Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
J Comp Neurol ; 530(18): 3179-3192, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36066425

RESUMO

In the dorsal lateral geniculate nucleus (LGN) of mice that lack retinal input, a population of large terminals supplants the synaptic arrangements normally made by the missing retinogeniculate terminals. To identify potential sources of these "retinogeniculate replacement terminals," we used mutant mice (math5-/- ) which lack retinofugal projections due to the failure of retinal ganglion cells to develop. In this line, we labeled LGN terminals that originate from the primary visual cortex (V1) or the parabigeminal nucleus (PBG), and compared their ultrastructure to retinogeniculate, V1 or PBG terminals in the dLGN of C57Blk6 (WT) mice (schematically depicted above graph). Corticogeniculate terminals labeled in WT and math5-/- mice were similar in size and both groups were significantly smaller than WT retinogeniculate terminals. In contrast, the PBG projection in math5-/- mice was extensive and there was considerable overlap in the sizes of retinogeniculate terminals in WT mice and PBG terminals in math5-/- mice (summarized in histogram). The data indicate that V1 is not a source of "retinogeniculate replacement terminals" and suggests that large PBG terminals expand their innervation territory to replace retinogeniculate terminals in their absence.


Assuntos
Corpos Geniculados , Vias Visuais , Animais , Camundongos , Vias Visuais/ultraestrutura , Corpos Geniculados/ultraestrutura , Células Ganglionares da Retina , Retina , Teto do Mesencéfalo
2.
Nature ; 608(7921): 146-152, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35831500

RESUMO

Social affiliation emerges from individual-level behavioural rules that are driven by conspecific signals1-5. Long-distance attraction and short-distance repulsion, for example, are rules that jointly set a preferred interanimal distance in swarms6-8. However, little is known about their perceptual mechanisms and executive neural circuits3. Here we trace the neuronal response to self-like biological motion9,10, a visual trigger for affiliation in developing zebrafish2,11. Unbiased activity mapping and targeted volumetric two-photon calcium imaging revealed 21 activity hotspots distributed throughout the brain as well as clustered biological-motion-tuned neurons in a multimodal, socially activated nucleus of the dorsal thalamus. Individual dorsal thalamus neurons encode local acceleration of visual stimuli mimicking typical fish kinetics but are insensitive to global or continuous motion. Electron microscopic reconstruction of dorsal thalamus neurons revealed synaptic input from the optic tectum and projections into hypothalamic areas with conserved social function12-14. Ablation of the optic tectum or dorsal thalamus selectively disrupted social attraction without affecting short-distance repulsion. This tectothalamic pathway thus serves visual recognition of conspecifics, and dissociates neuronal control of attraction from repulsion during social affiliation, revealing a circuit underpinning collective behaviour.


Assuntos
Aglomeração , Neurônios , Comportamento Social , Colículos Superiores , Tálamo , Vias Visuais , Peixe-Zebra , Animais , Mapeamento Encefálico , Cálcio/análise , Hipotálamo/citologia , Hipotálamo/fisiologia , Locomoção , Microscopia Eletrônica , Neurônios/citologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Reconhecimento Visual de Modelos , Estimulação Luminosa , Colículos Superiores/citologia , Colículos Superiores/fisiologia , Tálamo/citologia , Tálamo/fisiologia , Vias Visuais/citologia , Vias Visuais/fisiologia , Vias Visuais/ultraestrutura , Peixe-Zebra/fisiologia
3.
J Neurosci ; 41(23): 5015-5028, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33893221

RESUMO

Double cones are the most common photoreceptor cell type in most avian retinas, but their precise functions remain a mystery. Among their suggested functions are luminance detection, polarized light detection, and light-dependent, radical pair-based magnetoreception. To better understand the function of double cones, it will be crucial to know how they are connected to the neural network in the avian retina. Here we use serial sectioning, multibeam scanning electron microscopy to investigate double-cone anatomy and connectivity with a particular focus on their contacts to other photoreceptor and bipolar cells in the chicken retina. We found that double cones are highly connected to neighboring double cones and with other photoreceptor cells through telodendria-to-terminal and telodendria-to-telodendria contacts. We also identified 15 bipolar cell types based on their axonal stratifications, photoreceptor contact pattern, soma position, and dendritic and axonal field mosaics. Thirteen of these 15 bipolar cell types contacted at least one or both members of the double cone. All bipolar cells were bistratified or multistratified. We also identified surprising contacts between other cone types and between rods and cones. Our data indicate a much more complex connectivity network in the outer plexiform layer of the avian retina than originally expected.SIGNIFICANCE STATEMENT Like in humans, vision is one of the most important senses for birds. Here, we present the first serial section multibeam scanning electron microscopy dataset from any bird retina. We identified many previously undescribed rod-to-cone and cone-to-cone connections. Surprisingly, of the 15 bipolar cell types we identified, 11 received input from rods and 13 of 15 received at least part of their input from double cones. Therefore, double cones seem to play many different and important roles in avian retinal processing, and the neural network and thus information processing in the outer retina are much more complex than previously expected. These fundamental findings will be very important for several fields of science, including vertebrate vision, avian magnetoreception, and comparative neuroanatomy.


Assuntos
Retina/ultraestrutura , Células Bipolares da Retina/ultraestrutura , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Vias Visuais/ultraestrutura , Animais , Galinhas , Microscopia Eletrônica de Varredura
4.
Invest Ophthalmol Vis Sci ; 62(1): 31, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33507230

RESUMO

Purpose: The three-dimensional configurations of rod and cone bipolar cell (BC) dendrites and horizontal cell (HC) processes outside rod and cone synaptic terminals have not been fully elucidated. We reveal how these neurites are mutually arranged to coordinate formation and maintenance of the postsynaptic complex of ribbon synapses in mouse and monkey retinas. Methods: Serial section transmission electron microscopy was utilized to reconstruct BC and HC neurites in macaque monkey and mouse, including metabotropic glutamate receptor 6 (mGluR6)-knockout mice. Results: Starting from sporadically distributed branching points, rod BC and HC neurites (B and H, respectively) took specific paths to rod spherules by gradually adjusting their mutual positions, which resulted in a closed alternating pattern of H‒B‒H‒B neurites at the rod spherule aperture. This order corresponded to the array of elements constituting the postsynaptic complex of ribbon synapses. We identified novel helical coils of HC processes surrounding the rod BC dendrite in both mouse and macaque retinas, and these structures occurred more frequently in mGluR6-knockout than wild-type mouse retinas. Horizontal cell processes also formed hook-like protrusions that encircled cone BC and HC neurites below the cone pedicles in the macaque retina. Conclusions: Bipolar and horizontal cell neurites take specific paths to adjust their mutual positions at the rod spherule aperture. Some HC processes are helically coiled around rod BC dendrites or form hook-like protrusions around cone BC dendrites and HC processes. Loss of mGluR6 signaling may be one factor promoting unbalanced neurite growth and compensatory neurite coiling.


Assuntos
Fasciculação Axônica/fisiologia , Neuritos/ultraestrutura , Células Bipolares da Retina/ultraestrutura , Células Horizontais da Retina/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Vias Visuais/ultraestrutura , Animais , Feminino , Macaca fuscata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Terminações Pré-Sinápticas , Receptores de Glutamato Metabotrópico/fisiologia , Sinapses
5.
J Comp Neurol ; 529(7): 1442-1455, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939774

RESUMO

The mammalian visual system is composed of circuitry connecting sensory input from the retina to the processing core of the visual cortex. The two main retinorecipient brain targets, the superior colliculus (SC) and dorsal lateral geniculate nucleus (dLGN), bridge retinal input and visual output. The primary cilium is a conserved organelle increasingly viewed as a critical sensor for the regulation of developmental and homeostatic pathways in most mammalian cell types. Moreover, cilia have been described as crucial for neurogenesis, neuronal maturation, and survival in the cortex and retina. However, cilia in the visual relay center remain to be fully described. In this study, we characterized the ciliation profile of the SC and dLGN and found that the overall number of ciliated cells declined during development. Interestingly, shorter ciliated cells in both regions were identified as neurons, whose numbers remained stable over time, suggesting that cilia retention is a critical feature for optimal neuronal function in SC and dLGN. Our study suggests that primary cilia are important for neuronal maturation and function in cells of the SC and dLGN.


Assuntos
Cílios/ultraestrutura , Corpos Geniculados/ultraestrutura , Neurogênese/fisiologia , Colículos Superiores/ultraestrutura , Vias Visuais/ultraestrutura , Animais , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Neurônios/ultraestrutura , Vias Visuais/fisiologia
6.
J Comp Neurol ; 529(2): 259-280, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32400022

RESUMO

Spiders possess a wide array of sensory-driven behaviors and therefore provide rich models for studying evolutionary hypotheses about the relationship between brain morphology, sensory systems, and behavior. Despite this, only a handful of studies have examined brain variation across the order of Araneae. In this study, I present descriptions of the gross brain morphology for 19 families of spiders that vary in eye morphology. Spiders showed the most variation in the secondary eye visual pathway. Based on this variation, spiders could be categorized into four groups. Group 1 spiders had small, underdeveloped laminae, no medullae, and no mushroom bodies. Group 2 spiders had large laminae, no medullae and large mushroom bodies. Group 3 spiders had laminae and some evidence of reduced medullae and mushroom bodies. Group 4 spiders had the most complex systems, with large laminae, medullae formed from optical glomeruli, and robust mushroom bodies. Within groups, there was large variation in the shape and size of individual regions, indicating possible variation in neuronal organization. The possible evolutionary implications of the loss of a dedicated olfactory organ in spiders and its effects on the mushroom body are also discussed.


Assuntos
Encéfalo/anormalidades , Olho/anatomia & histologia , Corpos Pedunculados/anatomia & histologia , Aranhas/anatomia & histologia , Vias Visuais/anatomia & histologia , Animais , Evolução Biológica , Encéfalo/ultraestrutura , Olho/ultraestrutura , Corpos Pedunculados/ultraestrutura , Aranhas/ultraestrutura , Vias Visuais/ultraestrutura
7.
Arthropod Struct Dev ; 60: 101024, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33383276

RESUMO

Only a few studies have examined the central visual system of Solifugae until now. To get new insights suitable for phylogenetic analysis we studied the R-cell (or retinula cell) projections and visual neuropils of Galeodes granti using various methods. G. granti possesses large median eyes and rudimentary lateral eyes. In this study, only the R-cells and neuropils of the median eyes were successfully stained. The R-cells terminate in two distinct visual neuropils. The first neuropil is located externally to the protocerebrum directly below the retina, the second neuropil lies in the cell body rind of the protocerebrum, and immediately adjacent is the arcuate body. This layout of the median eye visual system differs from Arachnopulmonata (Scorpiones + Tetrapulmonata). However, there are several similarities with Opiliones. In both, (1) the R-cells are connected to a first and second visual neuropil and not to any other region of the brain, (2) the first neuropil is not embedded in the cell body rind of the protocerebrum, it is rather external to the protocerebrum, (3) the second visual neuropil is embedded in the cell body rind, and (4) the second neuropil abuts the arcuate body. These findings may provide important new characters for the discussion on arachnid phylogeny.


Assuntos
Aracnídeos/anatomia & histologia , Animais , Aracnídeos/ultraestrutura , Olho/anatomia & histologia , Olho/ultraestrutura , Microscopia , Microscopia Eletrônica de Transmissão , Neurópilo/citologia , Neurópilo/ultraestrutura , Vias Visuais/anatomia & histologia , Vias Visuais/ultraestrutura
8.
Neuron ; 108(5): 905-918.e3, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33027639

RESUMO

The human visual pathway is specialized for the perception of fine spatial detail. The neural circuitry that determines visual acuity begins in the retinal fovea, where the resolution afforded by a dense array of cone photoreceptors is preserved in the retinal output by a remarkable non-divergent circuit: cone → midget bipolar interneuron → midget ganglion cell (the "private line"). How the private line develops is unknown; it could involve early specification of extremely precise synaptic connections or, by contrast, emerge slowly in concordance with the gradual maturation of foveal architecture and visual sensitivity. To distinguish between these hypotheses, we reconstructed the midget circuitry in the fetal human fovea by serial electron microscopy. We discovered that the midget private line is sculpted by synaptic remodeling beginning early in fetal life, with midget bipolar cells contacting a single cone by mid-gestation and bipolar cell-ganglion cell connectivity undergoing a more protracted period of refinement.


Assuntos
Conectoma/métodos , Fóvea Central/diagnóstico por imagem , Fóvea Central/ultraestrutura , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/ultraestrutura , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Feminino , Feto , Fóvea Central/crescimento & desenvolvimento , Humanos , Imageamento Tridimensional/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Células Fotorreceptoras Retinianas Cones/fisiologia , Vias Visuais/diagnóstico por imagem , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/ultraestrutura , Adulto Jovem
9.
Neuron ; 108(3): 451-468.e9, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32931754

RESUMO

Sensory experience remodels neural circuits in the early postnatal brain through mechanisms that remain to be elucidated. Applying a new method of ultrastructural analysis to the retinogeniculate circuit, we find that visual experience alters the number and structure of synapses between the retina and the thalamus. These changes require vision-dependent transcription of the receptor Fn14 in thalamic relay neurons and the induction of its ligand TWEAK in microglia. Fn14 functions to increase the number of bulbous spine-associated synapses at retinogeniculate connections, likely contributing to the strengthening of the circuit that occurs in response to visual experience. However, at retinogeniculate connections near TWEAK-expressing microglia, TWEAK signals via Fn14 to restrict the number of bulbous spines on relay neurons, leading to the elimination of a subset of connections. Thus, TWEAK and Fn14 represent an intercellular signaling axis through which microglia shape retinogeniculate connectivity in response to sensory experience.


Assuntos
Microglia/fisiologia , Microglia/ultraestrutura , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Sinapses/ultraestrutura , Animais , Citocina TWEAK/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão/métodos , Neurônios/metabolismo , Neurônios/ultraestrutura , Estimulação Luminosa , Receptor de TWEAK/metabolismo , Vias Visuais/fisiologia , Vias Visuais/ultraestrutura
10.
Artigo em Inglês | MEDLINE | ID: mdl-32231522

RESUMO

This study describes the cytoarchitecture of the torus longitudinalis (TL) in adult zebrafish by using light and electron microscopy, as well as its main connections as revealed by DiI tract tracing. In addition, by using high resolution confocal imaging followed by digital tracing, we describe the morphology of tectal pyramidal cells (type I cells) that are GFP positive in the transgenic line Tg(1.4dlx5a-dlx6a:GFP)ot1. The TL consists of numerous small and medium-sized neurons located in a longitudinal eminence attached to the medial optic tectum. A small proportion of these neurons are GABAergic. The neuropil shows three types of synaptic terminals and numerous dendrites. Tracing experiments revealed that the main efference of the TL is formed of parallel-like fibers that course within the marginal layer of the optic tectum. A toral projection to the thalamic nucleus rostrolateralis is also observed. Afferents to the TL come from visual and cerebellum-related nuclei in the pretectum, namely the central, intercalated and the paracommissural pretectal nuclei, as well as from the subvalvular nucleus in the isthmus. Additional afferents to the TL may come from the cerebellum but their origins could not be confirmed. The tectal afferent projection to the TL originates from cells similar to the type X cells described in other cyprinids. Tectal pyramidal neurons show round or piriform cell bodies, with spiny apical dendritic trees in the marginal layer. This anatomical study provides a basis for future functional and developmental studies focused on this cerebellum-like circuit in zebrafish.


Assuntos
Colículos Superiores/anatomia & histologia , Colículos Superiores/ultraestrutura , Vias Visuais/anatomia & histologia , Vias Visuais/ultraestrutura , Peixe-Zebra/anatomia & histologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Microscopia/métodos , Microscopia Eletrônica/métodos , Colículos Superiores/química , Vias Visuais/química
11.
Neuroradiology ; 61(12): 1425-1436, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31494681

RESUMO

PURPOSE: This study assessed whether optic radiations (OR) microstructure after temporal lobe epilepsy (TLE) surgery correlated with visual field defects (VFD). METHODS: Patients were subjected to diffusion tensor imaging (DTI) tractography of the OR and Humphrey perimetry after TLE surgery. We used Spearman's test to verify correlations between tractographic parameters and perimetry mean deviation. Tractographic variables were compared between patients with VFD or intact perimetry. Multiple logistic regression was applied between DTI and perimetry values. DTI sensitivity and specificity were assessed with a receiver operating characteristic (ROC) curve to evaluate VFD. RESULTS: Thirty-nine patients had reliable perimetry and OR tractography. There was a significant correlation between (1) fractional anisotropy (FA) and both total (rho = 0.569, p = 0.0002) and quadrant (rho = 0.453, p = 0.0037) mean deviation and (2) radial diffusivity and total mean deviation (rho = - 0.350, p = 0.0286). There was no other significant correlation. Patients with VFD showed a significantly lower FA compared with patients with normal perimetry (p = 0.0055), and a 0.01 reduction in FA was associated with a 44% increase in presenting VFD after surgery (confidence interval, CI = 1.10-1.88; p = 0.0082). Using a FA of 0.457, DTI tractography showed a specificity of 95.2% and a sensitivity of 50% to detect VFD after surgery (area under the curve = 0.7619, CI = 0.6020-0.9218). CONCLUSION: The postoperative OR microstructure correlated with visual loss after epilepsy surgery. DTI postoperative OR tractography may be helpful in evaluating VFD.


Assuntos
Imagem de Tensor de Difusão , Epilepsia do Lobo Temporal/cirurgia , Transtornos da Visão/etiologia , Campos Visuais , Vias Visuais/ultraestrutura , Adulto , Anisotropia , Feminino , Humanos , Masculino , Estudos Prospectivos , Sensibilidade e Especificidade
12.
J Comp Neurol ; 527(4): 833-842, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30255935

RESUMO

The superior colliculus (SC) is a major site of sensorimotor integration in which sensory inputs are processed to initiate appropriate motor responses. Projections from the primary visual cortex (V1) to the SC have been shown to exert a substantial influence on visually induced behavior, including "freezing." However, it is unclear how V1 corticotectal terminals affect SC circuits to mediate these effects. To investigate this, we used anatomical and optogenetic techniques to examine the synaptic properties of V1 corticotectal terminals. Electron microscopy revealed that V1 corticotectal terminals labeled by anterograde transport primarily synapse (93%) on dendrites that do not contain gamma aminobutyric acid (GABA). This preference was confirmed using optogenetic techniques to photoactivate V1 corticotectal terminals in slices of the SC maintained in vitro. In a mouse line in which GABAergic SC interneurons express green fluorescent protein (GFP), few GFP-labeled cells (11%) responded to activation of corticotectal terminals. In contrast, 67% of non-GABAergic cells responded to activation of V1 corticotectal terminals. Biocytin-labeling of recorded neurons revealed that wide-field vertical (WFV) and non-WFV cells were activated by V1 corticotectal inputs. However, WFV cells were activated in the most uniform manner; 85% of these cells responded with excitatory postsynaptic potentials (EPSPs) that maintained stable amplitudes when activated with light trains at 1-20 Hz. In contrast, in the majority of non-WFV cells, the amplitude of evoked EPSPs varied across trials. Our results suggest that V1 corticotectal projections may initiate freezing behavior via uniform activation of the WFV cells, which project to the pulvinar nucleus.


Assuntos
Terminações Pré-Sinápticas/ultraestrutura , Córtex Visual/ultraestrutura , Vias Visuais/ultraestrutura , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética
13.
Cereb Cortex ; 29(1): 134-149, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29190326

RESUMO

One of the underlying principles of how mammalian circuits are constructed is the relative influence of feedforward to recurrent synaptic drive. It has been dogma in sensory systems that the thalamic feedforward input is relatively weak and that there is a large amplification of the input signal by recurrent feedback. Here we show that in trichromatic primates there is a major feedforward input to layer 4C of primary visual cortex. Using a combination of 3D-electron-microscopy and 3D-confocal imaging of thalamic boutons we found that the average feedforward contribution was about 20% of the total excitatory input in the parvocellular (P) pathway, about 3 times the currently accepted values for primates. In the magnocellular (M) pathway it was around 15%, nearly twice the currently accepted values. New methods showed the total synaptic and cell densities were as much as 150% of currently accepted values. The new estimates of contributions of feedforward synaptic inputs into visual cortex call for a major revision of the design of the canonical cortical circuit.


Assuntos
Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Macaca fascicularis , Masculino , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Primatas , Tálamo/ultraestrutura , Córtex Visual/ultraestrutura , Vias Visuais/ultraestrutura
14.
Neuroscience ; 390: 104-118, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30149050

RESUMO

Retinal ganglion cell axons of the DBA/2J mouse model of glaucoma, a model characterized by extensive neuroinflammation, preserve synaptic contacts with their subcortical targets for a time after onset of anterograde axonal transport deficits, axon terminal hypertrophy, and cytoskeletal alterations. Though retrograde axonal transport is still evident in these axons, it is unknown if they retain their ability to transmit visual information to the brain. Using a combination of in vivo multiunit electrophysiology, neuronal tract tracing, multichannel immunofluorescence, and transmission electron microscopy, we report that eye-brain signaling deficits precede transport loss and axonal degeneration in the DBA/2J retinal projection. These deficits are accompanied by node of Ranvier pathology - consisting of increased node length and redistribution of the voltage-gated sodium channel Nav1.6 that parallel changes seen early in multiple sclerosis (MS) axonopathy. Further, with age, axon caliber and neurofilament density increase without corresponding changes in myelin thickness. In contrast to these findings in DBA/2J mice, node pathologies were not observed in the induced microbead occlusion model of glaucoma - a model that lacks pre-existing inflammation. After one week of systemic treatment with fingolimod, an immunosuppressant therapy for relapsing-remitting MS, DBA/2J mice showed a substantial reduction in node pathology and mild effects on axon morphology. These data suggest that neurophysiological deficits in the DBA/2J may be due to defects in intact axons and targeting node pathology may be a promising intervention for some types of glaucoma.


Assuntos
Glaucoma/fisiopatologia , Nós Neurofibrosos/fisiologia , Vias Visuais/fisiopatologia , Potenciais de Ação , Animais , Axônios/patologia , Citoesqueleto/patologia , Feminino , Glaucoma/metabolismo , Glaucoma/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Nós Neurofibrosos/ultraestrutura , Vias Visuais/metabolismo , Vias Visuais/ultraestrutura , Canais de Sódio Disparados por Voltagem/metabolismo
15.
J Comp Neurol ; 526(1): 109-119, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28884472

RESUMO

The lobula plate is part of the lobula complex, the third optic neuropil, in the optic lobes of insects. It has been extensively studied in dipterous insects, where its role in processing flow-field motion information used for controlling optomotor responses was discovered early. Recently, a lobula plate was also found in malacostracan crustaceans. Here, we provide the first detailed description of the neuroarchitecture, the input and output connections and the retinotopic organization of the lobula plate in a crustacean, the crab Neohelice granulata using a variety of histological methods that include silver reduced staining and mass staining with dextran-conjugated dyes. The lobula plate of this crab is a small elongated neuropil. It receives separated retinotopic inputs from columnar neurons of the medulla and the lobula. In the anteroposterior plane, the neuropil possesses four layers defined by the arborizations of such columnar inputs. Medulla projecting neurons arborize mainly in two of these layers, one on each side, while input neurons arriving from the lobula branch only in one. The neuropil contains at least two classes of tangential elements, one connecting with the lateral protocerebrum and the other that exits the optic lobes toward the supraesophageal ganglion. The number of layers in the crab's lobula plate, the retinotopic connections received from the medulla and from the lobula, and the presence of large tangential neurons exiting the neuropil, reflect the general structure of the insect lobula plate and, hence, provide support to the notion of an evolutionary conserved function for this neuropil.


Assuntos
Braquiúros/anatomia & histologia , Bulbo/anatomia & histologia , Lobo Óptico de Animais não Mamíferos/anatomia & histologia , Retina/anatomia & histologia , Vias Visuais/fisiologia , Animais , Corantes Fluorescentes/metabolismo , Masculino , Bulbo/ultraestrutura , Lobo Óptico de Animais não Mamíferos/ultraestrutura , Retina/ultraestrutura , Coloração pela Prata , Vias Visuais/ultraestrutura
16.
J Neurosci ; 37(50): 12141-12152, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29114075

RESUMO

In higher mammals, orientation tuning of neurons is organized into a quasi-periodic pattern in the primary visual cortex. Our previous model studies suggested that the topography of cortical orientation maps may originate from moiré interference of ON and OFF retinal ganglion cell (RGC) mosaics, but did not account for how the consistent spatial period of maps could be achieved. Here we address this issue with two crucial findings on the development of RGC mosaics: first, homotypic local repulsion between RGCs can develop a long-range hexagonal periodicity. Second, heterotypic interaction restrains the alignment of ON and OFF mosaics, and generates a periodic interference pattern map with consistent spatial frequency. To validate our model, we quantitatively analyzed the RGC mosaics in cat data, and confirmed that the observed retinal mosaics showed evidence of heterotypic interactions, contrary to the previous view that ON and OFF mosaics are developed independently.SIGNIFICANCE STATEMENT Orientation map is one of the most studied functional maps in the brain, but it has remained unanswered how the consistent spatial periodicity of maps could be developed. In the current study, we address this issue with our developmental model for the retinal origin of orientation map. We showed that local repulsive interactions between retinal ganglion cells (RGCs) can develop a hexagonal periodicity in the RGC mosaics and restrict the alignment between ON and OFF mosaics, so that they generate a periodic pattern with consistent spatial frequency for both the RGC mosaics and the cortical orientation maps. Our results demonstrate that the organization of functional maps in visual cortex, including its structural consistency, may be constrained by a retinal blueprint.


Assuntos
Simulação por Computador , Conectoma , Modelos Neurológicos , Percepção de Movimento/fisiologia , Células Ganglionares da Retina/citologia , Córtex Visual/fisiologia , Vias Aferentes/fisiologia , Vias Aferentes/ultraestrutura , Animais , Gatos , Comunicação Celular , Dendritos/fisiologia , Dendritos/ultraestrutura , Corpos Geniculados/fisiologia , Corpos Geniculados/ultraestrutura , Mamíferos/anatomia & histologia , Estimulação Luminosa , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Núcleos Talâmicos/fisiologia , Núcleos Talâmicos/ultraestrutura , Vias Visuais/fisiologia , Vias Visuais/ultraestrutura
17.
J Neurosci ; 36(26): 6937-48, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27358452

RESUMO

UNLABELLED: Myelin controls the time required for an action potential to travel from the neuronal soma to the axon terminal, defining the temporal manner in which information is processed within the CNS. The presence of myelin, the internodal length, and the thickness of the myelin sheath are powerful structural factors that control the velocity and fidelity of action potential transmission. Emerging evidence indicates that myelination is sensitive to environmental experience and neuronal activity. Activity-dependent modulation of myelination can dynamically alter action potential conduction properties but direct functional in vivo evidence and characterization of the underlying myelin changes is lacking. We demonstrate that in mice long-term monocular deprivation increases oligodendrogenesis in the retinogeniculate pathway but shortens myelin internode lengths without affecting other structural properties of myelinated fibers. We also demonstrate that genetically attenuating synaptic glutamate neurotransmission from retinal ganglion cells phenocopies the changes observed after monocular deprivation, suggesting that glutamate may constitute a signal for myelin length regulation. Importantly, we demonstrate that visual deprivation and shortened internodes are associated with a significant reduction in nerve conduction velocity in the optic nerve. Our results reveal the importance of sensory input in the building of myelinated fibers and suggest that this activity-dependent alteration of myelination is important for modifying the conductive properties of brain circuits in response to environmental experience. SIGNIFICANCE STATEMENT: Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are capable of ensheathing axons with myelin without molecular cues from neurons. However, this default myelination process can be modulated by changes in neuronal activity. Here, we show, for the first time, that experience-dependent activity modifies the length of myelin internodes along axons altering action potential conduction velocity. Such a mechanism would allow for variations in conduction velocities that provide a degree of plasticity in accordance to environmental needs. It will be important in future work to investigate how these changes in myelination and conduction velocity contribute to signal integration in postsynaptic neurons and circuit function.


Assuntos
Fibras Nervosas Mielinizadas/fisiologia , Condução Nervosa/fisiologia , Nervo Óptico/fisiologia , Visão Monocular/fisiologia , Vias Visuais/fisiologia , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Antígenos/genética , Antígenos/metabolismo , Toxina da Cólera/metabolismo , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Corpos Geniculados/ultraestrutura , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Fibras Nervosas Mielinizadas/ultraestrutura , Condução Nervosa/genética , Nervo Óptico/ultraestrutura , Organogênese/genética , Organogênese/fisiologia , Estimulação Luminosa , Proteoglicanas/genética , Proteoglicanas/metabolismo , Células Ganglionares da Retina/metabolismo , Transmissão Sináptica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Vias Visuais/ultraestrutura
18.
Nature ; 532(7599): 370-4, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27018655

RESUMO

Circuits in the cerebral cortex consist of thousands of neurons connected by millions of synapses. A precise understanding of these local networks requires relating circuit activity with the underlying network structure. For pyramidal cells in superficial mouse visual cortex (V1), a consensus is emerging that neurons with similar visual response properties excite each other, but the anatomical basis of this recurrent synaptic network is unknown. Here we combined physiological imaging and large-scale electron microscopy to study an excitatory network in V1. We found that layer 2/3 neurons organized into subnetworks defined by anatomical connectivity, with more connections within than between groups. More specifically, we found that pyramidal neurons with similar orientation selectivity preferentially formed synapses with each other, despite the fact that axons and dendrites of all orientation selectivities pass near (<5 µm) each other with roughly equal probability. Therefore, we predict that mechanisms of functionally specific connectivity take place at the length scale of spines. Neurons with similar orientation tuning formed larger synapses, potentially enhancing the net effect of synaptic specificity. With the ability to study thousands of connections in a single circuit, functional connectomics is proving a powerful method to uncover the organizational logic of cortical networks.


Assuntos
Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia , Vias Visuais/citologia , Vias Visuais/fisiologia , Animais , Axônios/fisiologia , Cálcio/análise , Dendritos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fótons , Células Piramidais/citologia , Células Piramidais/fisiologia , Sinapses/metabolismo , Córtex Visual/citologia , Córtex Visual/ultraestrutura , Vias Visuais/anatomia & histologia , Vias Visuais/ultraestrutura
19.
Nat Neurosci ; 19(2): 316-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26691830

RESUMO

It has been debated whether orientation selectivity in mouse primary visual cortex (V1) is derived from tuned lateral geniculate nucleus (LGN) inputs or computed from untuned LGN inputs. However, few studies have measured orientation tuning of LGN axons projecting to V1. We measured the response properties of mouse LGN axons terminating in V1 and found that LGN axons projecting to layer 4 were generally less tuned for orientation than axons projecting to more superficial layers of V1. We also found several differences in response properties between LGN axons and V1 neurons in layer 4. These results suggest that orientation selectivity of mouse V1 may not simply be inherited from LGN inputs, but could also depend on thalamocortical or V1 circuits.


Assuntos
Corpos Geniculados/ultraestrutura , Neurônios Aferentes/ultraestrutura , Córtex Visual/citologia , Algoritmos , Animais , Axônios/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Orientação , Tálamo/fisiologia , Córtex Visual/ultraestrutura , Vias Visuais/citologia , Vias Visuais/ultraestrutura
20.
J Comp Neurol ; 524(6): 1292-306, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26399201

RESUMO

To determine whether thalamocortical synaptic circuits differ across cortical areas, we examined the ultrastructure of geniculocortical terminals in the tree shrew striate cortex to compare directly the characteristics of these terminals with those of pulvinocortical terminals (examined previously in the temporal cortex of the same species; Chomsung et al. [] Cereb Cortex 20:997-1011). Tree shrews are considered to represent a prototype of early prosimian primates but are unique in that sublaminae of striate cortex layer IV respond preferentially to light onset (IVa) or offset (IVb). We examined geniculocortical inputs to these two sublayers labeled by tracer or virus injections or an antibody against the type 2 vesicular glutamate antibody (vGLUT2). We found that layer IV geniculocortical terminals, as well as their postsynaptic targets, were significantly larger than pulvinocortical terminals and their postsynaptic targets. In addition, we found that 9-10% of geniculocortical terminals in each sublamina contacted GABAergic interneurons, whereas pulvinocortical terminals were not found to contact any interneurons. Moreover, we found that the majority of geniculocortical terminals in both IVa and IVb contained dendritic protrusions, whereas pulvinocortical terminals do not contain these structures. Finally, we found that synaptopodin, a protein uniquely associated with the spine apparatus, and telencephalin (TLCN, or intercellular adhesion molecule type 5), a protein associated with maturation of dendritic spines, are largely excluded from geniculocortical recipient layers of the striate cortex. Together our results suggest major differences in the synaptic organization of thalamocortical pathways in striate and extrastriate areas.


Assuntos
Corpos Geniculados/ultraestrutura , Sinapses/ultraestrutura , Córtex Visual/ultraestrutura , Vias Visuais/ultraestrutura , Animais , Corpos Geniculados/química , Sinapses/química , Tupaiidae , Proteína Vesicular 2 de Transporte de Glutamato/análise , Córtex Visual/química , Vias Visuais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...