Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.063
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1366908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725449

RESUMO

Background: Metagenomic next-generation sequencing (mNGS) is a novel non-invasive and comprehensive technique for etiological diagnosis of infectious diseases. However, its practical significance has been seldom reported in the context of hematological patients with high-risk febrile neutropenia, a unique patient group characterized by neutropenia and compromised immune responses. Methods: This retrospective study evaluated the results of plasma cfDNA sequencing in 164 hematological patients with high-risk febrile neutropenia. We assessed the diagnostic efficacy and clinical impact of mNGS, comparing it with conventional microbiological tests. Results: mNGS identified 68 different pathogens in 111 patients, whereas conventional methods detected only 17 pathogen types in 36 patients. mNGS exhibited a significantly higher positive detection rate than conventional methods (67.7% vs. 22.0%, P < 0.001). This improvement was consistent across bacterial (30.5% vs. 9.1%), fungal (19.5% vs. 4.3%), and viral (37.2% vs. 9.1%) infections (P < 0.001 for all comparisons). The anti-infective treatment strategies were adjusted for 51.2% (84/164) of the patients based on the mNGS results. Conclusions: mNGS of plasma cfDNA offers substantial promise for the early detection of pathogens and the timely optimization of anti-infective therapies in hematological patients with high-risk febrile neutropenia.


Assuntos
Neutropenia Febril , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Humanos , Metagenômica/métodos , Masculino , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Feminino , Pessoa de Meia-Idade , Neutropenia Febril/microbiologia , Neutropenia Febril/sangue , Neutropenia Febril/diagnóstico , Adulto , Idoso , Adulto Jovem , Adolescente , Idoso de 80 Anos ou mais , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Micoses/diagnóstico , Micoses/microbiologia , Viroses/diagnóstico , Viroses/virologia
2.
Xenotransplantation ; 31(3): e12851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747130

RESUMO

BACKGROUND: The German Xenotransplantation Consortium is in the process to prepare a clinical trial application (CTA) on xenotransplantation of genetically modified pig hearts. In the CTA documents to the central and national regulatory authorities, that is, the European Medicines Agency (EMA) and the Paul Ehrlich Institute (PEI), respectively, it is required to list the potential zoonotic or xenozoonotic porcine microorganisms including porcine viruses as well as to describe methods of detection in order to prevent their transmission. The donor animals should be tested using highly sensitive detection systems. I would like to define a detection system as the complex including the actual detection methods, either PCR-based, cell-based, or immunological methods and their sensitivity, as well as sample generation, sample preparation, sample origin, time of sampling, and the necessary negative and positive controls. Lessons learned from the identification of porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) in the xenotransplanted heart in the recipient in the Baltimore study underline how important such systems are. The question is whether veterinary laboratories can supply such assays. METHODS: A total of 35 veterinary laboratories in Germany were surveyed for their ability to test for selected xenotransplantation-relevant viruses, including PCMV/PRV, hepatitis E virus, and porcine endogenous retrovirus-C (PERV-C). As comparison, data from Swiss laboratories and a laboratory in the USA were analyzed. Furthermore, we assessed which viruses were screened for in clinical and preclinical trials performed until now and during screening of pig populations. RESULTS: Of the nine laboratories that provided viral diagnostics, none of these included all potential viruses of concern, indeed, the most important assays confirmed in recent human trials, antibody detection of PCMV/PRV and screening for PERV-C were not available at all. The situation was similar in Swiss and US laboratories. Different viruses have been tested for in first clinical and preclinical trials performed in various countries. CONCLUSION: Based on these results it is necessary to establish special virological laboratories able to test for all xenotransplantation-relevant viruses using validated assays, optimally in the xenotransplantation centers.


Assuntos
Transplante Heterólogo , Animais , Transplante Heterólogo/métodos , Suínos , Humanos , Vírus/isolamento & purificação , Laboratórios , Alemanha , Viroses/diagnóstico , Transplante de Coração , Xenoenxertos/virologia
4.
Rev Esp Quimioter ; 37(3): 252-256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606841

RESUMO

The increased knowledge on virology and the increased potential of their diagnostic has risen several relevant question about the role of an early viral diagnosis and potential early treatment on the management of respiratory tract infections (RTI). In order to further understand the role of viral diagnostic tests in the management of RTI, a panel of experts was convened to discuss about their potential role, beyond what had been agreed in Influenza. The objective of this panel was to define the plausible role of aetiologic viral diagnostic into clinical management; make recommendations on the potential expanded use of such tests in the future and define some gaps in the management of RTI. Molecular Infection Viral Diagnostic (mIVD) tests should be used in all adult patients admitted to Hospital with RTI, and in paediatric patients requiring admission or who would be referred to another hospital for more specialised care. The increased use of mIVD will not only reduce the inappropriate use of antibiotics so reducing the antibiotic microbe resistance, but also will improve the outcome of the patient if an aetiologic viral therapy can be warranted, saving resource requirements and improving patient flows. Implementing IVD testing in RTI has various organizational benefits as well, but expanding its use into clinical settings would need a cost-effectiveness strategy and budget impact assessment.


Assuntos
Infecções Respiratórias , Humanos , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/virologia , Viroses/diagnóstico , Técnicas de Diagnóstico Molecular , Criança
5.
Analyst ; 149(9): 2507-2525, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38630498

RESUMO

Outbreaks of viral diseases seriously jeopardize people's health and cause huge economic losses. At the same time, virology provides a new perspective for biology, molecular biology and cancer research, and it is important to study the discovered viruses with potential applications. Therefore, the development of immediate and rapid viral detection methods for the prevention and treatment of viral diseases as well as the study of viruses has attracted extensive attention from scientists. With the continuous progress of science and technology, especially in the field of bioanalysis, a series of new detection techniques have been applied to the on-site rapid detection of viruses, which has become a powerful approach for human beings to fight against viruses. In this paper, the latest research progress of rapid point-of-care detection of viral nucleic acids, antigens and antibodies is presented. In addition, the advantages and disadvantages of these technologies are discussed from the perspective of practical application requirements. Finally, the problems and challenges faced by rapid viral detection methods and their development prospects are discussed.


Assuntos
Testes Imediatos , Vírus , Humanos , Vírus/isolamento & purificação , Vírus/genética , Viroses/diagnóstico , Antígenos Virais/análise , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/análise , Técnicas Biossensoriais/métodos , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/análise , RNA Viral/genética
7.
J Med Virol ; 96(4): e29624, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38647075

RESUMO

Respiratory infections pose a serious threat to global public health, underscoring the urgent need for rapid, accurate, and large-scale diagnostic tools. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, combined with isothermal amplification methods, has seen widespread application in nucleic acid testing (NAT). However, achieving a single-tube reaction system containing all necessary components is challenging due to the competitive effects between recombinase polymerase amplification (RPA) and CRISPR/Cas reagents. Furthermore, to enable precision medicine, distinguishing between bacterial and viral infections is essential. Here, we have developed a novel NAT method, termed one-pot-RPA-CRISPR/Cas12a, which combines RPA with CRISPR molecular diagnostic technology, enabling simultaneous detection of 12 common respiratory pathogens, including six bacteria and six viruses. RPA and CRISPR/Cas12a reactions are separated by paraffin, providing an independent platform for RPA reactions to generate sufficient target products before being mixed with the CRISPR/Cas12a system. Results can be visually observed under LED blue light. The sensitivity of the one-pot-RPA-CRISPR/Cas12a method is 2.5 × 100 copies/µL plasmids, with no cross-reaction with other bacteria or viruses. Additionally, the clinical utility was evaluated by testing clinical isolates of bacteria and virus throat swab samples, demonstrating favorable performance. Thus, our one-pot-RPA-CRISPR/Cas12a method shows immense potential for accurate and large-scale detection of 12 common respiratory pathogens in point-of-care testing.


Assuntos
Bactérias , Sistemas CRISPR-Cas , Técnicas de Diagnóstico Molecular , Infecções Respiratórias , Vírus , Bactérias/genética , Bactérias/isolamento & purificação , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/genética , Recombinases/metabolismo , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/virologia , Infecções Respiratórias/microbiologia , Sensibilidade e Especificidade , Viroses/diagnóstico , Vírus/genética , Vírus/isolamento & purificação
9.
Artigo em Russo | MEDLINE | ID: mdl-38529865

RESUMO

The authors give literature review of hemostasis and immune system factors intraction as main biomarkers of a severe cause of viral infectious diseases. Pro-inflamatory cytokines as the main markers of inflammation, can serve both as biomarkers of the clinical severity of the infectious process and reflect the state of the hemostatic and fibrinolytic systems, since components of these systems are present in various structures of the central nervous system and affect the development of neurons and synaptic plasticity. An inverse correlation has been proven between the concentration of D-dimer and the oxygenation index, and the development of DIC is not associated with the presence of respiratory failure in patients with influenza type A, while the ferritin concentration directly reflects the severity of the disease. One of the markers of endothelial damage may be soluble thrombomodulin, which, however, is rarely used in routine clinical practice. Cytoflavin is a highly effective pathogenetic drug that affects various parts of the hemostasis system, has anti-ischemic, antioxidant, antihypoxic, immunocorrective effect, which is indicated for any generalized infectious disease since its debut.


Assuntos
Hemostasia , Viroses , Humanos , Biomarcadores , Viroses/complicações , Viroses/diagnóstico , Inflamação , Citocinas
10.
J Clin Microbiol ; 62(5): e0031223, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38436246

RESUMO

The landscape of at-home testing using over-the-counter (OTC) tests has been evolving over the last decade. The United States Food and Drug Administration Emergency Use Authorization rule has been in effect since the early 2000s, and it was widely employed during the severe acute respiratory syndrome coronavirus 2 pandemic to authorize antigen and nucleic acid detection tests for use in central laboratories as well as OTC. During the pandemic, the first at-home tests for respiratory viruses became available for consumer use, which opened the door for additional respiratory virus OTC tests. Concerns may exist regarding the public's ability to properly collect samples, perform testing, interpret results, and report results to public health authorities. However, favorable comparison studies between OTC testing and centralized laboratory test results suggest that OTC testing may have a place in healthcare, and it is likely here to stay. This mini-review of OTC tests for viral respiratory diseases will briefly cover the regulatory and reimbursement environment, current OTC test availability, as well as the advantages and limitations of OTC tests.


Assuntos
COVID-19 , Infecções Respiratórias , Humanos , Infecções Respiratórias/virologia , Infecções Respiratórias/diagnóstico , COVID-19/diagnóstico , Estados Unidos , Vírus/isolamento & purificação , Vírus/classificação , SARS-CoV-2/isolamento & purificação , Teste para COVID-19/métodos , Viroses/diagnóstico , Viroses/virologia
11.
Int J Biol Macromol ; 266(Pt 1): 131101, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547939

RESUMO

Accurate diagnosis is crucial for effective patient care and the containment of antimicrobial resistance outbreaks. The intricate challenge of distinguishing bacterial from viral infections, coupled with limited diagnostic tools and overlapping symptoms has driven the utilization of molecular imprinting techniques. This study focuses on developing cost-effective, chemically stable antibody analogs for the interferon-induced protein myxovirus resistance protein A (MxA). MxA is an intracellular, cytoplasmic GTPase having activity against a wide range of viruses and serves as a distinctive biomarker for viral infections. We utilized computational design to guide the polymer assembly, centering on epitope imprinting to target MxA-specific regions crucial for interaction. Molecular docking calculations, alongside a pioneering multi-monomer simultaneous docking (MMSD) protocol, efficiently elucidate cooperativity during pre-polymerization. Monomer binding affinity scores, such as for APTMS, exhibited notable increase, ranging from -3.11 to -13.03 kcal/mol across various MMSD combinations compared to a maximum of -2.78 kcal/mol in single monomer docking, highlighting the capacity of MMSD in elucidating crucial monomer-monomer interactions. This computational approach provides a theoretical alternative to labor-intensive experimental optimization, streamlining the development process for synthetic receptors. Simulations reveal unique interactions enhancing MIP-peptide complementarity, yielding optimized receptors selectively binding to MxA epitopes. The obtained MIPs demonstrated a maximum adsorption capacity of approximately 12 mg/g and captured 1.6 times more epitope and 2.6 times more epitope containing MxA protein than corresponding NIPs. A proof-of-concept study demonstrates MxA protein binding to synthetic receptors, highlighting the potential of MIPs, analogous to antibodies, in overcoming current diagnostic challenges for precise detection of viral infection.


Assuntos
Biomarcadores , Simulação de Acoplamento Molecular , Impressão Molecular , Proteínas de Resistência a Myxovirus , Proteínas de Resistência a Myxovirus/metabolismo , Proteínas de Resistência a Myxovirus/química , Impressão Molecular/métodos , Viroses/diagnóstico , Humanos
14.
Anal Methods ; 16(7): 971-978, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38299435

RESUMO

Virus-based human infectious diseases have a significant negative impact on people's health and social development. The need for quick, accurate, and early viral infection detection in preventive medicine is expanding. A microfluidic control is particularly suitable for point-of-care-testing virus diagnosis due to its advantages of low sample consumption, quick detection speed, simple operation, multi-functional integration, small size, and easy portability. It is also thought to have significant development potential and a wide range of application prospects in the research on virus detection technology. In an effort to aid researchers in creating novel microfluidic tools for virus detection, this review highlights recent developments of droplet-based microfluidics in virus detection research and also discusses the challenges and opportunities for rapid virus detection.


Assuntos
Doenças Transmissíveis , Viroses , Humanos , Microfluídica , Doenças Transmissíveis/diagnóstico , Viroses/diagnóstico , Testes Imediatos
15.
J Leukoc Biol ; 115(4): 714-722, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38169315

RESUMO

Rapid discrimination between viral and bacterial infections in a point-of-care setting will improve clinical outcome. Expression of CD64 on neutrophils (neuCD64) increases during bacterial infections, whereas expression of CD169 on classical monocytes (cmCD169) increases during viral infections. The diagnostic value of automated point-of-care neuCD64 and cmCD169 analysis was assessed for detecting bacterial and viral infections at the emergency department. Additionally, their value as input for machine learning models was studied. A prospective observational cohort study in patients suspected of infection was performed at an emergency department. A fully automated point-of-care flow cytometer measured neuCD64, cmCD169, and additional leukocyte surface markers. Flow cytometry data were gated using the FlowSOM algorithm. Bacterial and viral infections were assessed in standardized clinical care. The sole and combined diagnostic value of the markers was investigated. Clustering based on unsupervised machine learning identified unique patient clusters. Eighty-six patients were included. Thirty-five had a bacterial infection, 30 had a viral infection, and 21 had no infection. neuCD64 was increased in bacterial infections (P < 0.001), with an area under the receiver operating characteristic curve (AUROC) of 0.73. cmCD169 was higher in virally infected patients (P < 0.001; AUROC 0.79). Multivariate analyses incorporating additional markers increased the AUROC for bacterial and viral infections to 0.86 and 0.93, respectively. The additional clustering identified 4 distinctive patient clusters based on infection type and outcome. Automated neuCD64 and cmCD169 determination can discriminate between bacterial and viral infections. These markers can be determined within 30 min, allowing fast infection diagnostics in the acute clinical setting.


Assuntos
Infecções Bacterianas , Viroses , Humanos , Neutrófilos/metabolismo , Monócitos/metabolismo , Sistemas Automatizados de Assistência Junto ao Leito , Estudos Prospectivos , Biomarcadores/metabolismo , Viroses/diagnóstico , Infecções Bacterianas/microbiologia , Curva ROC , Serviço Hospitalar de Emergência , Receptores de IgG/metabolismo
16.
Infect Control Hosp Epidemiol ; 45(5): 630-634, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38234188

RESUMO

OBJECTIVE: Many providers use severe acute respiratory coronavirus virus 2 (SARS-CoV-2) cycle thresholds (Ct values) as approximate measures of viral burden in association with other clinical data to inform decisions about treatment and isolation. We characterized temporal changes in Ct values for non-SARS-CoV-2 respiratory viruses as a first step to determine whether cycle thresholds could play a similar role in the management of non-SARS-CoV-2 respiratory viruses. DESIGN: Retrospective cohort study. SETTING: Brigham and Women's Hospital, Boston. METHODS: We retrospectively identified all adult patients with positive nasopharyngeal PCRs for influenza, respiratory syncytial virus (RSV), parainfluenza, human metapneumovirus (HMPV), rhinovirus, or adenovirus between January 2022 and March 2023. We plotted Ct distributions relative to days since symptom onset, and we assessed whether distributions varied by immunosuppression and other comorbidities. RESULTS: We analyzed 1,863 positive samples: 506 influenza, 502 rhinovirus, 430 RSV, 219 HMPV, 180 parainfluenza, 26 adenovirus. Ct values were generally 25-30 on the day of symptom onset, lower over the ensuing 1-3 days, and progressively higher thereafter with Ct values ≥30 after 1 week for most viruses. Ct values were generally higher and more stable over time for rhinovirus. There was no association between immunocompromised status and median intervals from symptom onset until Ct values were ≥30. CONCLUSIONS: Ct values relative to symptom onset for influenza, RSV, and other non-SARS-CoV-2 respiratory viruses generally mirror patterns seen with SARS-CoV-2. Further data on associations between Ct values and viral viability, transmissibility, host characteristics, and response to treatment for non-SARS-CoV-2 respiratory viruses are needed to determine how clinicians and infection preventionists might integrate Ct values into treatment and isolation decisions.


Assuntos
COVID-19 , Influenza Humana , Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Viroses , Vírus , Adulto , Humanos , Feminino , SARS-CoV-2 , Estudos Retrospectivos , Viroses/diagnóstico , Vírus Sinciciais Respiratórios , Rhinovirus , Adenoviridae
17.
J Biol Chem ; 300(3): 105676, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278326

RESUMO

Infectious diseases are one of the world's leading causes of morbidity. Their rapid spread emphasizes the need for accurate and fast diagnostic methods for large-scale screening. Here, we describe a robust method for the detection of pathogens based on microscale thermophoresis (MST). The method involves the hybridization of a fluorescently labeled DNA probe to a target RNA and the assessment of thermophoretic migration of the resulting complex in solution within a 2 to 30-time window. We found that the thermophoretic migration of the nucleic acid-based probes is primarily determined by the fluorescent molecule used, rather than the nucleic acid sequence of the probe. Furthermore, a panel of uniformly labeled probes that bind to the same target RNA yields a more responsive detection pattern than a single probe, and moreover, can be used for the detection of specific pathogen variants. In addition, intercalating agents (ICA) can be used to alter migration directionality to improve detection sensitivity and resolving power by several orders of magnitude. We show that this approach can rapidly diagnose viral SARS-CoV2, influenza H1N1, artificial pathogen targets, and bacterial infections. Furthermore, it can be used for anti-microbial resistance testing within 2 h, demonstrating its diagnostic potential for early pathogen detection.


Assuntos
Ensaios de Triagem em Larga Escala , Técnicas Microbiológicas , Técnicas de Diagnóstico Molecular , Hibridização de Ácido Nucleico , RNA , Sondas de DNA , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Técnicas Microbiológicas/métodos , Técnicas Microbiológicas/normas , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/normas , RNA/análise , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Viroses/diagnóstico , Infecções Bacterianas/diagnóstico , Linhagem Celular Tumoral , Humanos
18.
WIREs Mech Dis ; 16(3): e1640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38253964

RESUMO

Liver disease represents a significant global burden, placing individuals at a heightened risk of developing cirrhosis and liver cancer. Viral infections act as a primary cause of liver diseases on a worldwide scale. Infections involving hepatitis viruses, notably hepatitis B, C, and E viruses, stand out as the most prevalent contributors to acute and chronic intrahepatic adverse outcome, although the hepatitis C virus (HCV) can be effectively cured with antiviral drugs, but no preventative vaccination developed. Hepatitis B virus (HBV) and HCV can lead to both acute and chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma (HCC), which are principal causes of worldwide morbidity and mortality. Other viruses, such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV), are capable of causing liver damage. Therefore, it is essential to recognize that virus infections and liver diseases are intricate and interconnected processes. A profound understanding of the underlying relationship between virus infections and liver diseases proves pivotal in the effective prevention, diagnosis, and treatment of these conditions. In this review, we delve into the mechanisms by which virus infections induce liver diseases, as well as explore the pathogenesis, diagnosis, and treatment of liver diseases. This article is categorized under: Infectious Diseases > Biomedical Engineering.


Assuntos
Hepatopatias , Humanos , Hepatopatias/virologia , Hepatopatias/diagnóstico , Hepatopatias/etiologia , Hepatopatias/terapia , Viroses/diagnóstico , Viroses/terapia , Viroses/virologia , Antivirais/uso terapêutico , Animais , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/etiologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/terapia
19.
Microbiol Spectr ; 12(1): e0226423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095471

RESUMO

IMPORTANCE: This study provides significant new data on the application of metagenomic next-generation sequencing (mNGS) to clinical diagnostics of central nervous system (CNS) viral infections, which can have high mortality rates and severe sequelae. Conventional diagnostic procedures for identifying viruses can be inefficient and rely on preconceived assumptions about the pathogen, making mNGS an appealing alternative. However, the effectiveness of mNGS is affected by the presence of human DNA contamination, which can be minimized by using cell-free DNA (cfDNA) instead of whole-cell DNA (wcDNA). This multi-center retrospective study of patients with suspected viral CNS infection found that mNGS using cfDNA had a significantly lower proportion of human DNA and higher sensitivity for detecting viruses than mNGS using wcDNA. Herpesviruses, particularly VZV, were found to be the most common DNA viruses in these patients. Overall, mNGS using cfDNA is a promising complementary diagnostic method for detecting CNS viral infections.


Assuntos
Ácidos Nucleicos Livres , Infecções do Sistema Nervoso Central , Viroses , Vírus , Humanos , Ácidos Nucleicos Livres/genética , Estudos Retrospectivos , Infecções do Sistema Nervoso Central/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Vírus/genética , DNA , Viroses/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...