Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.012
Filtrar
1.
Microb Pathog ; 190: 106611, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467165

RESUMO

Vibrio anguillarum is an important fish pathogen in mariculture, which can infect fish with great economic losses. In this study, a Vibrio anguillarum isolated from Sebastes schlegelii was named VA1 and was identified and characterized from aspects of morphology, physiological and biochemical characteristics, 16SRNA, virulence genes, drug sensitivity, and extracellular enzyme activity. At the same time, The VA1 was investigated at the genomic level. The results showed that a Gram-negative was isolated from the diseased fish. The VA1 was characterized with uneven surface and visible flagella wrapped in a sheath and microbubble structures. The VA1 was identified as Vibrio anguillarum based on the 16S RNA sequence and physiological and biochemical characteristics. The VA1 carried most of the virulence genes (24/29) and was resistant to penicillin, oxacillin, ampicillin, cefradine, neomycin, pipemidic acid, ofloxacin, and norfloxacin. The pathogenicity of the isolated strain was confirmed by an experimental analysis, and its LD50 was 6.43 × 106 CFU/ml. The VA1 had the ability to secrete gelatinase, protease, and amylase, and it had α-hemolysis. The whole genome size of the VA1 was 4232328bp and the G + C content was 44.95 %, consisting of two circular chromosomes, Chromosome1 and Chromosome2, with no plasmid. There were 1006 predicted protein coding sequences (CDSs). A total of 526 genes were predicted as virulence-related genes which could be classified as type IV pili, flagella, hemolysin, siderophore, and type VI secretion system. Virulence genes and correlation data were supported with the histopathological examination of the affected organs and tissues. 194 genes were predicted as antibiotic resistance genes, including fluoroquinolone antibiotic, aminoglycoside antibiotic, and beta-lactam resistant genes, which agreed with the results of the above drug sensitivity, indicating VA1 to be a multidrug-resistant bacterium. This study provided a theoretical basis for a better understanding of pathogenicity and antibiotic resistance, which might contribute to the prevention of V. anguillarum in the future.


Assuntos
Antibacterianos , Doenças dos Peixes , Genoma Bacteriano , Filogenia , Vibrioses , Vibrio , Fatores de Virulência , Sequenciamento Completo do Genoma , Vibrio/genética , Vibrio/patogenicidade , Vibrio/isolamento & purificação , Vibrio/classificação , Vibrio/efeitos dos fármacos , Doenças dos Peixes/microbiologia , Animais , Fatores de Virulência/genética , Vibrioses/microbiologia , Vibrioses/veterinária , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Testes de Sensibilidade Microbiana , Virulência/genética , Peixes/microbiologia , Composição de Bases
2.
Mar Biotechnol (NY) ; 26(2): 306-323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367180

RESUMO

Vibrio harveyi, a recently discovered pathogenic bacterium isolated from American eels (Anguilla rostrata), poses uncertainties regarding its pathogenesis in American eel and the molecular mechanisms underlying host defense against V. harveyi infection. This study aimed to determine the LD50 of V. harveyi in American eel and assess the bacterial load in the liver, spleen, and kidney post-infection with the LD50 dose. The results showed that the LD50 of V. harveyi via intraperitoneal injection in American eels over a 14d period was determined to be 1.24 × 103 cfu/g body weight (6.2 × 104 cfu/fish). The peak bacterial load occurred at 36 h post-infection (hpi) in all three organs examined. Histopathology analysis revealed hepatic vein congestion and thrombi, tubular vacuolar degeneration, and splenic bleeding. Moreover, quantitative reverse transcription polymerase chain reaction (qRT-PCR) results indicated significant up or downregulation of 18 host immune- or anti-infection-related genes post 12 to 60 hpi following the infection. Additionally, RNA sequencing (RNA-seq) unveiled 7 hub differentially expressed genes (DEGs) and 11 encoded proteins play crucial roles in the anti-V. harveyi response in American eels. This study firstly represents the comprehensive report on the pathogenicity of V. harveyi to American eels and RNA-seq of host's response to V. harveyi infection. These findings provide valuable insights into V. harveyi pathogenesis and the strategies employed by the host's immune system at the transcriptomic level to combat V. harveyi infection.


Assuntos
Anguilla , Doenças dos Peixes , Perfilação da Expressão Gênica , Fígado , Vibrioses , Vibrio , Animais , Vibrio/patogenicidade , Anguilla/microbiologia , Anguilla/genética , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Vibrioses/veterinária , Vibrioses/microbiologia , Vibrioses/imunologia , Fígado/microbiologia , Fígado/patologia , Baço/microbiologia , Baço/patologia , Transcriptoma , Rim/microbiologia , Rim/patologia , Dose Letal Mediana , Carga Bacteriana
3.
J Fish Dis ; 47(6): e13931, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38373044

RESUMO

Vibrio harveyi is commonly found in salt and brackish water and is recognized as a serious bacterial pathogen in aquaculture worldwide. In this study, we cloned the ferric uptake regulator (fur) gene from V. harveyi wild-type strain HA_1, which was isolated from diseased American eels (Anguilla rostrata) and has a length of 450 bp, encoding 149 amino acids. Then, a mutant strain, HA_1-Δfur, was constructed through homologous recombination of a suicide plasmid (pCVD442). The HA_1-Δfur mutant exhibited weaker biofilm formation and swarming motility, and 18-fold decrease (5.5%) in virulence to the American eels; compared to the wild-type strain, the mutant strain showed time and diameter differences in growth and haemolysis, respectively. Additionally, the adhesion ability of the mutant strain was significantly decreased. Moreover, there were 15 different biochemical indicators observed between the two strains. Transcriptome analysis revealed that 875 genes were differentially expressed in the Δfur mutant, with 385 up-regulated and 490 down-regulated DEGs. GO and KEGG enrichment analysis revealed that, compared to the wild-type strain, the type II and type VI secretion systems (T2SS and T6SS), amino acid synthesis and transport and energy metabolism pathways were significantly down-regulated, but the ABC transporters and biosynthesis of siderophore group non-ribosomal peptides pathways were up-regulated in the Δfur strain. The qRT-PCR results further confirmed that DEGs responsible for amino acid transport and energy metabolism were positively regulated, but DEGs involved in iron acquisition were negatively regulated in the Δfur strain. These findings suggest that the virulence of the Δfur strain was significantly decreased, which is closely related to phenotype changing and gene transcript regulation.


Assuntos
Anguilla , Proteínas de Bactérias , Doenças dos Peixes , Perfilação da Expressão Gênica , Vibrioses , Vibrio , Animais , Vibrio/patogenicidade , Vibrio/genética , Vibrio/fisiologia , Doenças dos Peixes/microbiologia , Anguilla/microbiologia , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vibrioses/veterinária , Vibrioses/microbiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fenótipo , Regulação Bacteriana da Expressão Gênica , Transcriptoma
4.
Adv Exp Med Biol ; 1404: 253-268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36792880

RESUMO

During periods that are not conducive for growth or when facing stressful conditions, Vibrios enter a dormant state called the Viable But Non-Culturable (VBNC) state. In this chapter, I will analyse the role of the VBNC state in Vibrio species survival and pathogenesis and the molecular mechanisms regulating this complex phenomenon. I will emphasise some of the novel findings that make studying the VBNC state now more exciting than ever and its significance in the epidemiology of these pathogens and critical role in food safety.


Assuntos
Técnicas Bacteriológicas , Vibrio , Vibrio/patogenicidade , Inocuidade dos Alimentos
5.
Environ Microbiol ; 25(7): 1344-1362, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36807464

RESUMO

Bacterial populations communicate using quorum-sensing (QS) molecules and switch on QS regulation to engage in coordinated behaviour such as biofilm formation or virulence. The marine fish pathogen Vibrio anguillarum harbours several QS systems, and our understanding of its QS regulation is still fragmentary. Here, we identify the VanT-QS regulon and explore the diversity and trajectory of traits under QS regulation in Vibrio anguillarum through comparative transcriptomics of two wildtype strains and their corresponding mutants artificially locked in QS-on (ΔvanO) or QS-off (ΔvanT) states. Intriguingly, the two wildtype populations showed different QS responses to cell density changes and operated primarily in the QS-on and QS-off spectrum, respectively. Examining 27 V. anguillarum strains revealed that ~11% were QS-negative, and GFP-reporter measurements of nine QS-positive strains revealed a highly strain-specific nature of the QS responses. We showed that QS controls a plethora of genes involved in processes such as central metabolism, biofilm formation, competence, T6SS, and virulence properties in V. anguillarum, with large strain-specific differences. Moreover, we demonstrated that the QS state is an important driver of virulence towards fish larvae in one of two V. anguillarum strains. We speculate that infections by mixed-strain communities spanning diverse QS strategies optimize the infection efficiency of the pathogen.


Assuntos
Doenças dos Peixes , Percepção de Quorum , Vibrioses , Vibrio , Vibrio/genética , Vibrio/metabolismo , Vibrio/patogenicidade , Animais , Peixes , Doenças dos Peixes/microbiologia , Vibrioses/microbiologia , Vibrioses/veterinária , Especificidade da Espécie , Regulon , Perfilação da Expressão Gênica
6.
Gene ; 809: 146032, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34673208

RESUMO

Gap junction (GJ), a special intercellular junction between different cell types, directly connects the cytoplasm of adjacent cells, allows various molecules, ions and electrical impulses to pass through the intercellular regulatory gate, and plays vital roles in response to bacterial infection. Up to date, the information about the GJ in turbot (Scophthalmus maximus L.) is still limited. In current study, 43 gap junction genes were identified in turbot, phylogeny analysis suggested that gap junctions from turbot and other species were clustered into six groups, GJA, GJB, GJC, GJD, GJE and PANX, and turbot GJs together with respective GJs from Japanese flounder, half-smooth tongue sole and large yellow croaker, sharing same ancestors. In addition, these 43 GJ genes distributed in different chromosomes unevenly. According to gene structure and domain analysis, these genes (in GJA-GJE group) were highly conserved in that most of them contain the transmembrane area, connexin domain (CNX) and cysteine-rich domain (connexin CCC), while PANXs contain Pfam Innexin. Although only one tandem duplication was identified in turbot gap junction gene, 235 pairs of segmental duplications were identified in the turbot genome. To further investigate their evolutionary relationships, Ka/Ks was calculated, and results showed that most ratios were lower than 1, indicating they had undergone negative selection. Finally, expression analysis showed that gap junction genes were widely distributed in turbot tissues and significantly regulated after Vibrio anguillarum infection. Taken together, our research could provide valuable information for further exploration of the function of gap junction genes in teleost.


Assuntos
Conexinas/genética , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Linguados/genética , Vibrioses/veterinária , Animais , Mapeamento Cromossômico , Evolução Molecular , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Linguados/imunologia , Linguados/microbiologia , Duplicação Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Filogenia , Vibrio/patogenicidade , Vibrioses/imunologia
7.
Fish Shellfish Immunol ; 120: 633-647, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34822997

RESUMO

The purpose of this study was to explore the optimal fermentation technology of Chinese herbal medicine formula-Siwu Decoction and the effects of fermented Siwu Decoction (FSW) on the growth performance, immune response, intestinal microflora and anti microbial ability of Litopenaeus vannamei. Response to surface methodology (RSM) was used to optimize the fermentation process of Siwu Decoction. The optimal fermentation conditions were obtained as follows: inoculation amount of mixed strains was 4.5%, fermentation time was 36 h, and the ratio of material to liquid was 20%. A total of 1260 shrimps were selected and divided into seven groups, three in parallel in each group. The dietary level of each group was as follows: Control (No additions), USW1 (0.2% unfermented herbal medicine), USW2 (0.5% unfermented herbal medicine), USW3 (0.8% unfermented herbal medicine), FSW1 (0.2% fermented herbal medicine), FSW2 (0.5% fermented herbal medicine), FSW3 (0.8% fermented herbal medicine). The immune response and antioxidant defense ability of hemocytes and intestine were measured at 21 and 42 days of feeding and the intestinal flora and growth performance were measured at 42 days of feeding, after that, a 7-day challenge test against Vibrio harveyi was conducted. The results showed that fermented Siwu Decoction significantly improved the growth performance and body composition of Litopenaeus vannamei; significantly increased the total number of hemocytes, phagocytic activity, antibacterial activity and bacteriolytic activity of Litopenaeus vannamei, and improved the antioxidant activity of Litopenaeus vannamei; the addition of fermented Siwu Decoction significantly increased the gene expression level of hemocytes and intestinal tract of Litopenaeus vannamei, and improved the antioxidant activity of Litopenaeus vannamei. The abundance of Bacillus increased, while the abundance of Vibrio decreased. After Vibrio harveyi challenge, the cumulative mortality of FSW group was significantly lower than that of control group. Fermented Siwu Decoction may be a potential physiological enhancer in aquaculture, and can be widely used in aquaculture.


Assuntos
Resistência à Doença , Medicamentos de Ervas Chinesas/farmacologia , Imunidade Inata , Penaeidae , Vibrio , Animais , Antioxidantes , Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia , Penaeidae/microbiologia , Vibrio/patogenicidade
8.
Fish Shellfish Immunol ; 120: 590-598, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34965442

RESUMO

The class A scavenger receptors play important roles in innate immunity and are distributed on plasma membrane of macrophages and other cell types. Notably, the class A scavenger receptor 4 (SCARA4) contains a typical C-type (calcium-dependent) lectin domain, which belongs to the collectin family of pattern recognition receptors and is involved in the immune response against infection. Here, one turbot SCARA4 gene was identified with a 2,292 bp open reading frame (ORF) encoding 763 amino acid residues. Multiple sequence analysis and phylogenetic analysis confirmed that SmSCARA4 gene was more close to that of P. olivaceus. Gene structure and syntenic analysis showed conserved exon/intron organization pattern and syntenic pattern across selected vertebrate species. Tissue distribution analysis showed SmSCARA4 was expressed in all the tested healthy tissues with the relative high expression levels in skin, gill and spleen. Following both E. tarda and V. anguillarum challenge in vivo, SmSCARA4 was significantly repressed in gill and intestine. Remarkably, SmSCARA4 showed the strongest binding ability to LPS and strongest upregulation in turbot head kidney macrophages in response to LPS. Knockdown and overexpression of SmSCARA4 revealed its interactions with the two pro-inflammatory cytokines, TNF-α and IL-1ß. Finally, repression of SmSCARA4 via combined treatment of LPS and overexpression of SmSCARA4 construct in turbot head kidney macrophages further indicated an inhibitory role of SmSCARA4 in LPS-stimulated inflammation. Taken together, turbot SmSCARA4 plays an important role in turbot immunity, especially in the mucosa-related systems; SmSCARA4 possesses strong binding specificity to LPS, and exerts protective roles in response to LPS infection by reducing the release of pro-inflammatory cytokines. The mechanisms of inhibitory role of SmSCARA4 in LPS-elicited inflammation await further investigation.


Assuntos
Doenças dos Peixes , Linguados , Receptores Depuradores Classe A , Vibrioses , Animais , Citocinas/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Linguados/imunologia , Linguados/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inflamação , Lipopolissacarídeos/farmacologia , Filogenia , Receptores Depuradores Classe A/genética , Vibrio/patogenicidade , Vibrioses/veterinária
9.
Front Immunol ; 12: 778098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925352

RESUMO

The gut microbiota is a complex group of microorganisms that is not only closely related to intestinal immunity but also affects the whole immune system of the body. Antimicrobial peptides and reactive oxygen species participate in the regulation of gut microbiota homeostasis in invertebrates. However, it is unclear whether nitric oxide, as a key mediator of immunity that plays important roles in antipathogen activity and immune regulation, participates in the regulation of gut microbiota homeostasis. In this study, we identified a nitric oxide synthase responsible for NO production in the shrimp Marsupenaeus japonicus. The expression of Nos and the NO concentration in the gastrointestinal tract were increased significantly in shrimp orally infected with Vibrio anguillarum. After RNA interference of Nos or treatment with an inhibitor of NOS, L-NMMA, NO production decreased and the gut bacterial load increased significantly in shrimp. Treatment with the NO donor, sodium nitroprusside, increased the NO level and reduced the bacterial load significantly in the shrimp gastrointestinal tract. Mechanistically, V. anguillarum infection increased NO level via upregulation of NOS and induced phosphorylation of ERK. The activated ERK phosphorylated the NF-κB-like transcription factor, dorsal, and caused nuclear translocation of dorsal to increase expression of antimicrobial peptides (AMPs) responsible for bacterial clearance. In summary, as a signaling molecule, NOS-produced NO regulates intestinal microbiota homeostasis by promoting AMP expression against infected pathogens via the ERK-dorsal pathway in shrimp.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase/metabolismo , Penaeidae/microbiologia , Vibrioses/microbiologia , Vibrio/patogenicidade , Animais , Peptídeos Antimicrobianos/metabolismo , Carga Bacteriana , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/imunologia , Homeostase , Óxido Nítrico/metabolismo , Penaeidae/enzimologia , Penaeidae/imunologia , Fosforilação , Transdução de Sinais , Vibrio/imunologia , Vibrioses/enzimologia , Vibrioses/imunologia
10.
Front Immunol ; 12: 774233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912344

RESUMO

Vibrio anguillarum, an opportunistic pathogen of aquatic animals, moves using a filament comprised of polymerised flagellin proteins. Flagellins are essential virulence factors for V. anguillarum infection. Herein, we investigated the effects of flagellins (flaA, flaB, flaC, flaD and flaE) on cell apoptosis, TLR5 expression, and production of IL-8 and TNF-α. FlaB exhibited the strongest immunostimulation effects. To explore the functions of flaB in infection, we constructed a flaB deletion mutant using a two-step recombination method, and in vitro experiments showed a significant decrease in the expression of TLR5 and inflammatory cytokines compared with wild-type cells. However in the in vivo study, expression of inflammatory cytokines and intestinal mucosal structure showed no significant differences between groups. Additionally, flaB induced a significant increase in TLR5 expression based on microscopy analysis of fluorescently labelled TLR5, indicating interactions between the two proteins, which was confirmed by native PAGE and yeast two-hybrid assay. Molecular simulation of interactions between flaB and TLR5 was performed to identify the residues involved in binding, revealing two binding sites. Then, based on molecular dynamics simulations, we carried out thirteen site-directed mutations occurring at the amino acid sites of Q57, N83, N87, R91, D94, E122, D152, N312, R313, N320, L97, H316, I324 in binding regions of flaB protein by TLR5, respectively. Surface plasmon resonance (SPR) was employed to compare the affinities of flaB mutants for TLR5, and D152, D94, I324, N87, R313, N320 and H316 were found to mediate interactions between flaB and TLR5. Our comprehensive and systematic analysis of V. anguillarum flagellins establishes the groundwork for future design of flagellin-based vaccines.


Assuntos
Flagelina/química , Flagelina/imunologia , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Vibrioses/veterinária , Vibrio/imunologia , Animais , Apoptose , Suscetibilidade a Doenças , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Flagelina/genética , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , Mucosa Intestinal/patologia , Mucosa Intestinal/ultraestrutura , Modelos Moleculares , Mutação , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas/métodos , Relação Estrutura-Atividade , Vibrio/patogenicidade , Virulência , Fatores de Virulência
11.
Sci Rep ; 11(1): 22429, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789791

RESUMO

Adequate water supply is one of the public health issues among the population living in low-income settings. Vibriosis remain a significant health challenge drawing the attention of both healthcare planners and researchers in South West districts of Uganda. Intending to clamp down the disease cases in the safest water deprive locality, we investigated the virulent toxins as contaminants and epidemiologic potentials of Vibrio species recovered from surface waters in greater Bushenyi districts, Uganda. Surface water sources within 46 villages located in the study districts were obtained between June and October 2018. Standard microbiological and molecular methods were used to analyse samples. Our results showed that 981 presumptive isolates retrieved cell counts of 10-100 CFU/g, with, with (640) 65% confirmed as Vibrio genus using polymerase chain reaction, which is distributed as follows; V. vulnificus 46/640 (7.2%), V. fluvialis 30/594 (5.1), V. parahaemolyticus 21/564 (3.7), V. cholera 5/543 (0.9), V. alginolyticus 62/538 (11.5) and V. mimicus 20/476 (4.2). The virulence toxins observed were heat-stable enterotoxin (stn) 46 (82.10%), V. vulnificus virulence gene (vcgCPI) 40 (87.00%), extracellular haemolysin gene {vfh 21 (70.00)} and Heme utilization protein gene {hupO 5 (16.70)}. The cluster analysis depicts hupO (4.46% n = 112); vfh (18.75%, n = 112); vcgCPI and stn (35.71%, & 41.07%, n = 112). The principal component analysis revealed the toxins (hupO, vfh) were correlated with the isolate recovered from Bohole water (BW) source, while (vcgCPI, stn) toxins are correlated with natural raw water (NRW) and open springs (OS) water sources isolates. Such observation indicates that surface waters sources are highly contaminated with an odds ratio of 1.00, 95% CI (70.48-90.5), attributed risk of (aR = 64.29) and relative risk of (RR = 73.91). In addition, it also implies that the surface waters sources have > 1 risk of contamination with vfh and > six times of contamination with hupO (aR = 40, - 66). This is a call of utmost importance to the population, which depends on these water sources to undertake appropriate sanitation, personal hygienic practices and potential measures that ensure water quality.


Assuntos
Toxinas Bacterianas/análise , Toxinas Bacterianas/genética , Nascentes Naturais/microbiologia , Vibrioses/prevenção & controle , Vibrio/genética , Vibrio/patogenicidade , Fatores de Virulência/análise , Fatores de Virulência/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Genes Bacterianos , Proteínas Hemolisinas/análise , Proteínas Hemolisinas/genética , Reação em Cadeia da Polimerase/métodos , Uganda/epidemiologia , Vibrio/classificação , Vibrioses/epidemiologia , Vibrioses/microbiologia , Virulência/genética
12.
Front Immunol ; 12: 693932, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745085

RESUMO

The halophilic aquatic bacterium Vibrio campbellii is an important aquatic pathogen, capable of causing vibriosis in shrimp and fish resulting in significant economic losses. In a previous work, essential oils (EOs) extracts from Melaleuca alternifolia, Litsea citrata, and Eucalyptus citriodora were found to inhibit the growth of V. campbellii in vitro. This study aimed to determine in vivo EOs' potential protective effect towards gnotobiotic brine shrimp Artemia franciscana, challenged with V. campbellii. The study showed that brine shrimp larvae supplemented with EOs of M. alternifolia (0.0008%) and L. citrata (0.002%) displayed significantly increased survival against V. campbellii. The results indicated that supplementation of these EOs increased the expression of immune-related genes (either in the presence or absence of the pathogen), probably contributing to enhanced protection. Furthermore, in vitro studies indicated that some EOs modulated the expression of virulence factors including swimming motility, biofilm formation, and gelatinase and lipase activity, while flow cytometry data and regrowth assay indicated that these EOs do not exhibit antimicrobial activity as V. campbellii grew at the tested concentrations [M. alternifolia (0.0008%) and L. citrata (0.002%)]. Our findings suggest that EOs extracted from M. alternifolia and L. citrata, can modulate virulence factor production and immunological responses and might hence become part of an intervention strategy to control vibriosis in a fish or shrimp aquaculture setting, a hypothesis that needs to be validated in the future.


Assuntos
Artemia/microbiologia , Óleos Voláteis/administração & dosagem , Vibrio/patogenicidade , Animais , Vida Livre de Germes , Proteínas de Choque Térmico HSP70/genética , Óleos Voláteis/toxicidade , Proteína 2 Glutamina gama-Glutamiltransferase/genética , Fatores de Virulência/biossíntese
13.
PLoS One ; 16(9): e0249156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34534219

RESUMO

An infective prey has the potential to infect, kill and consume its predator. Such a prey-predator relationship fundamentally differs from the predator-prey interaction because the prey can directly profit from the predator as a growth resource. Here we present a population dynamics model of partial role reversal in the predator-prey interaction of two species, the bottom dwelling marine deposit feeder sea cucumber Apostichopus japonicus and an important food source for the sea cucumber but potentially infective bacterium Vibrio splendidus. We analyse the effects of different parameters, e.g. infectivity and grazing rate, on the population sizes. We show that relative population sizes of the sea cucumber and V. Splendidus may switch with increasing infectivity. We also show that in the partial role reversal interaction the infective prey may benefit from the presence of the predator such that the population size may exceed the value of the carrying capacity of the prey in the absence of the predator. We also analysed the conditions for species extinction. The extinction of the prey, V. splendidus, may occur when its growth rate is low, or in the absence of infectivity. The extinction of the predator, A. japonicus, may follow if either the infectivity of the prey is high or a moderately infective prey is abundant. We conclude that partial role reversal is an undervalued subject in predator-prey studies.


Assuntos
Comportamento Predatório/fisiologia , Stichopus/fisiologia , Vibrio , Animais , Ecossistema , Modelos Biológicos , Dinâmica Populacional , Stichopus/microbiologia , Vibrio/patogenicidade
14.
Acta Biochim Biophys Sin (Shanghai) ; 53(12): 1590-1601, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34569606

RESUMO

Vibrio harveyi, an important zoonotic pathogen, can infect wounds and cause inflammatory response. Understanding the inflammatory response pathways could facilitate the exploration of molecular mechanisms for treating V. harveyi infection. NLR family pyrin domain-containing 3 (NLRP3) inflammasome is involved in the interaction between hosts and pathogenic microorganisms and could be sensed by various pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). Nonetheless, the function of NLRP3 inflammasome in V. harveyi infection remains unclear. In the present study, we established a V. harveyi infection model using murine peritoneal macrophages (PMs). Various techniques, including western blot analysis, enzyme-linked immunosorbent assay (ELISA), RT-qPCR, immunofluorescence, and inhibition assays, were used to explore the molecular mechanism of V. harveyi-induced inflammation. The results showed that many inflammatory cytokines participated in V. harveyi infection, with interleukin (IL)-1ß being the most abundant. Pan-caspase inhibitor pretreatment significantly decreased the secretion of IL-1ß in murine PMs. Moreover, the identification of V. harveyi involved a large number of NLR molecules, especially the NLRP3 receptor, and further studies revealed that NLPR3 inflammasome was activated by V. harveyi infection, as evidenced by puncta-like NLRP3 surrounding cell nuclear, ASC specks in the nucleus and cytoplasm, and ASC oligomerization. Inhibition of NLRP3 inflammasome impaired the release of mature IL-1ß in V. harveyi-infected murine PMs. Furthermore, blocking the secretion of mature IL-1ß could markedly decrease the release of other proinflammatory cytokines, including IL-6, IL-12, and tumor necrosis factor-α. Overall, these data indicated that NLRP3 inflammasome was activated in response to V. harveyi infection and enhanced inflammatory response by promoting IL-1ß secretion in murine PMs.


Assuntos
Infecções por Bactérias Gram-Negativas/metabolismo , Inflamação/metabolismo , Inflamação/microbiologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/microbiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Vibrio/patogenicidade , Animais , Caspase 1/metabolismo , Células Cultivadas , Citocinas/metabolismo , Feminino , Interleucina-1beta/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Transdução de Sinais , Fatores de Tempo
15.
Mar Biotechnol (NY) ; 23(5): 766-776, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34480240

RESUMO

Epidermal mucus is an important barrier and regulating mediator in fish. MicroRNAs (miRNAs) are proved to be involved in various biological processes, also as promising biomarkers for disease diagnosis. Vibrio harveyi has long been a noticeable bacterial pathogen in Cynoglossus semilaevis aquaculture. To find the evidence whether there are indicating miRNAs in mucus and whether the miRNAs are related to infections caused by V. harveyi, miRNA profiles of mucus from V. harveyi infected fish and healthy controls were screened by small RNA sequencing and verified by quantitative real-time PCR. This is the first report about miRNA profiling of flatfish mucus, aiming at illustrating the pathogenesis of V. harveyi caused infection and developing disease-related biomarkers. The results revealed significant differences in expression levels of some miRNAs between infected fish and healthy ones. Three hundred differentially expressed miRNAs were obtained after filtering through FC > 2 or FC < 0.5 and most of the differential miRNAs were downregulated. After verification through qRT-PCR, four unique miRNAs, dre-miR-451, dre-miR-184, dre-miR-205-5p > ssa-miR-205b-5p, and dre-miR-181a-5p > ssa-miR-181a-5p, were identified as V. harveyi infection-related signatures, consistent with sequencing trend. The expression levels of these four miRNAs in the infected fish were all significantly lower than controls. These miRNAs in mucus could be used to differentiate diseased and healthy fish in a non-invasive way with practical value for large-scale disease screening. They also provided new insights into the mechanism underlying the bacterial infections in fish.


Assuntos
Doenças dos Peixes/microbiologia , Linguado/metabolismo , MicroRNAs/metabolismo , Vibrioses/metabolismo , Animais , Biomarcadores/metabolismo , MicroRNAs/genética , Muco/metabolismo , Vibrio/patogenicidade
16.
Sci Rep ; 11(1): 15831, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349168

RESUMO

Luminescent vibriosis is a major bacterial disease in shrimp hatcheries and causes up to 100% mortality in larval stages of penaeid shrimps. We investigated the virulence factors and genetic identity of 29 luminescent Vibrio isolates from Indian shrimp hatcheries and farms, which were earlier presumed as Vibrio harveyi. Haemolysin gene-based species-specific multiplex PCR and phylogenetic analysis of rpoD and toxR identified all the isolates as V. campbellii. The gene-specific PCR revealed the presence of virulence markers involved in quorum sensing (luxM, luxS, cqsA), motility (flaA, lafA), toxin (hly, chiA, serine protease, metalloprotease), and virulence regulators (toxR, luxR) in all the isolates. The deduced amino acid sequence analysis of virulence regulator ToxR suggested four variants, namely A123Q150 (AQ; 18.9%), P123Q150 (PQ; 54.1%), A123P150 (AP; 21.6%), and P123P150 (PP; 5.4% isolates) based on amino acid at 123rd (proline or alanine) and 150th (glutamine or proline) positions. A significantly higher level of the quorum-sensing signal, autoinducer-2 (AI-2, p = 2.2e-12), and significantly reduced protease activity (p = 1.6e-07) were recorded in AP variant, whereas an inverse trend was noticed in the Q150 variants AQ and PQ. The pathogenicity study in Penaeus (Litopenaeus) vannamei juveniles revealed that all the isolates of AQ were highly pathogenic with Cox proportional hazard ratio 15.1 to 32.4 compared to P150 variants; PP (5.4 to 6.3) or AP (7.3 to 14). The correlation matrix suggested that protease, a metalloprotease, was positively correlated with pathogenicity (p > 0.05) and negatively correlated (p < 0.05) with AI-2 and AI-1. The syntenic organization of toxS-toxR-htpG operon in V. campbellii was found to be similar to pathogenic V. cholerae suggesting a similar regulatory role. The present study emphasizes that V. campbellii is a predominant pathogen in Indian shrimp hatcheries, and ToxR plays a significant role as a virulence regulator in the quorum sensing-protease pathway. Further, the study suggests that the presence of glutamine at 150th position (Q150) in ToxR is crucial for the pathogenicity of V. campbellii.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Bactérias Gram-Negativas/complicações , Luminescência , Penaeidae/microbiologia , Percepção de Quorum , Vibrio/patogenicidade , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Homologia de Sequência , Vibrio/genética , Vibrio/isolamento & purificação , Virulência , Fatores de Virulência/genética
17.
Integr Comp Biol ; 61(5): 1715-1729, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34351419

RESUMO

Eastern oysters (Crassostrea virginica) have long been recognized as model organisms of extreme environmental tolerance, showing resilience to variation in temperature, salinity, hypoxia, and microbial pathogens. These phenotypic responses, however, show variability between geographic locations or habitats (e.g., tidal). Physiological, morphological, and genetic differences occur in populations throughout a species' geographical range, which may have been shaped by regional abiotic and biotic variations. Few studies of C. virginica have explored the combined factors of physiological mechanisms of divergent phenotypes between locations and the genetic relationships of individuals between these locations. To characterize genetic relationships of four locations with aquacultured oysters along the North Carolina and Virginia coast, we sequenced a portion of cytochrome oxidase subunit I (COI) that revealed significant variation in haplotype distribution between locations. We then measured mitochondrial physiology and expression of the innate immunity response of hemocytes to lab acclimation and combined stress conditions to compare basal expression and stress response in oysters between these locations. For stress sensing genes, toll-like receptors had the strongest location-specific response to hypoxia and Vibrio, whereas mannose receptor and a stress-receptor were specific to hypoxia and bacteria, respectively. The expression of stress response genes also showed location-specific and stressor-specific changes in expression, particularly for big defensin and the complement gene Cq3. Our results further suggested that genetic similarity of oysters from different locations was not clearly related to physiological and molecular responses. These results are informative for understanding the range of physiological plasticity for stress responses in this commercially important oyster species. They also have implications in the oyster farming industry as well as conservation efforts to restore endangered native oyster beds.


Assuntos
Crassostrea , Hipóxia/patologia , Vibrio , Animais , Crassostrea/microbiologia , Crassostrea/fisiologia , Receptor de Manose , North Carolina , Estresse Fisiológico , Vibrio/patogenicidade
18.
J Bacteriol ; 203(20): e0029621, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34339295

RESUMO

Pyruvate is a key metabolite in living cells and has been shown to play a crucial role in the virulence of several bacterial pathogens. The bioluminescent Vibrio campbellii, a severe infectious burden for marine aquaculture, excretes extraordinarily large amounts of pyruvate during growth and rapidly retrieves it by an as-yet-unknown mechanism. We have now identified the responsible pyruvate transporter, here named BtsU, and our results show that it is the only pyruvate transporter in V. campbellii. Expression of btsU is tightly regulated by the membrane-integrated LytS-type histidine kinase BtsS, a sensor for extracellular pyruvate, and the LytTR-type response regulator BtsR. Cells lacking either the pyruvate transporter or sensing system show no chemotactic response toward pyruvate, indicating that intracellular pyruvate is required to activate the chemotaxis system. Moreover, pyruvate sensing and uptake were found to be important for the resuscitation of V. campbellii from the viable but nonculturable state and the bacterium's virulence against brine shrimp larvae. IMPORTANCE Bacterial infections are a serious threat to marine aquaculture, one of the fastest growing food sectors on earth. Therefore, it is extremely important to learn more about the pathogens responsible, one of which is Vibrio campbellii. This study sheds light on the importance of pyruvate sensing and uptake for V. campbellii, and reveals that the bacterium possesses only one pyruvate transporter, which is activated by a pyruvate-responsive histidine kinase/response regulator system. Without the ability to sense or take up pyruvate, the virulence of V. campbellii toward gnotobiotic brine shrimp larvae is strongly reduced.


Assuntos
Proteínas de Transporte/metabolismo , Ácido Pirúvico/metabolismo , Vibrio/metabolismo , Vibrio/patogenicidade , Animais , Artemia/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Meios de Cultura/química , Regulação Bacteriana da Expressão Gênica , Genótipo , Larva/microbiologia , Ácido Pirúvico/química , Vibrio/genética , Virulência
19.
Front Immunol ; 12: 692997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386003

RESUMO

The interleukin-17 (IL-17) family consists of proinflammatory cytokines conserved during evolution. A comparative genomics approach was applied to examine IL-17 throughout evolution from poriferans to higher vertebrates. Cnidaria was highlighted as the most ancient diverged phylum, and several evolutionary patterns were revealed. Large expansions of the IL-17 repertoire were observed in marine molluscs and echinoderm species. We further studied this expansion in filter-fed Mytilus galloprovincialis, which is a bivalve with a highly effective innate immune system supported by a variable pangenome. We recovered 379 unique IL-17 sequences and 96 receptors from individual genomes that were classified into 23 and 6 isoforms after phylogenetic analyses. Mussel IL-17 isoforms were conserved among individuals and shared between closely related Mytilidae species. Certain isoforms were specifically implicated in the response to a waterborne infection with Vibrio splendidus in mussel gills. The involvement of IL-17 in mucosal immune responses could be conserved in higher vertebrates from these ancestral lineages.


Assuntos
Evolução Molecular , Imunidade nas Mucosas , Interleucina-17/imunologia , Mytilus/imunologia , Receptores de Interleucina-17/imunologia , Animais , Interações Hospedeiro-Patógeno , Interleucina-17/genética , Interleucina-17/metabolismo , Mytilus/genética , Mytilus/metabolismo , Filogenia , Isoformas de Proteínas , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Transdução de Sinais , Especificidade da Espécie , Vibrio/imunologia , Vibrio/patogenicidade , Vibrioses/imunologia , Vibrioses/metabolismo , Vibrioses/microbiologia
20.
Environ Microbiol ; 23(12): 7314-7340, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34390611

RESUMO

Vibrio spp. thrive in warm water and moderate salinity, and they are associated with aquatic invertebrates, notably crustaceans and zooplankton. At least 12 Vibrio spp. are known to cause infection in humans, and Vibrio cholerae is well documented as the etiological agent of pandemic cholera. Pathogenic non-cholera Vibrio spp., e.g., Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Incidence of vibriosis is rising globally, with evidence that anthropogenic factors, primarily emissions of carbon dioxide associated with atmospheric warming and more frequent and intense heatwaves, significantly influence environmental parameters, e.g., temperature, salinity, and nutrients, all of which can enhance growth of Vibrio spp. in aquatic ecosystems. It is not possible to eliminate Vibrio spp., as they are autochthonous to the aquatic environment and many play a critical role in carbon and nitrogen cycling. Risk prediction models provide an early warning that is essential for safeguarding public health. This is especially important for regions of the world vulnerable to infrastructure instability, including lack of 'water, sanitation, and hygiene' (WASH), and a less resilient infrastructure that is vulnerable to natural calamity, e.g., hurricanes, floods, and earthquakes, and/or social disruption and civil unrest, arising from war, coups, political crisis, and economic recession. Incorporating environmental, social, and behavioural parameters into such models allows improved prediction, particularly of cholera epidemics. We have reported that damage to WASH infrastructure, coupled with elevated air temperatures and followed by above average rainfall, promotes exposure of a population to contaminated water and increases the risk of an outbreak of cholera. Interestingly, global predictive risk models successful for cholera have the potential, with modification, to predict diseases caused by other clinically relevant Vibrio spp. In the research reported here, the focus was on environmental parameters associated with incidence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. In addition, molecular methods designed for detection and enumeration proved useful for predictive modelling and are described, namely in the context of prediction of environmental conditions favourable to Vibrio spp., hence human health risk.


Assuntos
Vibrioses , Vibrio , Meio Ambiente , Humanos , Incidência , Vibrio/classificação , Vibrio/patogenicidade , Vibrioses/epidemiologia , Vibrioses/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...