Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Virol J ; 21(1): 113, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760812

RESUMO

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease. SFTS virus (SFTSV) is transmitted by tick bites and contact with the blood or body fluids of SFTS patients. Animal-to-human transmission of SFTS has been reported in Japan, but not in China. In this study, the possible transmission route of two patients who fed and cared for farm-raised fur animals in a mink farm was explored. METHOD: An epidemiological investigation and a genetic analysis of patients, animals and working environment were carried out. RESULTS: It was found that two patients had not been bitten by ticks and had no contact with patients infected with SFTS virus, but both of them had skinned the dying animals. 54.55% (12/22) of the farm workers were positive for SFTS virus antibody. By analyzing the large, medium and small segments sequences, the viral sequences from the two patients, animals and environments showed 99.9% homology. CONCLUSION: It is suspected that the two patients may be directly infected by farm-raised animals, and that the virus may have been transmitted by aerosols when skinning dying animals. Transmission by direct blood contacts or animal bites cannot be ignored.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Animais , Phlebovirus/genética , Phlebovirus/isolamento & purificação , Phlebovirus/classificação , China/epidemiologia , Febre Grave com Síndrome de Trombocitopenia/transmissão , Febre Grave com Síndrome de Trombocitopenia/virologia , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , Humanos , Masculino , Anticorpos Antivirais/sangue , Filogenia , Feminino , Pessoa de Meia-Idade , Vison/virologia , Fazendas , Adulto , Fazendeiros , RNA Viral/genética
2.
Nat Commun ; 15(1): 4112, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750016

RESUMO

Outbreaks of highly pathogenic H5N1 clade 2.3.4.4b viruses in farmed mink and seals combined with isolated human infections suggest these viruses pose a pandemic threat. To assess this threat, using the ferret model, we show an H5N1 isolate derived from mink transmits by direct contact to 75% of exposed ferrets and, in airborne transmission studies, the virus transmits to 37.5% of contacts. Sequence analyses show no mutations were associated with transmission. The H5N1 virus also has a low infectious dose and remains virulent at low doses. This isolate carries the adaptive mutation, PB2 T271A, and reversing this mutation reduces mortality and airborne transmission. This is the first report of a H5N1 clade 2.3.4.4b virus exhibiting direct contact and airborne transmissibility in ferrets. These data indicate heightened pandemic potential of the panzootic H5N1 viruses and emphasize the need for continued efforts to control outbreaks and monitor viral evolution.


Assuntos
Furões , Virus da Influenza A Subtipo H5N1 , Vison , Infecções por Orthomyxoviridae , Animais , Vison/virologia , Furões/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Medição de Risco , Humanos , Mutação , Proteínas Virais/genética , Proteínas Virais/metabolismo , Feminino , Surtos de Doenças/veterinária , Masculino , Influenza Humana/virologia , Influenza Humana/transmissão
3.
Euro Surveill ; 28(16)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37078885

RESUMO

In late 2022 and early 2023, SARS-CoV-2 infections were detected on three mink farms in Poland situated within a few km from each other. Whole-genome sequencing of the viruses on two of the farms showed that they were related to a virus identified in humans in the same region 2 years before (B.1.1.307 lineage). Many mutations were found, including in the S protein typical of adaptations to the mink host. The origin of the virus remains to be determined.


Assuntos
COVID-19 , Reservatórios de Doenças , Vison , SARS-CoV-2 , Animais , Humanos , COVID-19/transmissão , COVID-19/veterinária , Fazendas , Vison/virologia , Polônia/epidemiologia , SARS-CoV-2/genética , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Mutação , Sequenciamento Completo do Genoma
6.
Science ; 379(6630): 316-317, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701458

RESUMO

Big outbreak at a Spanish farm reignites fears of an H5N1 influenza pandemic.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Vison , Animais , Humanos , Aves , Surtos de Doenças , Influenza Aviária/epidemiologia , Vison/virologia , Espanha
8.
BMC Vet Res ; 18(1): 364, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192746

RESUMO

BACKGROUND: Selecting American mink (Neovison vison) for tolerance to Aleutian mink disease virus (AMDV) has gained popularity in recent years, but data on the outcomes of this activity are scant. The objectives of this study were to determine the long-term changes in viremia, seroconversion and survival in infected mink. Mink were inoculated intranasally with a local isolate of Aleutian mink disease virus (AMDV) over 4 years (n = 1742). The animals had been selected for tolerance to AMDV for more than 20 years (TG100) or were from herds free of AMDV (TG0). The progenies of TG100 and TG0, and their crosses with 25, 50 and 75% tolerance ancestry were also used. Blood samples were collected from each mink up to 14 times until 1211 days post-inoculation (dpi) and were tested for viremia by PCR and for anti-AMDV antibodies by counter-immunoelectrophoresis (CIEP). Viremia and CIEP status were not considered when selecting replacements. Low-performing animals were pelted and the presence of antibodies in their blood and antibody titer were measured by CIEP, and viremia and viral DNA in seven organs (n = 936) were tested by PCR. RESULTS: The peak incidences of viremia (66.7%) and seropositivity (93.5%) were at 35 dpi. The incidence of viremia decreased over time while the incidence of seroconversion increased. The least-squares means of the incidence of PCR positive of lymph node (0.743) and spleen (0.656) were significantly greater than those of bone marrow, liver, kidneys, lungs and small intestine (0.194 to 0.342). Differences in tolerant ancestry were significant for every trait measured. Incidences of viremia over time, terminal viremia, seropositivity over time, AMDV DNA in organs and antibody titer were highest in the susceptible groups (TG0 or TG25) and lowest in the tolerant groups (TG100 or TG75). CONCLUSION: Previous history of selection for tolerance resulted in mink with reduced viral replication and antibody titer. Viremia had a negative effect and antibody production had a positive effect on survival and productivity.


Assuntos
Vírus da Doença Aleutiana do Vison , Doença Aleutiana do Vison , Anticorpos Antivirais , Formação de Anticorpos , Vison , Viremia , Doença Aleutiana do Vison/sangue , Doença Aleutiana do Vison/imunologia , Doença Aleutiana do Vison/mortalidade , Doença Aleutiana do Vison/virologia , Vírus da Doença Aleutiana do Vison/genética , Vírus da Doença Aleutiana do Vison/imunologia , Vírus da Doença Aleutiana do Vison/isolamento & purificação , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , DNA Viral/análise , Feminino , Masculino , Vison/sangue , Vison/imunologia , Vison/virologia , Taxa de Sobrevida , Viremia/sangue , Viremia/imunologia , Viremia/veterinária , Viremia/virologia , Replicação Viral
9.
Viruses ; 14(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36016375

RESUMO

SARS-CoV-2 outbreaks on 69 Dutch mink farms in 2020 were studied to identify risk factors for virus introduction and transmission and to improve surveillance and containment measures. Clinical signs, laboratory test results, and epidemiological aspects were investigated, such as the date and reason of suspicion, housing, farm size and distances, human contact structure, biosecurity measures, and presence of wildlife, pets, pests, and manure management. On seven farms, extensive random sampling was performed, and age, coat color, sex, and clinical signs were recorded. Mild to severe respiratory signs and general diseases such as apathy, reduced feed intake, and increased mortality were detected on 62/69 farms. Throat swabs were more likely to result in virus detection than rectal swabs. Clinical signs differed between virus clusters and were more severe for dark-colored mink, males, and animals infected later during the year. Geographical clustering was found for one virus cluster. Shared personnel could explain some cases, but other transmission routes explaining farm-to-farm spread were not elucidated. An early warning surveillance system, strict biosecurity measures, and a (temporary) ban on mink farming and vaccinating animals and humans can contribute to reducing the risks of the virus spreading and acquisition of potential mutations relevant to human and animal health.


Assuntos
COVID-19 , Fazendas , Vison , SARS-CoV-2 , Animais , COVID-19/epidemiologia , COVID-19/veterinária , Feminino , Masculino , Vison/virologia , Países Baixos/epidemiologia , Fatores de Risco , SARS-CoV-2/isolamento & purificação
10.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934827

RESUMO

One of the unique features of SARS-CoV-2 is its apparent neutral evolution during the early pandemic (before February 2020). This contrasts with the preceding SARS-CoV epidemics, where viruses evolved adaptively. SARS-CoV-2 may exhibit a unique or adaptive feature which deviates from other coronaviruses. Alternatively, the virus may have been cryptically circulating in humans for a sufficient time to have acquired adaptive changes before the onset of the current pandemic. To test the scenarios above, we analyzed the SARS-CoV-2 sequences from minks (Neovision vision) and parental humans. In the early phase of the mink epidemic (April to May 2020), nonsynonymous to synonymous mutation ratio per site in the spike protein is 2.93, indicating a selection process favoring adaptive amino acid changes. Mutations in the spike protein were concentrated within its receptor-binding domain and receptor-binding motif. An excess of high-frequency derived variants produced by genetic hitchhiking was found during the middle (June to July 2020) and late phase I (August to September 2020) of the mink epidemic. In contrast, the site frequency spectra of early SARS-CoV-2 in humans only show an excess of low-frequency mutations, consistent with the recent outbreak of the virus. Strong positive selection in the mink SARS-CoV-2 implies that the virus may not be preadapted to a wide range of hosts and illustrates how a virus evolves to establish a continuous infection in a new host. Therefore, the lack of positive selection signal during the early pandemic in humans deserves further investigation.


Assuntos
COVID-19 , Evolução Molecular , SARS-CoV-2 , Animais , COVID-19/virologia , Humanos , Vison/virologia , Mutação , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
11.
J Appl Genet ; 63(3): 543-555, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35396646

RESUMO

Of all known airborne diseases in the twenty-first century, coronavirus disease 19 (COVID-19) has the highest infection and death rate. Over the past few decades, animal origin viral diseases, notably those of bats-linked, have increased many folds in humans with cross-species transmissions noted and the ongoing COVID-19 pandemic has emphasized the importance of understanding the evolution of natural hosts in response to viral pathogens. Cross-species transmissions are possible due to the possession of the angiotensin-converting enzyme 2 (ACE2) receptor in animals. ACE2 recognition by SARS-CoV-2 is a critical determinant of the host range, interspecies transmission, and viral pathogenesis. Thus, the phenomenon of breaking the cross-species barrier is mainly associated with mutations in the receptor-binding domain (RBD) of the spike (S) protein that interacts with ACE2. In this review, we raise the issue of cross-species transmission based on sequence alignment of S protein. Based on previous reports and our observations, we can conclude that the occurrence of one of two mutations D614G or Y453F is sufficient for infection of minks by SARS-CoV-2 from humans. Unfortunately, D614G is observed in the world's most common line of virus B.1.1.7 and the latest SARS-CoV-2 variants B.1.617.1, B.1.617.2, and B.1.617.3 too.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , Especificidade de Hospedeiro , Humanos , Vison/genética , Vison/metabolismo , Vison/virologia , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
Signal Transduct Target Ther ; 7(1): 29, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091528

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted on mink farms between minks and humans in many countries. However, the systemic pathological features of SARS-CoV-2-infected minks are mostly unknown. Here, we demonstrated that minks were largely permissive to SARS-CoV-2, characterized by severe and diffuse alveolar damage, and lasted at least 14 days post inoculation (dpi). We first reported that infected minks displayed multiple organ-system lesions accompanied by an increased inflammatory response and widespread viral distribution in the cardiovascular, hepatobiliary, urinary, endocrine, digestive, and immune systems. The viral protein partially co-localized with activated Mac-2+ macrophages throughout the body. Moreover, we first found that the alterations in lipids and metabolites were correlated with the histological lesions in infected minks, especially at 6 dpi, and were similar to that of patients with severe and fatal COVID-19. Particularly, altered metabolic pathways, abnormal digestion, and absorption of vitamins, lipids, cholesterol, steroids, amino acids, and proteins, consistent with hepatic dysfunction, highlight metabolic and immune dysregulation. Enriched kynurenine in infected minks contributed to significant activation of the kynurenine pathway and was related to macrophage activation. Melatonin, which has significant anti-inflammatory and immunomodulating effects, was significantly downregulated at 6 dpi and displayed potential as a targeted medicine. Our data first illustrate systematic analyses of infected minks to recapitulate those observations in severe and fetal COVID-19 patients, delineating a useful animal model to mimic SARS-CoV-2-induced systematic and severe pathophysiological features and provide a reliable tool for the development of effective and targeted treatment strategies, vaccine research, and potential biomarkers.


Assuntos
COVID-19/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Metaboloma , Vison/virologia , SARS-CoV-2/metabolismo , Aminoácidos/metabolismo , Animais , Antivirais/farmacologia , COVID-19/genética , COVID-19/patologia , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Pulmão/virologia , Macrófagos Alveolares/patologia , Macrófagos Alveolares/virologia , Melatonina/metabolismo , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular/métodos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Esteróis/metabolismo , Virulência , Replicação Viral/genética , Tratamento Farmacológico da COVID-19
13.
J Vet Diagn Invest ; 34(1): 82-85, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34697977

RESUMO

Mink are susceptible to infection with influenza A virus (IAV) of swine and human origin. In 2019, a Utah mink farm had an outbreak of respiratory disease in kits caused by infection with the pandemic influenza A(H1N1)2009 virus [A(H1N1)pdm09]. In 3 wk, ~325, 1-2-wk-old kits died (10% mortality in kits). All deaths occurred in a single barn that housed 640 breeding females. No clinical signs or deaths occurred among adult mink. Five dead kits and 3 euthanized female mink were autopsied. All kits had moderate-to-severe neutrophilic and lymphohistiocytic interstitial pneumonia; adult mink had minimal-to-moderate lymphohistiocytic bronchointerstitial pneumonia. Immunohistochemistry and real-time PCR targeting the matrix gene detected IAV in lung of kits and adults. Virus isolation and genetic analysis identified the A(H1N1)pdm09 virus. The source of the virus was not determined but is thought to be the result of reverse zoonosis. Our case emphasizes the need for close monitoring on mink farms for interspecies transmission of IAV and for safe work practices on farms and in diagnostic laboratories. Additionally, a pandemic virus may continue to circulate at low levels long after the global event is declared over.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vison , Infecções por Orthomyxoviridae/veterinária , Animais , Fazendas , Feminino , Vírus da Influenza A Subtipo H1N1/genética , Masculino , Vison/virologia , Infecções por Orthomyxoviridae/epidemiologia , Utah/epidemiologia
14.
Nature ; 600(7889): 408-418, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880490

RESUMO

Since the first cases of COVID-19 were documented in Wuhan, China in 2019, the world has witnessed a devastating global pandemic, with more than 238 million cases, nearly 5 million fatalities and the daily number of people infected increasing rapidly. Here we describe the currently available data on the emergence of the SARS-CoV-2 virus, the causative agent of COVID-19, outline the early viral spread in Wuhan and its transmission patterns in China and across the rest of the world, and highlight how genomic surveillance, together with other data such as those on human mobility, has helped to trace the spread and genetic variation of the virus and has also comprised a key element for the control of the pandemic. We pay particular attention to characterizing and describing the international spread of the major variants of concern of SARS-CoV-2 that were first identified in late 2020 and demonstrate that virus evolution has entered a new phase. More broadly, we highlight our currently limited understanding of coronavirus diversity in nature, the rapid spread of the virus and its variants in such an increasingly connected world, the reduced protection of vaccines, and the urgent need for coordinated global surveillance using genomic techniques. In summary, we provide important information for the prevention and control of both the ongoing COVID-19 pandemic and any new diseases that will inevitably emerge in the human population in future generations.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral/genética , Internacionalidade , SARS-CoV-2/classificação , SARS-CoV-2/genética , Animais , Humanos , Vison/virologia , Epidemiologia Molecular , Filogenia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética
15.
PLoS Pathog ; 17(11): e1010053, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748603

RESUMO

COVID-19 patients transmitted SARS-CoV-2 to minks in the Netherlands in April 2020. Subsequently, the mink-associated virus (miSARS-CoV-2) spilled back over into humans. Genetic sequences of the miSARS-CoV-2 identified a new genetic variant known as "Cluster 5" that contained mutations in the spike protein. However, the functional properties of these "Cluster 5" mutations have not been well established. In this study, we found that the Y453F mutation located in the RBD domain of miSARS-CoV-2 is an adaptive mutation that enhances binding to mink ACE2 and other orthologs of Mustela species without compromising, and even enhancing, its ability to utilize human ACE2 as a receptor for entry. Structural analysis suggested that despite the similarity in the overall binding mode of SARS-CoV-2 RBD to human and mink ACE2, Y34 of mink ACE2 was better suited to interact with a Phe rather than a Tyr at position 453 of the viral RBD due to less steric clash and tighter hydrophobic-driven interaction. Additionally, the Y453F spike exhibited resistance to convalescent serum, posing a risk for vaccine development. Thus, our study suggests that since the initial transmission from humans, SARS-CoV-2 evolved to adapt to the mink host, leading to widespread circulation among minks while still retaining its ability to efficiently utilize human ACE2 for entry, thus allowing for transmission of the miSARS-CoV-2 back into humans. These findings underscore the importance of active surveillance of SARS-CoV-2 evolution in Mustela species and other susceptible hosts in order to prevent future outbreaks.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/epidemiologia , Adaptação ao Hospedeiro , Vison/imunologia , Mutação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/genética , Animais , Sítios de Ligação , COVID-19/imunologia , COVID-19/terapia , COVID-19/transmissão , COVID-19/virologia , Feminino , Humanos , Imunização Passiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Vison/virologia , Simulação de Dinâmica Molecular , Países Baixos/epidemiologia , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Adulto Jovem , Soroterapia para COVID-19
16.
Nat Commun ; 12(1): 6802, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815406

RESUMO

In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and humans on farms. High number of farm infections (68/126) in minks and farm workers (>50% of farms) were detected, with limited community spread. Three of five initial introductions of SARS-CoV-2 led to subsequent spread between mink farms until November 2020. Viruses belonging to the largest cluster acquired an amino acid substitution in the receptor binding domain of the Spike protein (position 486), evolved faster and spread longer and more widely. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combining genetic information with epidemiological information when investigating outbreaks at the animal-human interface.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Evolução Molecular , Fazendas , Vison/virologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Sequência de Aminoácidos , Doenças dos Animais/epidemiologia , Doenças dos Animais/transmissão , Doenças dos Animais/virologia , Animais , Teorema de Bayes , Surtos de Doenças , Humanos , Países Baixos/epidemiologia , Filogenia , SARS-CoV-2/isolamento & purificação , Análise de Sequência de Proteína , Glicoproteína da Espícula de Coronavírus/classificação , Glicoproteína da Espícula de Coronavírus/genética
17.
PLoS Pathog ; 17(11): e1009952, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34767598

RESUMO

The breadth of animal hosts that are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and may serve as reservoirs for continued viral transmission are not known entirely. In August 2020, an outbreak of SARS-CoV-2 occurred on five mink farms in Utah and was associated with high mink mortality (35-55% of adult mink) and rapid viral transmission between animals. The premise and clinical disease information, pathology, molecular characterization, and tissue distribution of virus within infected mink during the early phase of the outbreak are provided. Infection spread rapidly between independently housed animals and farms, and caused severe respiratory disease and death. Disease indicators were most notably sudden death, anorexia, and increased respiratory effort. Gross pathology examination revealed severe pulmonary congestion and edema. Microscopically there was pulmonary edema with moderate vasculitis, perivasculitis, and fibrinous interstitial pneumonia. Reverse transcriptase polymerase chain reaction (RT-PCR) of tissues collected at necropsy demonstrated the presence of SARS-CoV-2 viral RNA in multiple organs including nasal turbinates, lung, tracheobronchial lymph node, epithelial surfaces, and others. Localization of viral RNA by in situ hybridization revealed a more localized infection, particularly of the upper respiratory tract. Whole genome sequencing from multiple mink was consistent with published SARS-CoV-2 genomes with few polymorphisms. The Utah mink SARS-CoV-2 strains fell into Clade GH, which is unique among mink and other animal strains sequenced to date. While sharing the N501T mutation which is common in mink, the Utah strains did not share other spike RBD mutations Y453F and F486L found in nearly all mink from the United States. Mink in the outbreak reported herein had high levels of SARS-CoV-2 in the upper respiratory tract associated with symptomatic respiratory disease and death.


Assuntos
COVID-19/veterinária , Vison/virologia , Animais , COVID-19/epidemiologia , COVID-19/mortalidade , COVID-19/patologia , Surtos de Doenças/veterinária , Fazendas , Feminino , Pulmão/patologia , Masculino , RNA Viral/sangue , Reação em Cadeia da Polimerase em Tempo Real/veterinária , SARS-CoV-2/classificação , Utah/epidemiologia
18.
PLoS Pathog ; 17(11): e1010068, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780574

RESUMO

Mink, on a farm with about 15,000 animals, became infected with SARS-CoV-2. Over 75% of tested animals were positive for SARS-CoV-2 RNA in throat swabs and 100% of tested animals were seropositive. The virus responsible had a deletion of nucleotides encoding residues H69 and V70 within the spike protein gene as well as the A22920T mutation, resulting in the Y453F substitution within this protein, seen previously in mink. The infected mink recovered and after free-testing of 300 mink (a level giving 93% confidence of detecting a 1% prevalence), the animals remained seropositive. During further follow-up studies, after a period of more than 2 months without any virus detection, over 75% of tested animals again scored positive for SARS-CoV-2 RNA. Whole genome sequencing showed that the viruses circulating during this re-infection were most closely related to those identified in the first outbreak on this farm but additional sequence changes had occurred. Animals had much higher levels of anti-SARS-CoV-2 antibodies in serum samples after the second round of infection than at free-testing or during recovery from initial infection, consistent with a boosted immune response. Thus, it was concluded that following recovery from an initial infection, seropositive mink were readily re-infected by SARS-CoV-2.


Assuntos
COVID-19/veterinária , COVID-19/virologia , Vison/imunologia , Vison/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , Fazendas , Seguimentos , Humanos , Mutação , Faringe/virologia , Filogenia , RNA Viral , Reinfecção/virologia , Sequenciamento Completo do Genoma
19.
Viruses ; 13(10)2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34696445

RESUMO

In summer 2020, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was detected on mink farms in Utah. An interagency One Health response was initiated to assess the extent of the outbreak and included sampling animals from on or near affected mink farms and testing them for SARS-CoV-2 and non-SARS coronaviruses. Among the 365 animals sampled, including domestic cats, mink, rodents, raccoons, and skunks, 261 (72%) of the animals harbored at least one coronavirus. Among the samples that could be further characterized, 127 alphacoronaviruses and 88 betacoronaviruses (including 74 detections of SARS-CoV-2 in mink) were identified. Moreover, at least 10% (n = 27) of the coronavirus-positive animals were found to be co-infected with more than one coronavirus. Our findings indicate an unexpectedly high prevalence of coronavirus among the domestic and wild free-roaming animals tested on mink farms. These results raise the possibility that mink farms could be potential hot spots for future trans-species viral spillover and the emergence of new pandemic coronaviruses.


Assuntos
Alphacoronavirus/isolamento & purificação , COVID-19/epidemiologia , COVID-19/veterinária , SARS-CoV-2/isolamento & purificação , Alphacoronavirus/classificação , Alphacoronavirus/genética , Animais , Animais Domésticos/virologia , Animais Selvagens/virologia , Gatos , Hotspot de Doença , Feminino , Masculino , Mephitidae/virologia , Camundongos , Vison/virologia , Guaxinins/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , Utah/epidemiologia
20.
PLoS Pathog ; 17(9): e1009883, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34492088

RESUMO

SARS-CoV-2 infection outbreaks in minks have serious implications associated with animal health and welfare, and public health. In two naturally infected mink farms (A and B) located in Greece, we investigated the outbreaks and assessed parameters associated with virus transmission, immunity, pathology, and environmental contamination. Symptoms ranged from anorexia and mild depression to respiratory signs of varying intensity. Although the farms were at different breeding stages, mortality was similarly high (8.4% and 10.0%). The viral strains belonged to lineages B.1.1.218 and B.1.1.305, possessing the mink-specific S-Y453F substitution. Lung histopathology identified necrosis of smooth muscle and connective tissue elements of vascular walls, and vasculitis as the main early key events of the acute SARS-CoV-2-induced broncho-interstitial pneumonia. Molecular investigation in two dead minks indicated a consistently higher (0.3-1.3 log10 RNA copies/g) viral load in organs of the male mink compared to the female. In farm A, the infected farmers were responsible for the significant initial infection of 229 out of 1,000 handled minks, suggesting a very efficient human-to-mink transmission. Subsequent infections across the sheds wherein animals were being housed occurred due to airborne transmission. Based on a R0 of 2.90 and a growth rate equal to 0.293, the generation time was estimated to be 3.6 days, indicative of the massive SARS-CoV-2 dispersal among minks. After the end of the outbreaks, a similar percentage of animals were immune in the two farms (93.0% and 93.3%), preventing further virus transmission whereas, viral RNA was detected in samples collected from shed surfaces and air. Consequently, strict biosecurity is imperative during the occurrence of clinical signs. Environmental viral load monitoring, in conjunction with NGS should be adopted in mink farm surveillance. The minimum proportion of minks that need to be immunized to avoid outbreaks in farms was calculated at 65.5%, which is important for future vaccination campaigns.


Assuntos
COVID-19/veterinária , Vison/virologia , Animais , COVID-19/epidemiologia , COVID-19/genética , COVID-19/transmissão , Surtos de Doenças/veterinária , Microbiologia Ambiental , Fazendas , Feminino , Grécia/epidemiologia , Humanos , Masculino , Vison/genética , Exposição Ocupacional , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...