Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 20(3): 433-443, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29394523

RESUMO

Secretory structures are common in Asteraceae, where they exhibit a high degree of morphological diversity. The species Verbesina macrophylla, popularly known as assa-peixe, is native to Brazil where it is widely used for medicinal purposes. Despite its potential medical importance, there have been no studies of the anatomy of this species, especially its secretory structures and secreted compounds. This study examined leaves of V. macrophylla with emphasis on secretory structures and secreted secondary metabolites. Development of secretory ducts and the mechanism of secretion production are described for V. macrophylla using ultrastructure, yield and chemical composition of its essential oils. Verbesina macrophylla has a hypostomatic leaf blade with dorsiventral mesophyll and secretory ducts associated with vascular bundles of schizogenous origin. Histochemistry identified the presence of lipids, terpenes, alkaloids and mucopolysaccharides. Ultrastructure suggests that the secretion released into the duct lumen is produced in plastids of transfer cells, parenchymal sheath cells and stored in vacuoles in these cells and duct epithelial cells. The essential oil content was 0.8%, and its major components were germacrene D, germacrene D-4-ol, ß-caryophyllene, bicyclogermacrene and α-cadinol. Secretory ducts of V. macrophylla are squizogenous. Substances identified in tissues suggest that both secretions stored in the ducts and in adjacent parenchyma cells are involved in chemical defence. The essential oil is rich in sesquiterpenes, with germacrene D and its derivatives being notable components.


Assuntos
Óleos Voláteis/metabolismo , Folhas de Planta/anatomia & histologia , Verbesina/anatomia & histologia , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Sesquiterpenos Policíclicos , Sesquiterpenos/metabolismo , Sesquiterpenos de Germacrano/metabolismo , Terpenos/metabolismo , Verbesina/metabolismo , Verbesina/ultraestrutura
2.
Environ Pollut ; 143(3): 427-34, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16460853

RESUMO

Cutleaf coneflower (Rudbeckia laciniata L.), crown-beard (Verbesina occidentalis Walt.), and tall milkweed (Asclepias exaltata L.) are wildflower species native to Great Smoky Mountains National Park (U.S.A.). Natural populations of each species were analyzed for leaf ascorbic acid (AA) and dehydroascorbic acid (DHA) to assess the role of ascorbate in protecting the plants from ozone stress. Tall milkweed contained greater quantities of AA (7-10 micromol g(-1) fresh weight) than crown-beard (2-4 micromol g(-1) fresh weight) or cutleaf coneflower (0.5-2 micromol g(-1) fresh weight). DHA was elevated in crown-beard and cutleaf coneflower relative to tall milkweed suggesting a diminished capacity for converting DHA into AA. Tall milkweed accumulated AA in the leaf apoplast (30-100 nmol g(-1) fresh weight) with individuals expressing ozone foliar injury symptoms late in the season having less apoplast AA. In contrast, AA was not present in the leaf apoplast of either crown-beard or cutleaf coneflower. Unidentified antioxidant compounds were present in the leaf apoplast of all three species. Overall, distinct differences in antioxidant metabolism were found in the wildflower species that corresponded with differences in ozone sensitivity.


Assuntos
Poluentes Atmosféricos/toxicidade , Asclepias/metabolismo , Ácido Ascórbico/metabolismo , Asteraceae/metabolismo , Ozônio/toxicidade , Inglaterra , Monitoramento Ambiental , Humanos , Folhas de Planta/metabolismo , Rudbeckia/metabolismo , Estações do Ano , Verbesina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...