Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.121
Filtrar
1.
Ren Fail ; 46(1): 2344658, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38644359

RESUMO

Previous studies have highlighted the significant role of complement activation in kidney injuries induced by rhabdomyolysis, intravascular hemolysis, sepsis, and ischemia-reperfusion. Nevertheless, the specific role and mechanism of complement activation in acute kidney injury (AKI) caused by wasp venom remain unclear. The aim of this study was to elucidate the specific complement pathway activated and investigate complement activation in AKI induced by wasp venom. In this study, a complement-depleted mouse model was used to investigate the role of complement in wasp venom-induced AKI. Mice were randomly categorized into control, cobra venom factor (CVF), AKI, and CVF + AKI groups. Compared to the AKI group, the CVF + AKI group showed improved pathological changes in kidneys and reduced blood urea nitrogen (BUN) levels. The expression levels of renal complement 3 (C3), complement 5 (C5), complement 1q (C1q), factor B (FB), mannose-binding lectin (MBL), and C5b-9 in AKI group were upregulated compared with the control group. Conversely, the renal tissue expression levels of C3, C5, C1q, FB, MBL, and C5b-9 were decreased in the CVF + AKI group compared to those in the AKI group. Complement activation occurs through all three pathways in AKI induced by wasp venom. Furthermore, complement depletion by CVF attenuates wasp venom-induced nephrotoxicity, suggesting that complement activation plays a primary role in the pathogenesis of wasp venom-induced AKI.


Assuntos
Injúria Renal Aguda , Ativação do Complemento , Modelos Animais de Doenças , Venenos de Vespas , Animais , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/induzido quimicamente , Camundongos , Venenos de Vespas/imunologia , Venenos de Vespas/efeitos adversos , Masculino , Rim/patologia , Venenos Elapídicos , Nitrogênio da Ureia Sanguínea , Complemento C3/metabolismo , Proteínas do Sistema Complemento/metabolismo
2.
Biomed Pharmacother ; 174: 116560, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583338

RESUMO

Neuronal ferroptosis and autophagy are crucial in the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Mastoparan M (Mast-M), extracted from the crude venom of Vespa magnifica (Smith), comprises 14 amino acid residues. Previous studies suggested that Mast-M reduces neuronal damage following global CIRI, but its protective mechanisms remain unclear. The present study examined the effect of Mast-M on middle cerebral artery occlusion/reperfusion (MCAO/R) induced neurological deficits using Grip, Rotarod, Longa test, and TTC staining, followed by treating the mice for three days with Mast-M (20, 40, and 80 µg/kg, subcutaneously). The results demonstrate that Mast-M promotes functional recovery in mice post-ischemic stroke, evidenced by improved neurological impairment, reduced infarct volume and neuronal damage. Meanwhile, the level of iron (Fe2+) and malonyldialdehyde was decreased in the ischemic hemisphere of MCAO/R mice at 24 hours or 48 hours by Mast-M (80 µg/kg) treatment, while the expression of NRF2, x-CT, GPX4, and LC3B protein was increased. Furthermore, these findings were validated in three models-oxygen-glucose deprivation/ reoxygenation, H2O2-induced peroxidation, and erastin-induced ferroptosis-in hippocampal neuron HT22 cells or primary neurons. These data suggested that Mast-M activates autophagy as well as inhibits ferroptosis. Finally, autophagy inhibitors were introduced to determine the relationship between the autophagy and ferroptosis, indicating that Mast-M alleviates ferroptosis by activating autophagy. Taken together, this study described that Mast-M alleviates cerebral infarction, neurologic impairment, and neuronal damage by activating autophagy and inhibiting ferroptosis, presenting a potential therapeutic approach for CIRI.


Assuntos
Autofagia , Ferroptose , Infarto da Artéria Cerebral Média , Recuperação de Função Fisiológica , Animais , Autofagia/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Masculino , Camundongos , Recuperação de Função Fisiológica/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , Venenos de Vespas/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Modelos Animais de Doenças , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
3.
Toxins (Basel) ; 16(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38535798

RESUMO

Viruses are one of the leading causes of human disease, and many highly pathogenic viruses still have no specific treatment drugs. Therefore, producing new antiviral drugs is an urgent matter. In our study, we first found that the natural wasp venom peptide Protopolybia-MP III had a significant inhibitory effect on herpes simplex virus type 1 (HSV-1) replication in vitro by using quantitative real-time PCR (qPCR), Western blotting, and plaque-forming assays. Immunofluorescence analysis showed Protopolybia-MP III could enter cells, and it inhibited multiple stages of the HSV-1 life cycle, including the attachment, entry/fusion, and post-entry stages. Furthermore, ultracentrifugation and electron microscopy detected that Protopolybia-MP III significantly suppressed HSV-1 virion infectivity at different temperatures by destroying the integrity of the HSV-1 virion. Finally, by comparing the antiviral activity of Protopolybia-MP III and its mutants, a series of peptides with better anti-HSV-1 activity were identified. Overall, this work found the function and mechanism of the antiviral wasp venom peptide Protopolybia-MP III and its derivatives against HSV-1 and laid the foundation for the research and development of wasp venom-derived antiviral candidate peptide drugs.


Assuntos
Herpesvirus Humano 1 , Vespas , Humanos , Animais , Venenos de Vespas , Bioensaio , Peptídeos , Antivirais
4.
Eur J Med Chem ; 268: 116276, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452726

RESUMO

The emergence of bacterial resistance has posed a significant challenge to clinical antimicrobial treatment, rendering commonly used antibiotics ineffective. The development of novel antimicrobial agents and strategies is imperative for the treatment of resistant bacterial infections. Antimicrobial peptides (AMPs) are considered a promising class of antimicrobial agents due to their low propensity for resistance and broad-spectrum activity. Anoplin is a small linear α-helical natural antimicrobial peptide that was isolated from the venom of the solitary wasp Anplius samariensis. It exhibits rich biological activity, particularly broad-spectrum antimicrobial activity and low hemolytic activity. Over the past three decades, more than 40 research publications on anoplin have been made available online. This review focuses on the advancements of anoplin in antimicrobial research, encompassing its sources, characterization, antimicrobial activity, influencing factors and structural modifications. The aim is to provide assistances for the development of new antimicrobial agents that can combat bacterial resistance.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/química , Venenos de Vespas/química , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
5.
Toxicon ; 241: 107685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503352

RESUMO

Determination of protein concentration in Hymenoptera venoms requires an accurate and reproducible assay as the results will be used to support subsequent proteomic techniques employed in their analyses. However, all protein assay techniques have inherent strengths and weaknesses, demanding their assessment before selecting the most suitable platform for sample analysis. In this study, protein profiles of ant, honeybee, and wasp venoms, and bovine serum albumin (BSA) and hyaluronidase standards were qualitatively assessed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Their amino acid and protein concentration were quantitatively determined via Amino Acid Analysis (AAA). Amino acid concentration was determined via hydrolysis, derivatization, and chromatographic quantification. Protein concentration was estimated using four different protein concentration assays. The ratios of protein concentration in venom samples to protein standards were calculated, and the accuracy of the protein concentration assays was analysed relative to the concentration determined from AAA. SDS-PAGE analysis showed that BSA contained several protein bands, while hyaluronidase contained a mixture of peptide and protein bands. Ant and honeybee venoms contained a higher proportion of peptide bands, while wasp venom contained more protein bands. As determined by AAA, the ratio of protein concentration in Hymenoptera venoms varied between 1.01 and 1.11 to BSA, and between 0.96 and 1.06 to hyaluronidase. Overall, the Bradford assay was found to be the least accurate and the BCA assay was the most accurate in estimating protein concentration in Hymenoptera venoms. There was no significant advantage in using hyaluronidase as a standard or increasing incubation temperature of BCA assay when analysing Hymenoptera venoms. Diluent solutions containing phenol and human serum albumin interfered with Lowry-based assays.


Assuntos
Venenos de Artrópodes , Venenos de Abelha , Himenópteros , Abelhas , Humanos , Animais , Proteoma , Hialuronoglucosaminidase/análise , Proteômica , Venenos de Vespas , Peçonhas , Aminoácidos , Soroalbumina Bovina , Peptídeos , Alérgenos
6.
Int Arch Allergy Immunol ; 185(5): 456-459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38412847

RESUMO

INTRODUCTION: Changes in the cytokine profile from type 2 to type 1 together with the induction of regulatory cells are expected during hymenoptera venom immunotherapy (VIT). The present study was aimed to investigate the changes in type 1, type 2, and regulatory cytokines induced by a Vespula spp. VIT in patients with anaphylaxis to Vespa velutina. METHODS: Twenty consecutive patients with anaphylaxis due to Vespa velutina were treated with Vespula spp. VIT. Serum cytokines (IL-4, IL-5, IL-10, IL-13, and IFN-É£) were measured at baseline, 6, and 12 months after starting VIT. RESULTS: A significant increase in serum IFN-y was detected after 6 and 12 months of VIT. An increase in serum IL-10 and a decrease in IL-5 were observed after 12 months. IL-4 was undetectable all along the study, and an unexpected increase of IL-13 was present at 12 months of treatment. CONCLUSION: Vespula spp. VIT seems to be able to induce a shift to type 1 cytokine production measured through IFN-y levels and IL-10 production after, at least, 6 and 12 months of VIT, respectively.


Assuntos
Anafilaxia , Citocinas , Dessensibilização Imunológica , Venenos de Vespas , Vespas , Humanos , Anafilaxia/imunologia , Anafilaxia/terapia , Anafilaxia/etiologia , Citocinas/metabolismo , Citocinas/sangue , Masculino , Feminino , Adulto , Animais , Dessensibilização Imunológica/métodos , Venenos de Vespas/imunologia , Vespas/imunologia , Pessoa de Meia-Idade , Mordeduras e Picadas de Insetos/imunologia , Mordeduras e Picadas de Insetos/terapia , Adulto Jovem , Alérgenos/imunologia
7.
Pharmacol Res ; 200: 107069, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218356

RESUMO

The study of wasp venoms has captured attention due to the presence of a wide variety of active compounds, revealing a diverse array of biological effects. Among these compounds, certain antimicrobial peptides (AMPs) such as mastoparans and chemotactic peptides have emerged as significant players, characterized by their unique amphipathic short linear alpha-helical structure. These peptides exhibit not only antibiotic properties but also a range of other biological activities, which are related to their ability to interact with biological membranes to varying degrees. This review article aims to provide updated insights into the structure/function relationships of AMPs derived from wasp venoms, linking this knowledge to the potential development of innovative treatments against infections.


Assuntos
Peptídeos Antimicrobianos , Venenos de Vespas , Venenos de Vespas/farmacologia , Venenos de Vespas/química , Peptídeos/química
8.
Dermatologie (Heidelb) ; 75(2): 126-133, 2024 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-38214725

RESUMO

BACKGROUND: In Germany, honeybees (Apis mellifera) and various Vespula species (wasps) are primarily relevant for hypersensitivity reactions to stings. Hornets (Vespa crabro), bumblebees, paper wasps (Polistes) and yellowjackets (Dolichovespula) less frequently cause sting reactions. OBJECTIVE: What effects do intensive agricultural utilization and climate change have on the living conditions and occurrence of Hymenoptera and what consequences do they have for the diagnostics and treatment of hypersensitivity reactions to Hymenoptera stings. MATERIAL AND METHODS: A literature search was carried out. RESULTS: Honeybees and wild bees are endangered due to introduced diseases, invasive species and pesticides. The aim of widespread beekeeping activity is to protect honeybees, which is why no reduction in stings is to be expected despite increased bee mortality. In Germany, there is evidence of the spread of thermophilic Polistes species (paper wasps) from south to north and the immigration of Vespa velutina nigrithorax (Asian hornet). It is unlikely that these species will lead to a significant increase in sting reactions. Nests of the red fire ant (Solenopsis invicta), which was originally common in South America, were first detected in Sicily in 2022. Red fire ants are aggressive insects with a high potential for adverse sting reactions. CONCLUSION: Invasive insects must be considered as a trigger in the anamnesis and diagnostics. Diagnostics are only available for the detection of Polistes sensitization. Therapeutic allergens can be obtained from other European countries for venom immunotherapy of a Polistes allergy. Due to cross-reactivity, diagnostic and therapeutic allergens from Vespula spp. are used for the diagnosis and treatment of suspected allergies to the Asian hornet.


Assuntos
Formigas , Venenos de Artrópodes , Hipersensibilidade , Mordeduras e Picadas de Insetos , Hipersensibilidade a Veneno , Vespas , Abelhas , Animais , Mordeduras e Picadas de Insetos/diagnóstico , Venenos de Vespas , Hipersensibilidade/diagnóstico , Alérgenos , Formigas Lava-Pés
9.
Aesthetic Plast Surg ; 48(3): 413-439, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37145319

RESUMO

BACKGROUND: Hyaluronidase is used as a reversal agent for hyaluronic acid fillers and to increase the diffusion of other medications after infiltration. Cases of hyaluronidase allergy have been described in the literature since 1984. However, it is still frequently misdiagnosed. This review aims to summarize the current literature to describe the clinical picture of hyaluronidase allergy and identify any risk factors associated with its development, as well as provide recommendations for management in plastic surgery. METHODS: A digital search of PubMed, Scopus, and Embase databases was performed by two reviewers following the PRISMA guidelines. This search identified 247 articles. RESULTS: Two hundred forty-seven articles were identified, and 37 of them met the eligibility criteria. One hundred six patients with a mean age of 54.2 years were included in these studies. History of allergy to other substances (timothy grass, egg white, horse serum, penicillin, insect bites, wasp venom, thimerosal, potassium, histamine, phenylmercuric acetate, and nickel) and allergic diseases (asthma, dermatitis, atopy, rhinitis) was reported. A large portion of the patients with a history of repeated exposure (2-4) experienced the symptoms with their second injection. Nonetheless, there was no significant association between time to allergy development and the number of exposures (P = 0.3). Treatment with steroids +/- antihistamines resulted in the rapid and predominantly complete reversal of the symptoms. CONCLUSIONS: Prior injections or sensitization by insect/wasp venom might be the primary factor associated with hyaluronidase allergy development. The time between the repeated injections is not a likely contributor to the presentation. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Preenchedores Dérmicos , Hipersensibilidade , Humanos , Pessoa de Meia-Idade , Preenchedores Dérmicos/efeitos adversos , Resultado do Tratamento , Hialuronoglucosaminidase , Venenos de Vespas , Fatores de Risco , Ácido Hialurônico/efeitos adversos
10.
FEBS J ; 291(5): 865-883, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37997610

RESUMO

Mastoparans are cationic peptides with multifunctional pharmacological properties. Mastoparan-R1 and mastoparan-R4 were computationally designed based on native mastoparan-L from wasps and have improved therapeutic potential for the control of bacterial infections. Here, we evaluated whether these peptides maintain their activity against Escherichia coli strains under a range of salt concentrations. We found that mastoparan-R1 and mastoparan-R4 preserved their activity under the conditions tested, including having antibacterial activities at physiological salt concentrations. The overall structure of the peptides was investigated using circular dichroism spectroscopy in a range of solvents. No significant changes in secondary structure were observed (random coil in aqueous solutions and α-helix in hydrophobic and anionic environments). The three-dimensional structures of mastoparan-R1 and mastoparan-R4 were elucidated through nuclear magnetic resonance spectroscopy, revealing amphipathic α-helical segments for Leu3-Ile13 (mastoparan-R1) and Leu3-Ile14 (mastoparan-R4). Possible membrane-association mechanisms for mastoparan-R1 and mastoparan-R4 were investigated through surface plasmon resonance and leakage studies with synthetic POPC and POPC/POPG (4:1) lipid bilayers. Mastoparan-L had the highest affinity for both membrane systems, whereas the two analogs had weaker association, but improved selectivity for lysing anionic membranes. This finding was also supported by molecular dynamics simulations, in which mastoparan-R1 and mastoparan-R4 were found to have greater interactions with bacteria-like membranes compared with model mammalian membranes. Despite having a few differences in their functional and structural profiles, the mastoparan-R1 analog stood out with the highest activity, greater bacteriostatic potential, and selectivity for lysing anionic membranes. This study reinforces the potential of mastoparan-R1 as a drug candidate.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos , Animais , Peptídeos/farmacologia , Venenos de Vespas/farmacologia , Escherichia coli , Cloreto de Sódio , Computadores , Mamíferos
11.
Biochimie ; 216: 99-107, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879427

RESUMO

Cancer is a huge public health problem being one of the main causes of death globally. Specifically, melanoma is one of the most threatening cancer types due to the metastatic capacity, treatment resistance and mortality rates. It is evident the urgent need for research on new agents with pharmacological potential for cancer treatment, in order to develop new cancer therapeutic strategies and overcome drug resistance. The present work investigated the anti-tumoral potential of Chartergellus-CP1 peptide, isolated from Chartergellus communis wasp venom on human melanoma cell lines with different pigmentation degrees, namely the amelanotic cell line A375 and pigmented cell line MNT-1. Chartergellus-CP1 induced selective cytotoxicity to melanoma cell lines when compared to the lower induced cytotoxicity towards to nontumorigenic keratinocytes. Chartergellus-CP1 peptide induced apoptosis in both melanoma cell lines, cell cycle impairment in amelanotic A375 cells and intracellular ROS increase in pigmented MNT-1 cells. The amelanotic A375 cell line showed higher sensitivity to the peptide than the pigmented cell line MNT-1. From our knowledge, this is the first study reporting the cytotoxic effects of Chartergellus-CP1 on melanoma cells.


Assuntos
Antineoplásicos , Melanoma , Humanos , Melanoma/patologia , Venenos de Vespas/farmacologia , Venenos de Vespas/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Apoptose
12.
J Phys Chem B ; 128(1): 163-171, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38159056

RESUMO

Antimicrobial Peptides (AMPs) have emerged as promising alternatives to conventional antibiotics due to their capacity to disrupt the lipid packing of bacterial cell membranes. This mechanism of action may prevent the development of resistance by bacteria. Understanding their role in lipid packing disruption and their structural properties upon interaction with bacterial membranes is highly desirable. In this study, we employed Molecular Dynamics simulations and the Energy Landscape Visualization Method (ELViM) to characterize and compare the conformational ensembles of mastoparan-like Polybia-MP1 and its analogous H-MP1, in which histidines replace lysine residues. Two situations were analyzed: (i) the peptides in their free state in an aqueous solution containing water and ions and (ii) the peptides spontaneously adsorbing onto an anionic lipid bilayer, used as a bacteria membrane mimetic. ELViM was used to project a single effective conformational phase space for both peptides, providing a comparative analysis. This projection enabled us to map the conformational ensembles of each peptide in an aqueous solution and assess the structural effects of substituting lysines with histidines in H-MP1. Furthermore, a single conformational phase space analysis was employed to describe structural changes during the adsorption process using the same framework. We show that ELViM provides a comprehensive analysis, able to identify discrepancies in the conformational ensembles of these peptides that may affect their affinity to the membrane and adsorption kinetics.


Assuntos
Peptídeos Antimicrobianos , Peptídeos e Proteínas de Sinalização Intercelular , Venenos de Vespas , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos/química , Bicamadas Lipídicas/química , Membrana Celular/metabolismo
13.
Toxicon ; 238: 107570, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103798

RESUMO

BACKGROUND: Inflammation and pyroptosis have crucial impacts on the development of acute kidney injury (AKI) and have been validated in a variety of existing AKI animal models. However, the mechanisms underlying wasp venom-induced AKI are still unclear. The involvement of nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) in some mouse models of AKI has been extensively documented, and its crucial function in controlling inflammation and pyroptosis has been highlighted. The objective of our study was to investigate the role and mechanism of NLRP3 in inflammation and pyroptosis associated with wasp venom-induced AKI. METHODS: A mouse model of AKI induced by wasp venom pre-injected with an NLRP3 inhibitor was used to study the role and mechanism of NLRP3. To verify the importance of NLRP3, western blotting was performed to assess the expression of NLRP3, caspase-1 p20, and gasdermin D (GSDMD)-N. Additionally, quantitative real-time polymerase was used to determine the expression of NLRP3, caspase-1, and GSDMD. Furthermore, enzyme-linked immunosorbent assay was utilized to measure the levels of interleukin (IL)-1ß and IL-18. RESULTS: NLRP3 was found to be the downstream signal of the stimulator of interferon genes in the wasp sting venom-induced AKI model. The administration of wasp venom in mice significantly upregulated the expression of NLRP3, leading to renal dysfunction, inflammation, and pyroptosis. Treatment with an NLRP3 inhibitor reversed the renal damage induced by wasp venom and attenuated pathological injury, inflammatory response, and pyroptosis. CONCLUSION: NLRP3 activation is associated with renal failure, inflammatory response and pyroptosis in the hyper early phase of wasp venom-induced AKI. The inhibition of NLRP3 significantly weakened this phenomenon. These findings could potentially offer a viable therapeutic approach for AKI triggered by wasp venom.


Assuntos
Injúria Renal Aguda , Mordeduras e Picadas de Insetos , Venenos de Vespas , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Caspase 1 , Caspases , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Venenos de Vespas/toxicidade
14.
Toxins (Basel) ; 15(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38133184

RESUMO

Venom immunotherapy (VIT) protects up to 98% of treated Hymenoptera allergy patients from reactions with new stings. A correct diagnosis with the identification of the venom causing the allergic reaction is essential to implementing it. The knowledge of the Hymenoptera foraging habits when the sting takes place in a food environment would allow the culprit insect to be known. Images of Hymenoptera occurring in environments where there was human food were recorded in Spain, including the date of the image, the place description and its geolocation. The insects' genus and species were identified by an entomologist. Results: One hundred and fifty-five images depicting 71 insects were analyzed. The identified insects were Vespula (56), Vespa (7), Polistes (4), Cerceris (2), Bombus (1) and Apis (1). Most (97.1%) of the images were obtained in summer and early autumn, outdoors in terraces (64%). Meat was the food associated with 47.9% of the images. In protein-rich foods, Vespula was found in 89%. Conclusions: Vespula was the main Hymenoptera associated with food environments in our country (78.87%), and in most of the cases (71%), the food involved is a source of protein, such as meat or seafood. In that environment, the probability that the insect is a Vespula would be 89%.


Assuntos
Venenos de Abelha , Himenópteros , Hipersensibilidade , Mordeduras e Picadas de Insetos , Vespas , Humanos , Abelhas , Animais , Hipersensibilidade/diagnóstico , Alérgenos , Carne , Venenos de Vespas
15.
Toxins (Basel) ; 15(11)2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37999519

RESUMO

(1) Background: Dipeptidyl Peptidases IV (DPPIVs), present in many organisms, are minor components in the venoms of Hymenoptera, where they have been identified as cross-reactive allergenic molecules. Considering that the structure of homologous DPPIVs is well characterized, we aimed to explain which regions have higher similarity among these proteins and present a comparison among them, including a new Vespa velutina DPPIV sequence. Moreover, two cases of sensitization to DPPIVs in wasp- and honeybee-sensitized patients are presented. (2) Methods: Proteomic analyses have been performed on the venom of the Asian hornet Vespa velutina to demonstrate the sequence of its DPPIV (allergen named Vesp v 3, with sequence accession number P0DRB8, and with the proteomic data available via ProteomeXchange with the identifier PXD046030). A comparison performed through their alignments and analysis of the three-dimensional structure showed a region with higher similarity among Hymenoptera DPPIVs. Additionally, ImmunoCAP™ determinations (including specific inhibition experiments), as well as IgE immunoblotting, are performed to demonstrate the allergenicity of Api m 5 and Ves v 3. (3) Results and Conclusions: The data presented demonstrate that the similarities among Hymenoptera DPPIVs are most likely localized at the C-terminal region of these enzymes. In addition, a higher similarity of the Vespa/Vespula DPPIVs is shown. The clinical cases analyzed demonstrated the allergenicity of Api m 5 and Ves v 3 in the sera of the allergic patients, as well as the presence of this minor component in the preparations used in venom immunotherapy.


Assuntos
Himenópteros , Vespas , Humanos , Abelhas , Animais , Alérgenos/química , Himenópteros/metabolismo , Dipeptidil Peptidase 4 , Proteômica , Venenos de Vespas/química
16.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833918

RESUMO

Antimicrobial peptides have gradually attracted interest as promising alternatives to conventional agents to control the worldwide health threats posed by antibiotic resistance and cancer. Crabrolin is a tridecapeptide extracted from the venom of the European hornet (Vespa crabro). Its antibacterial and anticancer potentials have been underrated compared to other peptides discovered from natural resources. Herein, a series of analogs were designed based on the template sequence of crabrolin to study its structure-activity relationship and enhance the drug's potential by changing the number, type, and distribution of charged residues. The cationicity-enhanced derivatives were shown to have improved antibacterial and anticancer activities with a lower toxicity. Notably, the double-arginine-modified product, crabrolin-TR, possessed a potent capacity against Pseudomonas aeruginosa (minimum inhibitory concentration (MIC) = 4 µM), which was around thirty times stronger than the parent peptide (MIC = 128 µM). Furthermore, crabrolin-TR showed an in vivo treatment efficacy in a Klebsiella-pneumoniae-infected waxworm model and was non-toxic under its maximum MBC value (MIC = 8 µM), indicating its therapeutic potency and better selectivity. Overall, we rationally designed functional peptides by progressively increasing the number and distribution of charged residues, demonstrating new insights for developing therapeutic molecules from natural resources with enhanced properties, and proposed crabrolin-TR as an appealing antibacterial and anticancer agent candidate for development.


Assuntos
Peptídeos Antimicrobianos , Vespas , Animais , Peptídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Venenos de Vespas/química , Testes de Sensibilidade Microbiana
17.
Toxins (Basel) ; 15(10)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37888622

RESUMO

Biologically active peptides have attracted increasing attention in research on the development of new drugs. Mastoparans, a group of wasp venom linear cationic α-helical peptides, have a variety of biological effects, including mast cell degranulation, activation of protein G, and antimicrobial and anticancer activities. However, the potential hemolytic activity of cationic α-helical peptides greatly limits the clinical applications of mastoparans. Here, we systematically and comprehensively studied the hemolytic activity of mastoparans based on our wasp venom mastoparan family peptide library. The results showed that among 55 mastoparans, 18 had strong hemolytic activity (EC50 ≤ 100 µM), 14 had modest hemolytic activity (100 µM < EC50 ≤ 400 µM) and 23 had little hemolytic activity (EC50 > 400 µM), suggesting functional variation in the molecular diversity of mastoparan family peptides from wasp venom. Based on these data, structure-function relationships were further explored, and, hydrophobicity, but not net charge and amphiphilicity, was found to play a critical role in the hemolytic activity of mastoparans. Combining the reported antimicrobial activity with the present hemolytic activity data, we found that four mastoparan peptides, Parapolybia-MP, Mastoparan-like peptide 12b, Dominulin A and Dominulin B, have promise for applications because of their high antimicrobial activity (MIC ≤ 10 µM) and low hemolytic activity (EC50 ≥ 400 µM). Our research not only identified new leads for the antimicrobial application of mastoparans but also provided a large chemical space to support the molecular design and optimization of mastoparan family peptides with low hemolytic activity regardless of net charge or amphiphilicity.


Assuntos
Anti-Infecciosos , Vespas , Animais , Venenos de Vespas/química , Peptídeos/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Vespas/química , Anti-Infecciosos/farmacologia , Hemólise
19.
Genome Res ; 33(9): 1554-1567, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37798117

RESUMO

Animal venom systems have emerged as valuable models for investigating how novel polygenic phenotypes may arise from gene evolution by varying molecular mechanisms. However, a significant portion of venom genes produce alternative mRNA isoforms that have not been extensively characterized, hindering a comprehensive understanding of venom biology. In this study, we present a full-length isoform-level profiling workflow integrating multiple RNA sequencing technologies, allowing us to reconstruct a high-resolution transcriptome landscape of venom genes in the parasitoid wasp Pteromalus puparum Our findings demonstrate that more than half of the venom genes generate multiple isoforms within the venom gland. Through mass spectrometry analysis, we confirm that alternative splicing contributes to the diversity of venom proteins, acting as a mechanism for expanding the venom repertoire. Notably, we identified seven venom genes that exhibit distinct isoform usages between the venom gland and other tissues. Furthermore, evolutionary analyses of venom serpin3 and orcokinin further reveal that the co-option of an ancient isoform and a newly evolved isoform, respectively, contributes to venom recruitment, providing valuable insights into the genetic mechanisms driving venom evolution in parasitoid wasps. Overall, our study presents a comprehensive investigation of venom genes at the isoform level, significantly advancing our understanding of alternative isoforms in venom diversity and evolution and setting the stage for further in-depth research on venoms.


Assuntos
Venenos de Vespas , Vespas , Animais , Venenos de Vespas/genética , Vespas/genética , Isoformas de Proteínas/genética , Transcriptoma , Processamento Alternativo
20.
J Immunol Methods ; 522: 113557, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37689389

RESUMO

Polybia paulista is a neotropical social wasp related to severe accidents and allergic reactions cases, including anaphylaxis, in southeastern Brazil. Antigen 5 (Poly p 5) is a major allergenic protein from its venom with potential use for component-resolved diagnostic. Therefore, the previous characterization of the immune response profile triggered by Poly p 5 should be evaluated. Recombinant Poly p 5 (rPoly p 5) was used to sensitize BALB/c mice with six weekly intradermal doses, and the specific antibody production and the functional profile of CD4+ T cells were assessed. rPoly p 5 induced the production of specific immunoglobulins (sIg) sIgE, sIgG1 and sIgG2a, which could recognize natural Poly p 5 presented in the venom of four different wasp species. rPoly p 5 stimulated in vitro the CD4+ T cells from immunized mice, which showed a significant proliferative response. These antigen-specific CD4+T cells produced IFN-γ and IL-17A cytokines and increased ROR-γT transcription factor expression. No differences between the control group and sensitized mice were found in IL-4 production and GATA-3 and T-bet expression. Interestingly, increased CD25+FoxP3+ regulatory T cells (Tregs) frequency was observed in the splenocyte cell cultures from rPoly p 5 immunized mice after the in vitro stimulation with both P. paulista venom extract and rPoly p 5. Here we showed that rPoly p 5 induces antigen-specific antibodies capable of recognizing Antigen 5 in the venom of four wasp species and modulates antigen-specific CD4+ T cells to IFN-γ production response associated with a Th17 profile in sensitized mice. These findings emphasize the potential use of rPoly p 5 as an essential source of a major wasp allergen with significant immunological properties.


Assuntos
Anafilaxia , Vespas , Animais , Camundongos , Vespas/metabolismo , Venenos de Vespas/metabolismo , Formação de Anticorpos , Alérgenos , Linfócitos T CD4-Positivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...