Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
PLoS One ; 19(8): e0304126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39137207

RESUMO

Understanding how environmental variables influence biofilm formation becomes relevant for managing Vibrio biofilm-related infections in shrimp production. Therefore, we evaluated the impact of temperature, time, and initial inoculum in the biofilm development of these two Vibrio species using a multifactorial experimental design. Planktonic growth inhibition and inhibition/eradication of Vibrio biofilms, more exactly V. parahaemolyticus (VP87 and VP275) and V. cholerae (VC112) isolated from shrimp farms were evaluated by Eucalyptus and Guava aqueous leaf extracts and compared to tetracycline and ceftriaxone. Preliminary results showed that the best growth conditions of biofilm development for V. parahaemolyticus were 24 h and 24°C (p <0.001), while V. cholerae biofilms were 72 h and 30°C (p <0.001). Multivariate linear regression ANOVA was applied using colony-forming unit (CFU) counting assays as a reference, and R-squared values were applied as goodness-of-fit measurements for biofilm analysis. Then, both plant extracts were analyzed with HPLC using double online detection by diode array detector (DAD) and mass spectrometry (MS) for the evaluation of their chemical composition, where the main identified compounds for Eucalyptus extract were cypellogin A, cypellogin B, and cypellocarpin C, while guavinoside A, B, and C compounds were the main compounds for Guava extract. For planktonic growth inhibition, Eucalyptus extract showed its maximum effect at 200 µg/mL with an inhibition of 75% (p < 0.0001) against all Vibrio strains, while Guava extract exhibited its maximum inhibition at 1600 µg/mL with an inhibition of 70% (p < 0.0001). Both biofilm inhibition and eradication assays were performed by the two conditions (24 h at 24°C and 72 h at 30°C) on Vibrio strains according to desirability analysis. Regarding 24 h at 24°C, differences were observed in the CFU counting between antibiotics and plant extracts, where both plant extracts demonstrated a higher reduction of viable cells when compared with both antibiotics at 8x, 16x, and 32x MIC values (Eucalyptus extract: 1600, 3200, and 6400 µg/mL; while Guava extract: 12800, 25600, and 52000 µg/mL). Concerning 72 h at 30°C, results showed a less notorious biomass inhibition by Guava leaf extract and tetracycline. However, Eucalyptus extract significantly reduced the total number of viable cells within Vibrio biofilms from 2x to 32x MIC values (400-6400 µg/mL) when compared to the same MIC values of ceftriaxone (5-80 µg/mL), which was not able to reduce viable cells. Eucalyptus extract demonstrated similar results at both growth conditions, showing an average inhibition of approximately 80% at 400 µg/mL concentration for all Vibrio isolates (p < 0.0001). Moreover, eradication biofilm assays demonstrated significant eradication against all Vibrio strains at both growth conditions, but biofilm eradication values were substantially lower. Both extract plants demonstrated a higher reduction of viable cells when compared with both antibiotics at 8x, 16x, and 32x MIC values at both growth sets, where Eucalyptus extract at 800 µg/mL reduced 70% of biomass and 90% of viable cells for all Vibrio strains (p < 0.0001). Overall results suggested a viable alternative against vibriosis in the shrimp industry in Ecuador.


Assuntos
Antibacterianos , Biofilmes , Eucalyptus , Extratos Vegetais , Psidium , Vibrio cholerae , Vibrio parahaemolyticus , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Psidium/química , Eucalyptus/química , Eucalyptus/microbiologia , Vibrio cholerae/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/crescimento & desenvolvimento , Equador , Testes de Sensibilidade Microbiana , Penaeidae/microbiologia
2.
Food Microbiol ; 123: 104567, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038901

RESUMO

This study aimed to determine the prevalence of V. parahaemolyticus in oysters from the northwestern coast of Mexico and to identify the serotypes, virulence factors, and antibiotic resistance of the strains. Oyster samples were collected from 2012 to 2020 from the northwest coast of Mexico; biochemical and molecular methods were used to identify V. parahaemolyticus from oysters; antiserum reaction to determine V. parahaemolyticus serotypes, and PCR assays were performed to identify pathogenic (tdh and/or trh) or pandemic (toxRS/new, and/or orf8) strains and antibiotic resistance testing. A total of 441 oyster samples were collected and tested for V. parahaemolyticus. Forty-seven percent of oyster samples were positive for V. parahaemolyticus. Ten different O serogroups and 72 serovars were identified, predominantly serotype O1:KUT with 22.2% and OUT:KUT with 17.3%. Twenty new serotypes that had not been previously reported in our region were identified. We detected 4.3% of pathogenic clones but no pandemic strains. About 73.5% of strains were resistant to at least one antibiotic, mainly ampicillin and ciprofloxacin; 25% were multi-drug resistant. In conclusion, the pathogenic strains in oysters and antibiotic resistance are of public health concern, as the potential for outbreaks throughout northwestern Mexico is well established.


Assuntos
Antibacterianos , Ostreidae , Frutos do Mar , Vibrio parahaemolyticus , Fatores de Virulência , Animais , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/isolamento & purificação , México/epidemiologia , Ostreidae/microbiologia , Fatores de Virulência/genética , Antibacterianos/farmacologia , Frutos do Mar/microbiologia , Farmacorresistência Bacteriana , Sorogrupo , Virulência/genética , Testes de Sensibilidade Microbiana
3.
Braz J Microbiol ; 55(3): 2335-2343, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38831174

RESUMO

Multidrug-resistant pathogenic vibrios are a crisis of concern as they cause multiple illnesses, including gastroenteritis in humans and acute hepatopancreatic necrosis in aquaculture. In the current study, we investigated the prevalence of the beta-lactamase gene CTX-M-group 1 in Vibrio spp. (Vibrio cholerae and Vibrio parahaemolyticus) from the water and sediment of urban tropical mangrove ecosystems of Kerala, southwest India. A total of 120 isolates of Vibrio spp. were tested for antibiotic susceptibility to 14 antibiotics. In water, ampicillin resistance was very high in isolates of V. cholerae (94.1%, n = 17) and V. parahaemolyticus (89.1%, n = 46). 26.9% of V. parahaemolyticus and 14.2% of V. cholerae harbored the CTX-M-group 1 gene in water samples. Compared to V. cholerae, the CTX-M-group 1 gene was exclusively hosted by V. parahaemolyticus (49%) in sediment samples. A significant difference in the prevalence of the CTX-M-group 1 gene was observed among Vibrio spp. in both water and sediment samples (p < 0.05). The results revealed the presence of multidrug-resistant and beta-lactamase harboring Vibrio spp. in mangrove ecosystems, which may have evolved as a consequence of the misuse and abuse of broad-spectrum antibiotics as prophylaxis in human health care and aquaculture.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Vibrio cholerae , Vibrio parahaemolyticus , beta-Lactamases , Índia/epidemiologia , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/isolamento & purificação , beta-Lactamases/genética , beta-Lactamases/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/enzimologia , Vibrio cholerae/isolamento & purificação , Antibacterianos/farmacologia , Ecossistema , Áreas Alagadas , Sedimentos Geológicos/microbiologia
4.
Environ Microbiol ; 26(5): e16654, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38779707

RESUMO

Vibrios, a group of bacteria that are among the most abundant in marine environments, include several species such as Vibrio cholerae and Vibrio parahaemolyticus, which can be pathogenic to humans. Some species of Vibrio contain prophages within their genomes. These prophages can carry genes that code for toxins, such as the zonula occludens toxin (Zot), which contribute to bacterial virulence. Understanding the association between different Vibrio species, prophages and Zot genes can provide insights into their ecological interactions. In this study, we evaluated 4619 Vibrio genomes from 127 species to detect the presence of prophages carrying the Zot toxin. We found 2030 potential prophages with zot-like genes in 43 Vibrio species, showing a non-random association within a primarily modular interaction network. Some prophages, such as CTX or Vf33, were associated with specific species. In contrast, prophages phiVCY and VfO3K6 were found in 28 and 20 Vibrio species, respectively. We also identified six clusters of Zot-like sequences in prophages, with the ZOT2 cluster being the most frequent, present in 34 Vibrio species. This analysis helps to understand the distribution patterns of zot-containing prophages across Vibrio genomes and the potential routes of Zot-like toxin dissemination.


Assuntos
Endotoxinas , Genoma Bacteriano , Prófagos , Vibrio , Proteínas de Bactérias/genética , Filogenia , Prófagos/genética , Vibrio/genética , Vibrio/virologia , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/virologia
5.
Microbiol Spectr ; 12(2): e0292823, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38189292

RESUMO

The genus Vibrio includes pathogenic bacteria able to cause disease in humans and aquatic organisms, leading to disease outbreaks and significant economic losses in the fishery industry. Despite much work on Vibrio in several marine organisms, no specific studies have been conducted on Anadara tuberculosa. This is a commercially important bivalve species, known as "piangua hembra," along Colombia's Pacific coast. Therefore, this study aimed to identify and characterize the genomes of Vibrio isolates obtained from A. tuberculosa. Bacterial isolates were obtained from 14 A. tuberculosa specimens collected from two locations along the Colombian Pacific coast, of which 17 strains were identified as Vibrio: V. parahaemolyticus (n = 12), V. alginolyticus (n = 3), V. fluvialis (n = 1), and V. natriegens (n = 1). Whole genome sequence of these isolates was done using Oxford Nanopore Technologies (ONT). The analysis revealed the presence of genes conferring resistance to ß-lactams, tetracyclines, chloramphenicol, and macrolides, indicating potential resistance to these antimicrobial agents. Genes associated with virulence were also found, suggesting the potential pathogenicity of these Vibrio isolates, as well as genes for Type III Secretion Systems (T3SS) and Type VI Secretion Systems (T6SS), which play crucial roles in delivering virulence factors and in interbacterial competition. This study represents the first genomic analysis of bacteria within A. tuberculosa, shedding light on Vibrio genetic factors and contributing to a comprehensive understanding of the pathogenic potential of these Vibrio isolates.IMPORTANCEThis study presents the first comprehensive report on the whole genome analysis of Vibrio isolates obtained from Anadara tuberculosa, a bivalve species of great significance for social and economic matters on the Pacific coast of Colombia. Research findings have significant implications for the field, as they provide crucial information on the genetic factors and possible pathogenicity of Vibrio isolates associated with A. tuberculosa. The identification of antimicrobial resistance genes and virulence factors within these isolates emphasizes the potential risks they pose to both human and animal health. Furthermore, the presence of genes associated with Type III and Type VI Secretion Systems suggests their critical role in virulence and interbacterial competition. Understanding the genetic factors that contribute to Vibrio bacterial virulence and survival strategies within their ecological niche is of utmost importance for the effective prevention and management of diseases in aquaculture practices.


Assuntos
Arcidae , Sistemas de Secreção Tipo VI , Vibrio parahaemolyticus , Animais , Humanos , Virulência/genética , Fatores de Virulência/genética , Antibacterianos
6.
Microbiol Spectr ; 11(4): e0485122, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37272817

RESUMO

Vibrio parahaemolyticus is a bacterial pathogen that becomes lethal to Penaeus shrimps when acquiring the pVA1-type plasmid carrying the PirABvp genes, causing acute hepatopancreatic necrosis disease (AHPND). This disease causes significant losses across the world, with outbreaks reported in Southeast Asia, Mexico, and South America. Virulence level and mortality differences have been reported in isolates from different locations, and whether this phenomenon is caused by plasmid-related elements or genomic-related elements from the bacteria remains unclear. Here, nine genomes of South American AHPND-causing V. parahaemolyticus (VPAHPND) isolates were assembled and analyzed using a comparative genomics approach at (i) whole-genome, (ii) secretion system, and (iii) plasmid level, and then included for a phylogenomic analysis with another 86 strains. Two main results were obtained from our analyses. First, all isolates contained pVA1-type plasmids harboring the toxin coding genes, and with high similarity with the prototypical sequence of Mexican-like origin, while phylogenomic analysis showed some level of heterogeneity with discrete clusters and wide diversity compared to other available genomes. Second, although a high genomic similarity was observed, variation in virulence genes and clusters was observed, which might be relevant in the expression of the disease. Overall, our results suggest that South American pathogenic isolates are derived from various genetic lineages which appear to have acquired the plasmid through horizontal gene transfer. Furthermore, pathogenicity seems to be a multifactorial trait where the degree of virulence could be altered by the presence or variations of several virulence factors. IMPORTANCE AHPND have caused losses of over $2.6 billion to the aquaculture industry around the world due to its high mortality rate in shrimp farming. The most common etiological agent is V. parahaemolyticus strains possessing the pVA1-type plasmid carrying the PirABvp toxin. Nevertheless, complete understanding of the role of genetic elements and their impact in the virulence of this pathogen remains unclear. In this work, we analyzed nine South American AHPND-causing V. parahaemolyticus isolates at a genomic level, and assessed their evolutionary relationship with other 86 strains. We found that all our isolates were highly similar and possessed the Mexican-type plasmid, but their genomic content did not cluster with other Mexican strains, but instead were spread across all isolates. These results suggest that South American VPAHPND have different genetic backgrounds, and probably proceed from diverse geographical locations, and acquire the pVA1-type plasmid via horizontal gene transfer at different times.


Assuntos
Toxinas Biológicas , Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Plasmídeos/genética , Genômica , Aquicultura , Necrose
7.
Microbiol Spectr ; 11(3): e0087223, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199626

RESUMO

The second messenger cyclic dimeric GMP (c-di-GMP) plays a central role in controlling decision-making processes that are vitally important for the environmental survival of the human pathogen Vibrio parahaemolyticus. The mechanisms by which c-di-GMP levels and biofilm formation are dynamically controlled in V. parahaemolyticus are poorly understood. Here, we report the involvement of OpaR in controlling c-di-GMP metabolism and its effects on the expression of the trigger phosphodiesterase (PDE) TpdA and the biofilm-matrix related gene cpsA. Our results revealed that OpaR negatively modulates the expression of tpdA by maintaining a baseline level of c-di-GMP. The OpaR-regulated PDEs ScrC, ScrG, and VP0117 enable the upregulation of tpdA, to different degrees, in the absence of OpaR. We also found that TpdA plays the dominant role in c-di-GMP degradation under planktonic conditions compared to the other OpaR-regulated PDEs. In cells growing on solid medium, we observed that the role of the dominant c-di-GMP degrader alternates between ScrC and TpdA. We also report contrasting effects of the absence of OpaR on cpsA expression in cells growing on solid media compared to cells forming biofilms over glass. These results suggest that OpaR can act as a double-edged sword to control cpsA expression and perhaps biofilm development in response to poorly understood environmental factors. Finally, using an in-silico analysis, we indicate outlets of the OpaR regulatory module that can impact decision making during the motile-to-sessile transition in V. parahaemolyticus. IMPORTANCE The second messenger c-di-GMP is extensively used by bacterial cells to control crucial social adaptations such as biofilm formation. Here, we explore the role of the quorum-sensing regulator OpaR, from the human pathogen V. parahaemolyticus, on the dynamic control of c-di-GMP signaling and biofilm-matrix production. We found that OpaR is crucial to c-di-GMP homeostasis in cells growing on Lysogeny Broth agar and that the OpaR-regulated PDEs TpdA and ScrC alternate in the dominant role over time. Furthermore, OpaR plays contrasting roles in controlling the expression of the biofilm-related gene cpsA on different surfaces and growth conditions. This dual role has not been reported for orthologues of OpaR, such as HapR from Vibrio cholerae. It is important to investigate the origins and consequences of the differences in c-di-GMP signaling between closely and distantly related pathogens to better understand pathogenic bacterial behavior and its evolution.


Assuntos
Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Biofilmes , Homeostase , Regulação Bacteriana da Expressão Gênica
8.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018030

RESUMO

Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis worldwide. A distinctive feature of the O3:K6 pandemic clone, and its derivatives, is the presence of a second, phylogenetically distinct, type III secretion system (T3SS2) encoded within the genomic island VPaI-7. The T3SS2 allows the delivery of effector proteins directly into the cytosol of infected eukaryotic cells to subvert key host-cell processes, critical for V. parahaemolyticus to colonize and cause disease. Furthermore, the T3SS2 also increases the environmental fitness of V. parahaemolyticus in its interaction with bacterivorous protists; hence, it has been proposed that it contributed to the global oceanic spread of the pandemic clone. Several reports have identified T3SS2-related genes in Vibrio and non-Vibrio species, suggesting that the T3SS2 gene cluster is not restricted to the Vibrionaceae and can mobilize through horizontal gene transfer events. In this work, we performed a large-scale genomic analysis to determine the phylogenetic distribution of the T3SS2 gene cluster and its repertoire of effector proteins. We identified putative T3SS2 gene clusters in 1130 bacterial genomes from 8 bacterial genera, 5 bacterial families and 47 bacterial species. A hierarchical clustering analysis allowed us to define six T3SS2 subgroups (I-VI) with different repertoires of effector proteins, redefining the concepts of T3SS2 core and accessory effector proteins. Finally, we identified a subset of the T3SS2 gene clusters (subgroup VI) that lacks most T3SS2 effector proteins described to date and provided a list of 10 novel effector candidates for this subgroup through bioinformatic analysis. Collectively, our findings indicate that the T3SS2 extends beyond the family Vibrionaceae and suggest that different effector protein repertories could have a differential impact on the pathogenic potential and environmental fitness of each bacterium that has acquired the Vibrio T3SS2 gene cluster.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Vibrionaceae , Humanos , Sistemas de Secreção Tipo III , Filogenia , Vibrioses/microbiologia , Vibrio parahaemolyticus/genética
9.
Foodborne Pathog Dis ; 20(4): 123-131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015074

RESUMO

Vibrio parahaemolyticus is the leading cause of seafood-related foodborne illness globally. In 2018, the U.S. federal, state, and local public health and regulatory partners investigated a multistate outbreak of V. parahaemolyticus infections linked to crabmeat that resulted in 26 ill people and nine hospitalizations. State and U.S. Food and Drug Administration (FDA) laboratories recovered V. parahaemolyticus, Salmonella spp., and Listeria monocytogenes isolates from crabmeat samples collected from various points of distribution and conducted phylogenetic analyses of whole-genome sequencing data. Federal, state, and local partners conducted traceback investigations to determine the source of crabmeat. Multiple Venezuelan processors that supplied various brands of crabmeat were identified, but a sole firm was not confirmed as the source of the outbreak. Travel restrictions between the United States and Venezuela prevented FDA officials from conducting on-site inspections of cooked crabmeat processors. Based on investigation findings, partners developed public communications advising consumers not to eat crabmeat imported from Venezuela and placed potentially implicated firms on import alerts. While some challenges limited the scope of the investigation, epidemiologic, traceback, and laboratory evidence identified the contaminated food and country of origin, and contributed to public health and regulatory actions, preventing additional illnesses. This multistate outbreak illustrates the importance of adhering to appropriate food safety practices and regulations for imported seafood.


Assuntos
Doenças Transmitidas por Alimentos , Vibrioses , Vibrio parahaemolyticus , Humanos , Estados Unidos/epidemiologia , Filogenia , Venezuela/epidemiologia , Doenças Transmitidas por Alimentos/epidemiologia , Vibrioses/epidemiologia , Surtos de Doenças
10.
Microb Genom ; 9(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36884014

RESUMO

Litopenaeus vannamei, the Pacific whiteleg shrimp, is one of the most marketable species in aquaculture worldwide. However, it is susceptible to different infections causing considerable losses in production each year. Consequently, using prebiotics that promotes the proliferation of beneficial bacteria and strengthen the immune system is a current strategy for disease control. In this study, we isolated two strains of E. faecium from the gut of L. vannamei fed with agavin-supplemented diets. These isolates showed antibacterial activity against Vibrio parahaemolyticus, Vibrio harveyi and Vibrio alginolyticus, most likely due to peptidoglycan hydrolase (PGH) activity. Furthermore, we sequenced the genome of one isolate. As a result, we observed three proteins related to the production of bacteriocins, a relevant trait for selecting probiotic strains since they can inhibit the invasion of potential pathogens. Additionally, the genome annotation showed genes related to the production of essential nutrients for the host. It lacked two of the most common factors associated with virulence in Enterococcus pathogenic strains (esp and hyl). Thus, this host-probiotic-derived strain has potential application not only in shrimp health but also in alternative aquatic environments, as it is adapted to coexist within the gut shrimp microbiota, independently of the diet.


Assuntos
Enterococcus faecium , Penaeidae , Probióticos , Vibrio parahaemolyticus , Animais , Enterococcus faecium/genética , Probióticos/farmacologia , Suplementos Nutricionais , Dieta , Penaeidae/microbiologia
11.
Braz J Microbiol ; 54(1): 415-425, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36735199

RESUMO

In the present study, we identified and characterized 22 strains of V. anguillarum from 145 samples of mullets (Mugill cephallus) cultured in several fish farms in South Korea. They were subjected to pathogenicity tests, antimicrobial susceptibility test, and broth dilution test to detect virulence markers, antimicrobial resistance, and heavy metal resistance properties. All the isolates showed amylase and caseinase activity, followed by gelatinase (90.9%), DNase (45.5%), and hemolysis activities (α = 81.1% and ß = 18.2%). The PCR assay revealed that isolates were positive for VAC, ctxAB, AtoxR, tdh, tlh, trh, Vfh, hupO, VPI, and FtoxR virulence genes at different percentages. All the isolates showed multi-drug resistance properties (MAR index ≥ 0.2), while 100% of the isolates were resistant to oxacillin, ticarcillin, streptomycin, and ciprofloxacin. Antimicrobial resistance genes, qnrS (95.5%), qnrB (86.4%), and StrAB (27.3%), were reported. In addition, 40.9% of the isolates were cadmium-tolerant, with the presence of CzcA (86.4%) heavy metal resistance gene. The results revealed potential pathogenicity associated with V. anguillarum in aquaculture and potential health risk associated with consumer health.


Assuntos
Metais Pesados , Smegmamorpha , Vibrio parahaemolyticus , Animais , Virulência/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , República da Coreia , Vibrio parahaemolyticus/genética
12.
Adv Exp Med Biol ; 1404: 233-251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36792879

RESUMO

The epidemiological dynamics of V. parahaemolyticus´ infections have been characterized by the abrupt appearance of outbreaks in remote areas where these diseases had not been previously detected, without knowing the routes of entry of the pathogens in the new area. However, there are recent studies that show the link between the appearance of epidemic outbreaks of Vibrio and environmental factors such as oceanic transport of warm waters, which has provided a possible mechanism for the dispersion of Vibrio diseases globally. Despite this evidence, there is little information on the possible routes of entry and transport of infectious agents from endemic countries to the entire world. In this sense, the recent advances in genomic sequencing tools are making it possible to infer possible biogeographical patterns of diverse pathogens with relevance in public health like V. parahaemolyticus. In this chapter, we will address several general aspects about V. parahaemolyticus, including their microbiological and genetic detection, main virulence factors, and the epidemiology of genotypes involved in foodborne outbreaks globally.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Fatores de Virulência/genética , Saúde Pública , Surtos de Doenças
13.
F1000Res ; 12: 1256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-39345269

RESUMO

Background: Vibrio parahaemolyticus is a pathogenic bacterium that affects shrimp aquaculture; its infection can lead to severe production losses of up to 90%. On the other hand, plant phenolic compounds have emerged as a promising alternative to combat bacterial infections. The antibacterial and anti-virulence activity of the plant phenolic compounds quercetin, morin, vanillic acid, and protocatechuic acid against two strains of V. parahaemolyticus (Vp124 and Vp320) was evaluated. Methods: The broth microdilution test was carried out to determine phenolic compounds' antibacterial activity. Moreover, the biofilm-forming ability of V. parahaemolyticus strains in the presence of phenolic compounds was determined by total biomass staining assay using the cationic dye crystal violet. The semisolid agar displacement technique was used to observe the effect of phenolic compounds on the swimming-like motility of V. parahaemolyticus. Results: Results showed that phenolic compounds inhibited both strains effectively, with minimum inhibitory concentrations (MICs) ranging from 0.8 to 35.03 mM. Furthermore, at 0.125 - 0.5 × MIC of phenolic compounds, V. parahaemolyticus biofilms biomass was reduced by 63.22 - 92.68%. Also, quercetin and morin inhibited the motility of both strains by 15.86 - 23.64% (Vp124) and 24.28 - 40.71% (Vp320). Conclusions: The results suggest that quercetin, morin, vanillic, and protocatechuic acids may be potential agents for controlling V. parahaemolyticus.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Fenóis , Vibrio parahaemolyticus , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/patogenicidade , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fenóis/farmacologia , Virulência/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Flavonoides/farmacologia
14.
Toxins (Basel) ; 14(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136547

RESUMO

Lecithin-dependent thermolabile hemolysin (LDH) is a virulence factor excreted by Vibrio parahaemolyticus, a marine bacterium that causes important losses in shrimp farming. In this study, the function of LDH was investigated through its inhibition by metal ions (Mg2+, Ca2+, Mn2+, Co2+, Ni2+ and Cu2+) and chemical modification reagents: ß-mercaptoethanol (ßME), phenylmethylsulfonyl fluoride (PMSF) and diethyl pyrocarbonate (DEPC). LDH was expressed in the Escherichia coli strain BL-21, purified under denaturing conditions, and the enzymatic activity was evaluated. Cu2+, Ni2+, Co2+ and Ca2+ at 1 mmol/L inhibited the LDH esterase activity by 20−95%, while Mg2+ and Mn2+ slightly increased its activity. Additionally, PMSF and DEPC at 1 mmol/L inhibited the enzymatic activity by 40% and 80%, respectively. Dose-response analysis showed that DEPC was the best-evaluated inhibitor (IC50 = 0.082 mmol/L), followed by Cu2+ > Co2+ > Ni2+ and PMSF (IC50 = 0.146−1.5 mmol/L). Multiple sequence alignment of LDH of V. parahaemolyticus against other Vibrio species showed that LDH has well-conserved GDSL and SGNH motifs, characteristic of the hydrolase/esterase superfamily. Additionally, the homology model showed that the conserved catalytic triad His-Ser-Asp was in the LDH active site. Our results showed that the enzymatic activity of LDH from V. parahaemolyticus was modulated by metal ions and chemical modification, which could be related to the interaction with catalytic amino acid residues such as Ser153 and/or His 393.


Assuntos
Proteínas Hemolisinas , Vibrio parahaemolyticus , Aminoácidos , Dietil Pirocarbonato , Escherichia coli/metabolismo , Esterases , Proteínas Hemolisinas/metabolismo , Hidrolases , Indicadores e Reagentes , Íons , Lecitinas , Mercaptoetanol , Fluoreto de Fenilmetilsulfonil , Vibrio parahaemolyticus/metabolismo , Fatores de Virulência
15.
Artigo em Inglês | MEDLINE | ID: mdl-36011953

RESUMO

In the present study, we conducted surveillance of the V. parahaemolyticus strains present in clinical samples from six geographical regions of Mexico (22 states) from 2004 to 2011. The serotype dominance, virulence genes, presence of pandemic O3:K6 strains, and antibiotic resistance of the isolates were investigated. In total, 144 strains were isolated from the clinical samples. Seven different O serogroups and twenty-five serovars were identified. Most clinical isolates (66%, 95/144) belonged to the pandemic clone O3:K6 (tdh+, toxRS/new+ and/or orf8+) and were detected in 20 of the 22 states. Among the pandemic clones, approximately 17.8% (17/95) of the strains cross-reacted with the antisera for the K6 and K59 antigens (O3:K6, K59 serotype). Other pathogenic strains (tdh+ and/or trh+, toxRS/new-, orf8-) accounted for 26.3%, and the nonpathogenic strains (tdh- and/or trh-) accounted for 7.6%. Antimicrobial susceptibility testing showed that most of the strains were resistant to ampicillin (99.3%) but were sensitive to most tested antibiotics. The level of multidrug resistance was 1.3%. Our results indicate that pandemic O3:K6 is present in most Mexican states, thus, constant surveillance of V. parahaemolyticus strains in diarrhea patients is a public health priority and is useful for conducting risk assessments of foodborne illnesses to prevent V. parahaemolyticus outbreaks. Overall, our observations indicate that the pandemic O3:K6 clone of V. parahaemolyticus has become a relatively stable subpopulation and may be endemically established in Mexico; therefore, constant surveillance is needed to avoid new outbreaks of this pathogen.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Células Clonais , Diarreia/epidemiologia , Surtos de Doenças , Humanos , México/epidemiologia , Pandemias , Sorotipagem , Vibrioses/epidemiologia , Vibrio parahaemolyticus/genética
16.
Molecules ; 27(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889267

RESUMO

This study aimed to evaluate the antibacterial activity in vitro of Salpianthus macrodontus and Azadirachta indica extracts against potentially pathogenic bacteria for Pacific white shrimp. Furthermore, the extracts with higher inhibitory activity were analyzed to identify compounds responsible for bacterial inhibition and evaluate their effect on motility and biofilm formation. S. macrodontus and A. indica extracts were prepared using methanol, acetone, and hexane by ultrasound. The minimum inhibitory concentration (MIC) of the extracts was determined against Vibrio parahaemolyticus, V. harveyi, Photobacterium damselae and P. leiognathi. The polyphenol profile of those extracts showing the highest bacterial inhibition were determined. Besides, the bacterial swimming and swarming motility and biofilm formation were determined. The highest inhibitory activity against the four pathogens was found with the acetonic extract of S. macrodontus leaf (MIC of 50 mg/mL for Vibrio spp. and 25 mg/mL for Photobacterium spp.) and the methanol extract of S. macrodontus flower (MIC of 50 mg/mL for all pathogens tested). Both extracts affected the swarming and swimming motility and the biofilm formation of the tested bacteria. The main phenolic compounds related to Vibrio bacteria inhibition were naringin, vanillic acid, and rosmarinic acid, whilst hesperidin, kaempferol pentosyl-rutinoside, and rhamnetin were related to Photobacterium bacteria inhibition.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Antibacterianos/farmacologia , Metanol , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
17.
Braz J Microbiol ; 53(3): 1491-1499, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35761009

RESUMO

Vibrio parahaemolyticus can degrade insoluble chitin with the help of chitinase enzymes that generate soluble N-acetyl glucosamine oligosaccharides (GlcNAcn) to induce a state of natural competence for the uptake of extracellular DNA. In this study, we had evaluated the role of various regulatory factors such as TfoX, CytR, OpaR, and RpoS during natural transformation of V. parahaemolyticus. The results suggest that TfoX regulates natural competence via CytR in a chitin-dependent manner. CytR controls the release of GlcNAc6 from insoluble chitin and conversion of GlcNAc6 into smaller GlcNAc residues inside the periplasm by modulating the expression of endochitinase and periplasmic chitinases. In addition, CytR was also responsible for GlcNAc6-mediated upregulation of competence-related genes such as pilA, pilB, comEA, and qstR. Next, we found that the quorum sensing regulator OpaR affects the natural transformation through its regulation of extracellular nuclease Dns. The ΔopaR mutant showed increased expression of Dns, which might degrade the eDNA. As a consequence, the transformation efficiency was decreased and eDNA-dependent growth was hugely enhanced. However, when Dns-containing DASW was substituted with fresh DASW, the transformation was detectable in ΔopaR mutant and eDNA-dependent growth was less. These results suggest that the occurrence of natural transformation and eDNA-dependent growth were inversely related to each other. Lastly, the general stress regulator RpoS was required for neither quorum-sensing dependent nor chitin-dependent regulation of natural competence in V. parahaemolyticus.


Assuntos
Quitinases , Vibrio cholerae , Vibrio parahaemolyticus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quitina/metabolismo , Quitinases/genética , Quitinases/metabolismo , Regulação Bacteriana da Expressão Gênica , Vibrio cholerae/genética , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo
18.
Toxins (Basel) ; 14(4)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35448852

RESUMO

PirAB toxins secreted by Vibrio parahaemolyticus (Vp) harbor the pVA1 virulence plasmid, which causes acute hepatopancreatic necrosis disease (AHPND), an emerging disease in Penaeid shrimp that can cause 70-100% mortality and that has resulted in great economic losses since its first appearance. The cytotoxic effect of PirABVp on the epithelial cells of the shrimp hepatopancreas (Hp) has been extensively documented. New insights into the biological role of the PirBVp subunit show that it has lectin-like activity and recognizes mucin-like O-glycosidic structures in the shrimp Hp. The search for toxin receptors can lead to a better understanding of the infection mechanisms of the pathogen and the prevention of the host disease by blocking toxin-receptor interactions using a mimetic antagonist. There is also evidence that Vp AHPND changes the community structure of the microbiota in the surrounding water, resulting in a significant reduction of several bacterial taxa, especially Neptuniibacter spp. Considering these findings, the PirABvp toxin could exhibit a dual role of damaging the shrimp Hp while killing the surrounding bacteria.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Hepatopâncreas , Penaeidae/microbiologia , Plasmídeos , Vibrio parahaemolyticus/genética , Virulência
19.
Fish Shellfish Immunol ; 124: 192-200, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35398528

RESUMO

Antibiotic usage to control infectious diseases in shrimp aquaculture has led to serious problems on antimicrobial resistance. An alternative to mitigate this issue is the use of probiotics, which can be easily administered by feed and water. This study examines immunomodulatory and protective effects of the marine yeasts Debaryomyces hansenii CBS8339 (Dh) and Yarrowia lipolytica Yl-N6 (Yl) -alone and mixed-in white shrimp Penaeus vannamei post-larvae. Administration routes (fed and water alone or in combination), supplementation frequency and time elapsed after the last dietary supplement were tested on growth and gene expression of penaeidin, lectin, lysozyme, superoxide dismutase, catalase, and peroxidase, as well as survival upon Vibrio parahaemolyticus IPNGS16 challenge. Penaeidin and lectin genes were upregulated in post-larvae fed orally with Yl or combined Dh + Yl. Higher growth and survival for yeast supplementation treatments were observed compared to the control group, mainly when yeasts (Dh + Yl) and administration routes (feed and water) were combined. In conclusion, mixed yeast and combined administration routes improved growth and immunity against V. parahaemolyticus.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Ração Animal/análise , Animais , Dieta , Imunidade Inata/genética , Lectinas/farmacologia , Água
20.
Virus Res ; 312: 198719, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219760

RESUMO

Acute hepatopancreatic necrosis disease (AHPND) is a life-threatening disease to recently stocked shrimp. This disease is mainly caused by Vibrio parahaemolyticus and, to date, it has not been effectively controlled. Bacteriophages are a promising method to control bacterial diseases in aquaculture and multiple phages that infect Asian strains of V. parahaemolyticus have been described. However, few studies have characterized the bacteriophages that infect Latin American strains. Here, two lytic Vibrio phages (vB_VpaP_AL-1 and vB_VpaS_AL-2) were isolated from estuary water in Sinaloa, Mexico. The host ranges were tested using ten AHPND-causing strains isolated from Mexico and phage AL-1 was able to infect two strains while AL-2 infected four. One-step growth curve showed that AL-1 produced 85 PFU/cell and AL-2 produced 68 PFU/cell in 30 and 40 min, respectively. Both phages were able to tolerate temperatures ranging from 20 to 50 °C and pH values ranging from 4 to 10. Phages AL-1 and AL-2 have double-stranded DNA genomes of 42,854 bp and 58,457 bp, respectively. In total, 53 putative ORFs associated with the phage structure, packing, host lysis, DNA metabolism, and additional functions were predicted in the AL-1 genome, while 92 ORFs associated with the same functions as the AL-1 and 1 tRNA were predicted in the AL-2 genome. The lifecycle was classified as virulent for both phages. Morphology, phylogeny, and comparative genomic analyses assigned phage AL-1 as a new member of the genus Maculvirus in the Autographiviridae family, and phage AL-2 as a new member of the Siphoviridae family. These findings suggest that vB_VpaP_AL-1 and vB_VpaS_AL-2 are potential biocontrol agents against AHPND-causing V. parahaemolyticus from Mexico.


Assuntos
Bacteriófagos , Vibrio parahaemolyticus , Efrina-A5/genética , Genoma Viral , Genômica , Humanos , Necrose/genética , Vibrio parahaemolyticus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA