Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.850
Filtrar
1.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38721692

RESUMO

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.


Assuntos
Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne , Bainha de Mielina , Oligodendroglia , Animais , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Proliferação de Células , Distrofina/metabolismo , Distrofina/deficiência , Distrofina/genética , Corpo Caloso/patologia , Corpo Caloso/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Ventrículos Laterais/patologia , Ventrículos Laterais/metabolismo , Modelos Animais de Doenças , Diferenciação Celular , Masculino
2.
Adv Tech Stand Neurosurg ; 49: 123-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38700683

RESUMO

Intraventricular tumors of the lateral and third ventricles are relatively rare, accounting for 1-2% of all primary brain tumors in most large series [1-4]. They can be uniquely challenging to approach due to their deep location, propensity to become large before they are discovered, and association with hydrocephalus [5, 6]. The surgeon's goal is to develop a route to these deep lesions that will cause the least morbidity, provide adequate working space, and achieve a complete resection. This must be performed with minimal manipulation of the neural structures encircling the ventricles, avoiding functional cortical areas, and acquiring early control of feeding vessels [7, 8].


Assuntos
Neoplasias do Ventrículo Cerebral , Humanos , Neoplasias do Ventrículo Cerebral/cirurgia , Neoplasias do Ventrículo Cerebral/patologia , Corpo Caloso/cirurgia , Procedimentos Neurocirúrgicos/métodos , Ventrículos Cerebrais/cirurgia , Hidrocefalia/cirurgia , Ventrículos Laterais/cirurgia
3.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38664022

RESUMO

Neural stem cells (NSCs) reside in discrete regions of the adult mammalian brain where they can differentiate into neurons, astrocytes, and oligodendrocytes. Several studies suggest that mitochondria have a major role in regulating NSC fate. Here, we evaluated mitochondrial properties throughout NSC differentiation and in lineage-specific cells. For this, we used the neurosphere assay model to isolate, expand, and differentiate mouse subventricular zone postnatal NSCs. We found that the levels of proteins involved in mitochondrial fusion (Mitofusin [Mfn] 1 and Mfn 2) increased, whereas proteins involved in fission (dynamin-related protein 1 [DRP1]) decreased along differentiation. Importantly, changes in mitochondrial dynamics correlated with distinct patterns of mitochondrial morphology in each lineage. Particularly, we found that the number of branched and unbranched mitochondria increased during astroglial and neuronal differentiation, whereas the area occupied by mitochondrial structures significantly reduced with oligodendrocyte maturation. In addition, comparing the three lineages, neurons revealed to be the most energetically flexible, whereas astrocytes presented the highest ATP content. Our work identified putative mitochondrial targets to enhance lineage-directed differentiation of mouse subventricular zone-derived NSCs.


Assuntos
Astrócitos , Diferenciação Celular , Linhagem da Célula , Dinaminas , Mitocôndrias , Dinâmica Mitocondrial , Células-Tronco Neurais , Neurônios , Oligodendroglia , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Mitocôndrias/metabolismo , Camundongos , Diferenciação Celular/genética , Linhagem da Célula/genética , Astrócitos/metabolismo , Astrócitos/citologia , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Neurônios/metabolismo , Neurônios/citologia , Células Cultivadas , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Neurogênese , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo
4.
Cell Rep ; 43(4): 114031, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38583153

RESUMO

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.


Assuntos
Diferenciação Celular , Ventrículos Laterais , Fator Inibidor de Leucemia , Organoides , Células-Tronco Pluripotentes , Humanos , Organoides/metabolismo , Organoides/citologia , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Fator de Transcrição STAT3/metabolismo , Neuroglia/metabolismo , Neuroglia/citologia , Transdução de Sinais
5.
BMC Psychiatry ; 24(1): 309, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658884

RESUMO

BACKGROUND: Lateral ventricular enlargement represents a canonical morphometric finding in chronic patients with schizophrenia; however, longitudinal studies elucidating complex dynamic trajectories of ventricular volume change during critical early disease stages are sparse. METHODS: We measured lateral ventricular volumes in 113 first-episode schizophrenia patients (FES) at baseline visit (11.7 months after illness onset, SD = 12.3) and 128 age- and sex-matched healthy controls (HC) using 3T MRI. MRI was then repeated in both FES and HC one year later. RESULTS: Compared to controls, ventricular enlargement was identified in 18.6% of patients with FES (14.1% annual ventricular volume (VV) increase; 95%CI: 5.4; 33.1). The ventricular expansion correlated with the severity of PANSS-negative symptoms at one-year follow-up (p = 0.0078). Nevertheless, 16.8% of FES showed an opposite pattern of statistically significant ventricular shrinkage during ≈ one-year follow-up (-9.5% annual VV decrease; 95%CI: -23.7; -2.4). There were no differences in sex, illness duration, age of onset, duration of untreated psychosis, body mass index, the incidence of Schneiderian symptoms, or cumulative antipsychotic dose among the patient groups exhibiting ventricular enlargement, shrinkage, or no change in VV. CONCLUSION: Both enlargement and ventricular shrinkage are equally present in the early stages of schizophrenia. The newly discovered early reduction of VV in a subgroup of patients emphasizes the need for further research to understand its mechanisms.


Assuntos
Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Masculino , Feminino , Estudos Longitudinais , Adulto , Adulto Jovem , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/patologia , Progressão da Doença , Estudos de Casos e Controles , Adolescente
6.
No Shinkei Geka ; 52(2): 289-298, 2024 Mar.
Artigo em Japonês | MEDLINE | ID: mdl-38514118

RESUMO

Ventricular puncture is a basic procedure that neurosurgeons learn in the early stages of their careers and is also performed in ventricular drainage and neuroendoscopic surgery. However, few neurosurgeons are confident in their ability to insert and place a ventricular catheter in the optimal position for ventriculoperitoneal(VP)shunting in a single pass. Even experienced neurosurgical consultants confident in difficult microsurgical procedures are uncomfortable with ventricular catheter placement in VP shunting. Moreover, many neurosurgeons believe that they will never perform a ventricular puncture from the posterior horn of the lateral ventricles. The reason for thinking that ventricular puncture via the anterior horn is safer and more accurate compared with the posterior approach is because the anterior approach can use facial landmarks such as eyes, nose, and ears. However, even with the anterior approach in VP shunting, it is more difficult than with ventricular drainage or neuroendoscopic surgery to achieve accurate placement owing to head rotation, and the success rate has been reported to be as high as 50%. In this article, I introduced "fool proof," which uses preoperative simulation to place a ventricular catheter in the optimal position according to the size and shape of each patient's head and ventricles. The first choice for VP shunting is the right parieto-occipital approach with a posterior horn puncture from Frazier's Point and, for L-P shunting, a paramedian puncture from the 2/3 or 3/4 lumbar interspace.


Assuntos
Hidrocefalia , Derivação Ventriculoperitoneal , Humanos , Hidrocefalia/cirurgia , Procedimentos Neurocirúrgicos , Ventrículos Laterais/cirurgia , Neurocirurgiões
7.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38425213

RESUMO

The size and shape of the cerebral cortex have changed dramatically across evolution. For some species, the cortex remains smooth (lissencephalic) throughout their lifetime, while for other species, including humans and other primates, the cortex increases substantially in size and becomes folded (gyrencephalic). A folded cortex boasts substantially increased surface area, cortical thickness, and neuronal density, and it is therefore associated with higher-order cognitive abilities. The mechanisms that drive gyrification in some species, while others remain lissencephalic despite many shared neurodevelopmental features, have been a topic of investigation for many decades, giving rise to multiple perspectives of how the gyrified cerebral cortex acquires its unique shape. Recently, a structurally unique germinal layer, known as the outer subventricular zone, and the specialized cell type that populates it, called basal radial glial cells, were identified, and these have been shown to be indispensable for cortical expansion and folding. Transcriptional analyses and gene manipulation models have provided an invaluable insight into many of the key cellular and genetic drivers of gyrification. However, the degree to which certain biomechanical, genetic, and cellular processes drive gyrification remains under investigation. This review considers the key aspects of cerebral expansion and folding that have been identified to date and how theories of gyrification have evolved to incorporate this new knowledge.


Assuntos
Córtex Cerebral , Neurônios , Animais , Humanos , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Ventrículos Laterais/metabolismo , Primatas
8.
STAR Protoc ; 5(1): 102928, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430519

RESUMO

Disease-relevant in vivo tumor models are essential tools for both discovery and translational research. Here, we describe a highly genetically tractable technique for generating immunocompetent somatic glioblastoma (GBM) mouse models using piggyBac transposition and CRISPR-Cas9-mediated gene editing in wild-type mice. We describe steps to deliver plasmids into subventricular zone endogenous neural stem cells by injection and electroporation, leading to the development of adult tumors that closely recapitulate the histopathological, molecular, and cellular features of human GBM. For complete details on the use and execution of this protocol, please refer to Garcia-Diaz et al.1.


Assuntos
Glioblastoma , Células-Tronco Neurais , Camundongos , Humanos , Animais , Ventrículos Laterais/patologia , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/patologia , Edição de Genes/métodos , Plasmídeos , Modelos Animais de Doenças
9.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473789

RESUMO

In the adult mammalian brain, neurons are produced from neural stem cells (NSCs) residing in two niches-the subventricular zone (SVZ), which forms the lining of the lateral ventricles, and the subgranular zone in the hippocampus. Epigenetic mechanisms contribute to maintaining distinct cell fates by suppressing gene expression that is required for deciding alternate cell fates. Several histone deacetylase (HDAC) inhibitors can affect adult neurogenesis in vivo. However, data regarding the role of specific HDACs in cell fate decisions remain limited. Herein, we demonstrate that HDAC8 participates in the regulation of the proliferation and differentiation of NSCs/neural progenitor cells (NPCs) in the adult mouse SVZ. Specific knockout of Hdac8 in NSCs/NPCs inhibited proliferation and neural differentiation. Treatment with the selective HDAC8 inhibitor PCI-34051 reduced the neurosphere size in cultures from the SVZ of adult mice. Further transcriptional datasets revealed that HDAC8 inhibition in adult SVZ cells disturbs biological processes, transcription factor networks, and key regulatory pathways. HDAC8 inhibition in adult SVZ neurospheres upregulated the cytokine-mediated signaling and downregulated the cell cycle pathway. In conclusion, HDAC8 participates in the regulation of in vivo proliferation and differentiation of NSCs/NPCs in the adult SVZ, which provides insights into the underlying molecular mechanisms.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Intervenção Coronária Percutânea , Animais , Camundongos , Ventrículos Laterais , Inibidores de Histona Desacetilases , Proliferação de Células , Mamíferos
10.
Cell Stem Cell ; 31(4): 467-483.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38537631

RESUMO

Brain injury is highly associated with preterm birth. Complications of prematurity, including spontaneous or necrotizing enterocolitis (NEC)-associated intestinal perforations, are linked to lifelong neurologic impairment, yet the mechanisms are poorly understood. Early diagnosis of preterm brain injuries remains a significant challenge. Here, we identified subventricular zone echogenicity (SVE) on cranial ultrasound in preterm infants following intestinal perforations. The development of SVE was significantly associated with motor impairment at 2 years. SVE was replicated in a neonatal mouse model of intestinal perforation. Examination of the murine echogenic subventricular zone (SVZ) revealed NLRP3-inflammasome assembly in multiciliated FoxJ1+ ependymal cells and a loss of the ependymal border in this postnatal stem cell niche. These data suggest a mechanism of preterm brain injury localized to the SVZ that has not been adequately considered. Ultrasound detection of SVE may serve as an early biomarker for neurodevelopmental impairment after inflammatory disease in preterm infants.


Assuntos
Lesões Encefálicas , Perfuração Intestinal , Transtornos Motores , Nascimento Prematuro , Lactente , Feminino , Recém-Nascido , Humanos , Animais , Camundongos , Recém-Nascido Prematuro , Perfuração Intestinal/complicações , Ventrículos Laterais , Nicho de Células-Tronco , Transtornos Motores/complicações , Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico por imagem
11.
Stem Cell Reports ; 19(3): 351-365, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38366596

RESUMO

The expression of growth/differentiation factor (GDF) 15 increases in the ganglionic eminence (GE) late in neural development, especially in neural stem cells (NSCs). However, GDF15 function in this region remains unknown. We report that GDF15 receptor is expressed apically in the GE and that GDF15 ablation promotes proliferation and cell division in the embryonic GE and in the adult ventricular-subventricular zone (V-SVZ). This causes a transient generation of additional neuronal progenitors, compensated by cell death, and a lasting increase in the number of ependymal cells and apical NSCs. Finally, both GDF15 receptor and the epidermal growth factor receptor (EGFR) were expressed in progenitors and mutation of GDF15 affected EGFR signaling. However, only exposure to exogenous GDF15, but not to EGF, normalized proliferation and the number of apical progenitors. Thus, GDF15 regulates proliferation of apical progenitors in the GE, thereby affecting the number of ependymal cells and NSCs.


Assuntos
Ventrículos Laterais , Células-Tronco Neurais , Receptores ErbB/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Contagem de Células , Proliferação de Células , Diferenciação Celular/fisiologia
12.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38305737

RESUMO

Tight control over transcription factor activity is necessary for a sensible balance between cellular proliferation and differentiation in the embryo and during tissue homeostasis by adult stem cells, but mechanistic details have remained incomplete. The homeodomain transcription factor MEIS2 is an important regulator of neurogenesis in the ventricular-subventricular zone (V-SVZ) adult stem cell niche in mice. We here identify MEIS2 as direct target of the intracellular protease calpain-2 (composed of the catalytic subunit CAPN2 and the regulatory subunit CAPNS1). Phosphorylation at conserved serine and/or threonine residues, or dimerization with PBX1, reduced the sensitivity of MEIS2 towards cleavage by calpain-2. In the adult V-SVZ, calpain-2 activity is high in stem and progenitor cells, but rapidly declines during neuronal differentiation, which is accompanied by increased stability of MEIS2 full-length protein. In accordance with this, blocking calpain-2 activity in stem and progenitor cells, or overexpression of a cleavage-insensitive form of MEIS2, increased the production of neurons, whereas overexpression of a catalytically active CAPN2 reduced it. Collectively, our results support a key role for calpain-2 in controlling the output of adult V-SVZ neural stem and progenitor cells through cleavage of the neuronal fate determinant MEIS2.


Assuntos
Células-Tronco Neurais , Fatores de Transcrição , Animais , Camundongos , Calpaína/genética , Calpaína/metabolismo , Diferenciação Celular , Proliferação de Células , Endopeptidases/metabolismo , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Peptídeo Hidrolases/metabolismo , Fatores de Transcrição/metabolismo
13.
J Neurooncol ; 167(1): 89-97, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376766

RESUMO

PURPOSE: Glioblastomas (GBM) with subventricular zone (SVZ) contact have previously been associated with a specific epigenetic fingerprint. We aim to validate a reported bulk methylation signature to determine SVZ contact. METHODS: Methylation array analysis was performed on IDHwt GBM patients treated at our institution. The v11b4 classifier was used to ensure the inclusion of only receptor tyrosine kinase (RTK) I, II, and mesenchymal (MES) subtypes. Methylation-based assignment (SVZM ±) was performed using hierarchical cluster analysis. Magnetic resonance imaging (MRI) (T1ce) was independently reviewed for SVZ contact by three experienced readers. RESULTS: Sixty-five of 70 samples were classified as RTK I, II, and MES. Full T1ce MRI-based rater consensus was observed in 54 cases, which were retained for further analysis. Epigenetic SVZM classification and SVZ were strongly associated (OR: 15.0, p = 0.003). Thirteen of fourteen differential CpGs were located in the previously described differentially methylated LRBA/MAB21L2 locus. SVZ + tumors were linked to shorter OS (hazard ratio (HR): 3.80, p = 0.02) than SVZM + at earlier time points (time-dependency of SVZM, p < 0.05). Considering the SVZ consensus as the ground truth, SVZM classification yields a sensitivity of 96.6%, specificity of 36.0%, positive predictive value (PPV) of 63.6%, and negative predictive value (NPV) of 90.0%. CONCLUSION: Herein, we validated the specific epigenetic signature in GBM in the vicinity of the SVZ and highlighted the importance of methylation of a part of the LRBA/MAB21L2 gene locus. Whether SVZM can replace MRI-based SVZ assignment as a prognostic and diagnostic tool will require prospective studies of large, homogeneous cohorts.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Estudos Prospectivos , Metilação , Proteínas Adaptadoras de Transdução de Sinal , Proteínas do Olho , Peptídeos e Proteínas de Sinalização Intracelular
14.
Cell Rep ; 43(2): 113734, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38349790

RESUMO

Germinal activity persists throughout life within the ventricular-subventricular zone (V-SVZ) of the postnatal forebrain due to the presence of neural stem cells (NSCs). Accumulating evidence points to a recruitment for these cells following early brain injuries and suggests their amenability to manipulations. We used chronic hypoxia as a rodent model of early brain injury to investigate the reactivation of cortical progenitors at postnatal times. Our results reveal an increased proliferation and production of glutamatergic progenitors within the dorsal V-SVZ. Fate mapping of V-SVZ NSCs demonstrates their contribution to de novo cortical neurogenesis. Transcriptional analysis of glutamatergic progenitors shows parallel changes in methyltransferase 14 (Mettl14) and Wnt/ß-catenin signaling. In agreement, manipulations through genetic and pharmacological activation of Mettl14 and the Wnt/ß-catenin pathway, respectively, induce neurogenesis and promote newly-formed cell maturation. Finally, labeling of young adult NSCs demonstrates that pharmacological NSC activation has no adverse effects on the reservoir of V-SVZ NSCs and on their germinal activity.


Assuntos
Lesões Encefálicas , beta Catenina , Humanos , Via de Sinalização Wnt , Diferenciação Celular , Ventrículos do Coração , Metiltransferases , Neurogênese , Ventrículos Laterais
15.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351133

RESUMO

The subependymal zone (SEZ), also known as the subventricular zone (SVZ), constitutes a neurogenic niche that persists during postnatal life. In humans, the neurogenic potential of the SEZ declines after the first year of life. However, studies discovering markers of stem and progenitor cells highlight the neurogenic capacity of progenitors in the adult human SEZ, with increased neurogenic activity occurring under pathological conditions. In the present study, the complete cellular niche of the adult human SEZ was characterized by single-nucleus RNA sequencing, and compared between four youth (age 16-22) and four middle-aged adults (age 44-53). We identified 11 cellular clusters including clusters expressing marker genes for neural stem cells (NSCs), neuroblasts, immature neurons, and oligodendrocyte progenitor cells. The relative abundance of NSC and neuroblast clusters did not differ between the two age groups, indicating that the pool of SEZ NSCs does not decline in this age range. The relative abundance of oligodendrocyte progenitors and microglia decreased in middle-age, indicating that the cellular composition of human SEZ is remodeled between youth and adulthood. The expression of genes related to nervous system development was higher across different cell types, including NSCs, in youth as compared with middle-age. These transcriptional changes suggest ongoing central nervous system plasticity in the SEZ in youth, which declined in middle-age.


Assuntos
Células-Tronco Neurais , Células Precursoras de Oligodendrócitos , Adulto , Pessoa de Meia-Idade , Adolescente , Humanos , Adulto Jovem , RNA-Seq , Neurônios , Ventrículos Laterais/metabolismo , Neurogênese/fisiologia
16.
J Neurosci Methods ; 404: 110060, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38244848

RESUMO

BACKGROUND: Isolation of adult Neural Stem/Progenitor Cells (NSPCs) from their neurogenic niches, is a prerequisite for studies involving culturing of NSPCs as neurospheres or attached monolayers in vitro. The currently available protocols involve the use of multiple animals and expensive reagents to establish the NSPCs culture. NEW METHOD: This unit describes a method to isolate and culture NSPCs from the two neurogenic niches in the mouse brain, the Subventricular Zone (SVZ) and Dentate gyrus (DG)/subgranular zone (SGZ), in an easy and cost-effective manner. RESULTS: NSPCs from SVZ and DG regions of adult mouse brains were isolated and cultured up to passage 15 without losing their stem/progenitor characteristics. These NSPCs could be differentiated into neurons, astrocytes, and oligodendrocytes, revealing its trilineage potential. COMPARISON WITH EXISTING METHODS: This protocol eliminates the need for multiple animals as well as the use of many expensive reagents mentioned in previous protocols, adding to the cost-effectiveness of experiments. In addition, we have effectively reduced the number of steps involved in isolation and propagation, thereby minimizing the chances of contamination. CONCLUSION: Our simplified protocol for the isolation and culturing of adult NSPCs from the SVZ and DG demonstrates a cost-effective and efficient alternative to existing methods, reducing the need for sacrificing many animals and the usage of expensive reagents. This method permits the long-term maintenance of NSPCs' stem/progenitor characteristics and their effective differentiation into the major types of cells in the brain, making it a valuable resource for researchers in the field. BASIC PROTOCOL: Isolation and Culturing of Neural Stem/Progenitor cells from the Sub ventricular Zone and the Dentate Gyrus of the adult mouse brain. SUPPORT PROTOCOL 1: Cryopreservation, and revival of frozen NSPCs. SUPPORT PROTOCOL 2: Preparation of adherent monolayer cultures of neural stem/progenitor cells for the differentiation into multiple lineages SUPPORT PROTOCOL 3: Differentiation of NSPCs to neuronal and glial lineages SUPPORT PROTOCOL 4: Characterization of differentiated cells by immunocytochemistry.


Assuntos
Ventrículos Laterais , Células-Tronco Neurais , Camundongos , Animais , Análise Custo-Benefício , Diferenciação Celular , Neurogênese , Encéfalo , Giro Denteado
17.
Neuroradiology ; 66(4): 487-506, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240767

RESUMO

PURPOSE: To assess the performance of the inferior lateral ventricle (ILV) to hippocampal (Hip) volume ratio on brain MRI, for Alzheimer's disease (AD) diagnostics, comparing it to individual automated ILV and hippocampal volumes, and visual medial temporal lobe atrophy (MTA) consensus ratings. METHODS: One-hundred-twelve subjects (mean age ± SD, 66.85 ± 13.64 years) with varying degrees of cognitive decline underwent MRI using a Philips Ingenia 3T. The MTA scale by Scheltens, rated on coronal 3D T1-weighted images, was determined by three experienced radiologists, blinded to diagnosis and sex. Automated volumetry was computed by icobrain dm (v. 5.10) for total, left, right hippocampal, and ILV volumes. The ILV/Hip ratio, defined as the percentage ratio between ILV and hippocampal volumes, was calculated and compared against a normative reference population (n = 1903). Inter-rater agreement, association, classification accuracy, and clinical interpretability on patient level were reported. RESULTS: Visual MTA scores showed excellent inter-rater agreement. Ordinal logistic regression and correlation analyses demonstrated robust associations between automated brain segmentations and visual MTA ratings, with the ILV/Hip ratio consistently outperforming individual hippocampal and ILV volumes. Pairwise classification accuracy showed good performance without statistically significant differences between the ILV/Hip ratio and visual MTA across disease stages, indicating potential interchangeability. Comparison to the normative population and clinical interpretability assessments showed commensurability in classifying MTA "severity" between visual MTA and ILV/Hip ratio measurements. CONCLUSION: The ILV/Hip ratio shows the highest correlation to visual MTA, in comparison to automated individual ILV and hippocampal volumes, offering standardized measures for diagnostic support in different stages of cognitive decline.


Assuntos
Doença de Alzheimer , Lobo Temporal , Humanos , Lobo Temporal/patologia , Doença de Alzheimer/patologia , Ventrículos Laterais , Atrofia/patologia , Hipocampo/patologia , Imageamento por Ressonância Magnética/métodos
18.
World Neurosurg ; 184: 125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219802

RESUMO

Isolated unilateral hydrocephalus (IUH) is a condition caused by unilateral obstruction of the foramen of Monro.1 Etiopathogenic causes include tumors, congenital lesions, infective ventriculitis, intraventricular haemorrhage, and iatrogenic causes such as the presence of contralateral shunts.2,3 Neuroendoscopic management is considered the "gold-standard" treatment in IUH.4 Even if endoscopic septostomy and foraminoplasty in IUH are well-known procedures,5,6 IUH after an interhemispheric transcallosal transchoroidal approach for removal of a III ventricle colloid cyst is a complication barely described in literature. Video 1 describes this rare complication and the neuroendoscopic treatment adopted, including the operative room setup, patient's positioning, instrumentation needed, and a series of intraoperative tips for the performance of septostomy and Monroplasty via a single, precoronal burr hole. The scalp entry point and endoscope trajectory, homolateral to the dilated ventricle, were planned on the neuronavigation system. The avascular septal zone away from the septal veins and body of the fornix was reached, and the ostomy was performed. At the end of the procedure, Monroplasty was performed, too. The procedure was effective in solving the hydrocephalus and patient's clinical picture. No surgical complications occurred. Imaging demonstrated an evident and progressive reduction of enlarged lateral ventricle. In authors' opinion, the single burr-hole approach, ipsilateral to the enlarged ventricle, provides an optimal identification the intraventricular anatomy and allows Monroplasty to be performed, if deemed feasible during surgery. The patient consented to the procedure. The participants and any identifiable individuals consented to publication of their images.


Assuntos
Cistos Coloides , Hidrocefalia , Neuroendoscopia , Terceiro Ventrículo , Humanos , Ventrículos Laterais , Terceiro Ventrículo/cirurgia , Cistos Coloides/diagnóstico por imagem , Cistos Coloides/cirurgia , Cistos Coloides/complicações , Ventrículos Cerebrais/cirurgia , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/etiologia , Hidrocefalia/cirurgia , Neuroendoscopia/métodos
19.
World Neurosurg ; 183: 2, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38061543

RESUMO

Patients who present with a large colloid cyst (CC) and nondilated ventricles represent a therapeutic challenge.1-3 Although transcallosal approaches provide reliable access to the lateral ventricle and foramen of Monro, direct visualization of the vascular attachment of the CC to the roof of the third ventricle is not always possible. This can be especially true with CCs located more posteriorly and superiorly.4 Opening of the choroidal fissure can improve access and visualization to the posterior third ventricle; however, this maneuver is associated with some element of risk.5 There is a paucity of operative video in the literature illustrating the technique of gentle, microblade elevation of the fornix to improve visualization into the third ventricle and, on occasion, avoid the need to open the choroidal fissure.6 We report the case of a 28-year-old woman who presented with headaches and progressive short-term memory dysfunction (Video 1). Magnetic resonance imaging demonstrated a 17-mm CC associated with distortion and thinning of the bilateral fornices without hydrocephalus. The patient was offered interhemispheric, transcallosal resection. Intraoperatively, gentle elevation of the fornix with a microblade retractor facilitated access to the vascular attachment of the colloid cyst-obviating the need to open the choroidal fissure. The index operative video discusses the technical nuances associated with trans-callosal resection of CC with use of the microblade retractor. Special emphasis is placed on the intricate relationship of neighboring anatomic structures. The patient consented to the procedure and the publication of her image.


Assuntos
Cistos Coloides , Terceiro Ventrículo , Humanos , Feminino , Adulto , Cistos Coloides/diagnóstico por imagem , Cistos Coloides/cirurgia , Cistos Coloides/patologia , Terceiro Ventrículo/cirurgia , Ventrículos Laterais/cirurgia , Procedimentos Neurocirúrgicos/métodos , Microcirurgia
20.
Pediatr Res ; 95(1): 112-119, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37573381

RESUMO

BACKGROUND: Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. To investigate the neurogenic response to hypoxia-ischemia (HI) followed by normothermia (38.5 °C) or three different hypothermic temperatures (35, 33.5, or 30 °C) in the subventricular zone (SVZ) of the neonatal piglet. METHODS: Following transient cerebral HI and resuscitation, 28 newborn piglets were randomized to: normothermia or whole-body cooling to 35 °C, 33.5 °C, or 30 °C during 2-26 h (all n = 7). At 48 h, piglets were euthanized and SVZ obtained to evaluate its cellularity, pattern of cell death, radial glia length, doublecortin (DCX, neuroblasts) expression, and Ki67 (cell proliferation) and Ki67/Sox2 (neural stem/progenitor dividing) cell counts. RESULTS: Normothermic piglets showed lower total (Ki67+) and neural stem/progenitor dividing (Ki67+Sox2+) cell counts when compared to hypothermic groups. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and DCX immunohistochemistry. Cooling to 30 °C, however, revealed decreased cellularity in the lateral SVZ and shorter radial glia processes when compared with 33.5 °C. CONCLUSIONS: In a neonatal piglet model, hypothermia to 33.5 °C modulates the neurogenic response of the SVZ after HI, highlighting the potential beneficial effect of hypothermia to 33.5 °C on endogenous neurogenesis and the detrimental effect of overcooling beyond this threshold. IMPACT: Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. Hypothermia may modulate neurogenesis in the subventricular zone (SVZ) of the neonatal hypoxic-ischemic piglet. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and doublecortin immunohistochemistry; cooling to 30 °C, however, revealed decreased cellularity and shorter radial glia processes. In a neonatal piglet model, therapeutic hypothermia (33.5 °C) modulates the neurogenic response of the SVZ after hypoxia-ischemia, highlighting also the detrimental effect of overcooling beyond this threshold.


Assuntos
Hipotermia Induzida , Hipotermia , Hipóxia-Isquemia Encefálica , Animais , Suínos , Ventrículos Laterais , Animais Recém-Nascidos , Hipotermia/terapia , Antígeno Ki-67 , Neurogênese , Hipóxia-Isquemia Encefálica/terapia , Isquemia , Proteínas do Domínio Duplacortina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...