proteins were mostly enzymes, followed by DNA- and RNA-associated proteins, while in the mucus most proteins were toxins. In addition, peptidomics allowed the identification of large and small fragments of mature toxins, neuropeptides, and intracellular peptides. In conclusion, integrated omics identified previously unknown or uncharacterized genes in addition to 23 toxin-like proteins of therapeutic potential, improving the understanding of tentacle and mucus composition of sea anemones.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/metabolismo , Venenos de Cnidários/química , Brasil , Multiômica , Peptídeos/química , Toxinas Marinhas/química
10.
Toxins (Basel) ; 15(3)2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36977061

RESUMO

The relative lack of marine venom pharmaceuticals can be anecdotally attributed to difficulties in working with venomous marine animals, including how to maintain venom bioactivity during extraction and purification. The primary aim of this systematic literature review was to examine the key factors for consideration when extracting and purifying jellyfish venom toxins to maximise their effectiveness in bioassays towards the characterisation of a single toxin.An up-to-date database of 119 peer-reviewed research articles was established for all purified and semi-purified venoms across all jellyfish, including their level of purification, LD50, and the types of experimental toxicity bioassay used (e.g., whole animal and cell lines). We report that, of the toxins successfully purified across all jellyfish, the class Cubozoa (i.e., Chironex fleckeri and Carybdea rastoni) was most highly represented, followed by Scyphozoa and Hydrozoa. We outline the best practices for maintaining jellyfish venom bioactivity, including strict thermal management, using the "autolysis" extraction method and two-step liquid chromatography purification involving size exclusion chromatography. To date, the box jellyfish C. fleckeri has been the most effective jellyfish venom model with the most referenced extraction methods and the most isolated toxins, including CfTX-A/B. In summary, this review can be used as a resource for the efficient extraction, purification, and identification of jellyfish venom toxins.


Assuntos
Venenos de Cnidários , Cubomedusas , Cifozoários , Animais , Venenos de Cnidários/química , Cifozoários/metabolismo , Linhagem Celular , Cromatografia em Gel
11.
Toxins (Basel) ; 15(3)2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36977109

RESUMO

Phylum Cnidaria represents a unique group among venomous taxa, with its delivery system organised as individual organelles, known as nematocysts, heterogeneously distributed across morphological structures rather than packaged as a specialised organ. Acontia are packed with large nematocysts that are expelled from sea anemones during aggressive encounters with predatory species and are found in a limited number of species in the superfamily Metridioidea. Little is known about this specialised structure other than the commonly accepted hypothesis of its role in defence and a rudimentary understanding of its toxin content and activity. This study utilised previously published transcriptomic data and new proteomic analyses to expand this knowledge by identifying the venom profile of acontia in Calliactis polypus. Using mass spectrometry, we found limited toxin diversity in the proteome of acontia, with an abundance of a sodium channel toxin type I, and a novel toxin with two ShK-like domains. Additionally, genomic evidence suggests that the proposed novel toxin is ubiquitous across sea anemone lineages. Overall, the venom profile of acontia in Calliactis polypus and the novel toxin identified here provide the basis for future research to define the function of acontial toxins in sea anemones.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/química , Peçonhas , Proteômica , Perfilação da Expressão Gênica , Nematocisto , Venenos de Cnidários/genética , Venenos de Cnidários/química
12.
Int J Biol Macromol ; 230: 123176, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621741

RESUMO

Jellyfish Cyanea nozakii venom is a complex mixture of various toxins, most of which are proteinous biological macromolecules and are considered to be responsible for clinical symptoms or even death after a severe sting. Previous transcriptome and proteome analysis identified hundreds of toxins in the venom, including hemolysins, C-type lectin, phospholipase A2, potassium channel inhibitor, metalloprotease, etc. However, it is not clear which toxin in the venom plays the most important role in lethality. Herein, we isolated the key lethal toxin (Letoxcn) from jellyfish Cyanea nozakii using anion exchange chromatography, size-exclusion chromatography, and cation exchange chromatography. The molecular weight of Letoxcn is ∼50 kDa with the N-terminal sequences of QADAEKVNLPVGVCV. Peptide mass fingerprinting analysis of Letoxcn shows that it may have some motifs of phospholipase, metalloproteinase, thrombin-like enzyme, potassium channel toxin, etc. However, only metalloproteinase activity but no hemolytic, PLA2, or blood coagulation activity was observed from in vitro toxicity analysis. Overall, this study uncovered and characterized the key lethal toxin in the venom of jellyfish Cyanea nozakii, which will not only help to reveal the molecule mechanism of the lethality, but also develop effective treatment like antivenom for this jellyfish sting in the future.


Assuntos
Venenos de Cnidários , Cifozoários , Toxinas Biológicas , Animais , Cifozoários/química , Venenos de Cnidários/química , Metaloproteases/química , Proteoma , Exotoxinas , Fosfolipases , Canais de Potássio
13.
Toxins (Basel) ; 15(1)2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36668899

RESUMO

Actinoporins have emerged as archetypal α-pore-forming toxins (PFTs) that promote the formation of pores in membranes upon oligomerization and insertion of an α-helix pore-forming domain in the bilayer. These proteins have been used as active components of immunotoxins, therefore, understanding their lytic mechanism is crucial for developing this and other applications. However, the mechanism of how the biophysical properties of the membrane modulate the properties of pores generated by actinoporins remains unclear. Here we studied the effect of membrane fluidity on the permeabilizing activity of sticholysin I (St I), a toxin that belongs to the actinoporins family of α-PFTs. To modulate membrane fluidity we used vesicles made of an equimolar mixture of phosphatidylcholine (PC) and egg sphingomyelin (eggSM), in which PC contained fatty acids of different acyl chain lengths and degrees of unsaturation. Our detailed single-vesicle analysis revealed that when membrane fluidity is high, most of the vesicles are partially permeabilized in a graded manner. In contrast, more rigid membranes can be either completely permeabilized or not, indicating an all-or-none mechanism. Altogether, our results reveal that St I pores can be heterogeneous in size and stability, and that these properties depend on the fluid state of the lipid bilayer. We propose that membrane fluidity at different regions of cellular membranes is a key factor to modulate the activity of the actinoporins, which has implications for the design of different therapeutic strategies based on their lytic action.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Fluidez de Membrana , Compostos Orgânicos/química , Bicamadas Lipídicas , Membrana Celular/metabolismo , Fosfatidilcolinas , Venenos de Cnidários/química , Anêmonas-do-Mar/química
14.
Mar Drugs ; 20(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36547877

RESUMO

Sea anemones are predatory marine invertebrates and have diverse venom arsenals. Venom is integral to their biology, and is used in competition, defense, and feeding. Three lineages of sea anemones are known to have independently evolved symbiotic relationships with clownfish, however the evolutionary impact of this relationship on the venom composition of the host is still unknown. Here, we investigate the potential of this symbiotic relationship to shape the venom profiles of the sea anemones that host clownfish. We use transcriptomic data to identify differences and similarities in venom profiles of six sea anemone species, representing the three known clades of clownfish-hosting sea anemones. We recovered 1121 transcripts matching verified toxins across all species, and show that hemolytic and hemorrhagic toxins are consistently the most dominant and diverse toxins across all species examined. These results are consistent with the known biology of sea anemones, provide foundational data on venom diversity of these species, and allow for a review of existing hierarchical structures in venomic studies.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Venenos de Cnidários/genética , Venenos de Cnidários/química , Transcriptoma , Anêmonas-do-Mar/genética , Evolução Biológica , Simbiose
15.
Sci Rep ; 12(1): 17328, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243747

RESUMO

Sticholysins are α-pore-forming toxins produced by the sea-anemone Stichodactyla helianthus. These toxins exert their activity by forming pores on sphingomyelin-containing membranes. Recognition of sphingomyelin by sticholysins is required to start the process of pore formation. Sphingomyelin recognition is coupled with membrane binding and followed by membrane penetration and oligomerization. Many features of these processes are known. However, the extent of contact with each of the different kinds of lipids present in the membrane has received little attention. To delve into this question, we have used a phosphatidylcholine analogue labeled at one of its acyl chains with a doxyl moiety, a known quencher of tryptophan emission. Here we present evidence for the contact of sticholysins with phosphatidylcholine lipids in the sticholysin oligomer, and for how each sticholysin isotoxin is affected differently by the inclusion of cholesterol in the membrane. Furthermore, using phosphatidylcholine analogs that were labeled at different positions of their structure (acyl chains and headgroup) in combination with a variety of sticholysin mutants, we also investigated the depth of the tryptophan residues of sticholysins in the bilayer. Our results indicate that the position of the tryptophan residues relative to the membrane normal is deeper when cholesterol is absent from the membrane.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Venenos de Cnidários/química , Compostos Orgânicos/metabolismo , Fosfatidilcolinas/metabolismo , Anêmonas-do-Mar/metabolismo , Esfingomielinas/metabolismo , Triptofano/metabolismo
16.
J Biol Chem ; 298(10): 102455, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063994

RESUMO

Pore-forming proteins perforate lipid membranes and consequently affect their integrity and cell fitness. Therefore, it is not surprising that many of these proteins from bacteria, fungi, or certain animals act as toxins. While pore-forming proteins have also been found in plants, there is little information about their molecular structure and mode of action. Bryoporin is a protein from the moss Physcomitrium patens, and its corresponding gene was found to be upregulated by various abiotic stresses, especially dehydration, as well as upon fungal infection. Based on the amino acid sequence, it was suggested that bryoporin was related to the actinoporin family of pore-forming proteins, originally discovered in sea anemones. Here, we provide the first detailed structural and functional analysis of this plant cytolysin. The crystal structure of monomeric bryoporin is highly similar to those of actinoporins. Our cryo-EM analysis of its pores showed an actinoporin-like octameric structure, thereby revealing a close kinship of proteins from evolutionarily distant organisms. This was further confirmed by our observation of bryoporin's preferential binding to and formation of pores in membranes containing animal sphingolipids, such as sphingomyelin and ceramide phosphoethanolamine; however, its binding affinity was weaker than that of actinoporin equinatoxin II. We determined bryoporin did not bind to major sphingolipids found in fungi or plants, and its membrane-binding and pore-forming activity was enhanced by various sterols. Our results suggest that bryoporin could represent a part of the moss defense arsenal, acting as a pore-forming toxin against membranes of potential animal pathogens, parasites, or predators.


Assuntos
Bryopsida , Porinas , Animais , Sequência de Aminoácidos , Bryopsida/genética , Bryopsida/metabolismo , Venenos de Cnidários/química , Citotoxinas , Porinas/genética , Porinas/metabolismo , Anêmonas-do-Mar/química
17.
Toxins (Basel) ; 14(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-36006181

RESUMO

We previously demonstrated that Nemopilema nomurai jellyfish venom metalloproteinases (JVMPs) play a key role in the toxicities induced by N. nomurai venom (NnV), including dermotoxicity, cytotoxicity, and lethality. In this study, we identified two full-length JVMP cDNA and genomic DNA sequences: JVMP17-1 and JVMP17-2. The full-length cDNA of JVMP17-1 and 17-2 contains 1614 and 1578 nucleotides (nt) that encode 536 and 525 amino acids, respectively. Putative peptidoglycan (PG) binding, zinc-dependent metalloproteinase, and hemopexin domains were identified. BLAST analysis of JVMP17-1 showed 42, 41, 37, and 37% identity with Hydra vulgaris, Acropora digitifera, Megachile rotundata, and Apis mellifera venom metalloproteinases, respectively. JVMP17-2 shared 38 and 36% identity with H. vulgaris and A. digitifera, respectively. Alignment results of JVMP17-1 and 17-2 with other metalloproteinases suggest that the PG domain, the tissue inhibitor of metalloproteinase (TIMP)-binding surfaces, active sites, and metal (ion)-binding sites are highly conserved. The present study reports the gene cloning of metalloproteinase enzymes from jellyfish species for the first time. We hope these results can expand our knowledge of metalloproteinase components and their roles in the pathogenesis of jellyfish envenomation.


Assuntos
Cnidários , Venenos de Cnidários , Cifozoários , Animais , Clonagem Molecular , Cnidários/genética , Cnidários/metabolismo , Venenos de Cnidários/química , DNA Complementar/genética , Metaloproteases/química
18.
Chem Biol Interact ; 365: 110113, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35987279

RESUMO

The major jellyfish stings that occur in China are caused by scyphozoan Nemopilema nomurai, whose venom exhibits significant metalloproteinase activity that contributes to the toxic effects of jellyfish envenomation. Researching effective inhibitors suppressing the metalloproteinase activity of jellyfish venom represents a new attempt to cure jellyfish envenomations. In the present study, secondary metabolites produced by the jellyfish-associated fungus Aspergillus versicolor SmT07 were isolated and evaluated for their anti-proteolytic activities. Two xanthones, sterigmatocystin (JC-01) and oxisterigmatocystin C (JC-06), and four alkaloids, cottoquinazoline A (JC-02), phenazine-1-carboxylic acid (JC-03), viridicatin (JC-04) and viridicatol (JC-05), were isolated and identified. Only phenazine-1-carboxylic acid (PCA) showed significant anti-proteolytic activity of jellyfish venom assayed on azocasein, and the IC50 value was 2.16 mM. PCA also significantly inhibited fibrinogenolytic activity, protecting the Bß chain of fibrinogen from degradation when preincubated with jellyfish venom at a ratio of >1:0.6 (PCA:venom, w/w). Molecular docking with several well-characterized snake venom metalloproteinases suggested the venom metalloproteinases inhibitory property of PCA by forming complex interactions with the active site via hydrogen bonds, π-π stacking and salt bridges, which was distinct from the binding mode of batimastat. The present study represents the first study identifying natural jellyfish venom metalloproteinase inhibitors from marine natural products, which may provide an alternative to develop therapeutic agents for treating jellyfish envenomations.


Assuntos
Venenos de Cnidários , Cifozoários , Animais , Aspergillus/metabolismo , Venenos de Cnidários/química , Venenos de Cnidários/farmacologia , Metaloproteases/metabolismo , Simulação de Acoplamento Molecular , Cifozoários/metabolismo
19.
Biomed Pharmacother ; 151: 113192, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35644119

RESUMO

Jellyfish envenomation is a common medical problem in many countries. However, the myotoxicity and effector molecules of scyphozoan venoms remain uninvestigated. Here, we present the myotoxicity of nematocyst venom from Nemopilema nomurai (NnNV), a giant venomous scyphozoan from China, for the first time, using in vivo models with inhibitors. NnNV was able to induce remarkable myotoxicity including significant muscle swelling, increasing the content of CK and LDH in serum, stimulating inflammation of muscle tissue, and destroying the structure of muscle tissue. In addition, the metalloproteinase inhibitors BMT and EDTA significantly reduced the myotoxicity induced by NnNV. Moreover, BMT and EDTA could decrease the inflammatory stimulation and necrosis of muscle tissue caused by the venom. These observations suggest that the metalloproteinase components of NnNV make a considerable contribution to myotoxicity. This study contributes to understanding the effector molecules of muscle injury caused by jellyfish stings and suggests a new idea for the treatment of scyphozoan envenomation.


Assuntos
Venenos de Cnidários , Cifozoários , Animais , Venenos de Cnidários/química , Venenos de Cnidários/toxicidade , Ácido Edético , Metaloproteases , Miotoxicidade
20.
Toxins (Basel) ; 14(4)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35448870

RESUMO

Sea anemones produce venoms characterized by a complex mixture of low molecular weight compounds, proteins and peptides acting on voltage-gated ion channels. Mammal sperm cells, like neurons, are characterized by their ion channels. Calcium channels seem to be implicated in pivotal roles such as motility and capacitation. In this study, we evaluated the effect of a low molecular weight fraction from the venom of the sea anemone Lebrunia neglecta on boar sperm cells and in HVA calcium channels from rat chromaffin cells. Spermatozoa viability seemed unaffected by the fraction whereas motility and sperm capacitation were notoriously impaired. The sea anemone fraction inhibited the HVA calcium current with partial recovery and no changes in chromaffin cells' current kinetics and current-voltage relationship. These findings might be relevant to the pharmacological characterization of cnidarian venoms and toxins on voltage-gated calcium channels.


Assuntos
Venenos de Cnidários , Hidrozoários , Anêmonas-do-Mar , Animais , Canais de Cálcio/metabolismo , Venenos de Cnidários/química , Masculino , Ratos , Anêmonas-do-Mar/química , Espermatozoides , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...