Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673722

RESUMO

The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme that converts vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents supplied by its redox partner through thiol-disulphide exchange reactions. The functionally related molecular complexes assembled during this process have never been described, except for a proposed de novo model of a 'precursor' complex of hVKORC1 associated with protein disulphide isomerase (PDI). Using numerical approaches (in silico modelling and molecular dynamics simulation), we generated alternative 3D models for each molecular complex bonded either covalently or non-covalently. These models differ in the orientation of the PDI relative to hVKORC1 and in the cysteine residue involved in forming protein-protein disulphide bonds. Based on a comparative analysis of these models' shape, folding, and conformational dynamics, the most probable putative complexes, mimicking the 'precursor', 'intermediate', and 'successor' states, were suggested. In addition, we propose using these complexes to develop the 'allo-network drugs' necessary for treating blood diseases.


Assuntos
Simulação de Dinâmica Molecular , Isomerases de Dissulfetos de Proteínas , Vitamina K Epóxido Redutases , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/metabolismo , Vitamina K Epóxido Redutases/genética , Humanos , Dissulfetos/química , Dissulfetos/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Modelos Moleculares , Conformação Proteica , Oxirredução , Ligação Proteica
2.
Crit Rev Biochem Mol Biol ; 58(1): 36-49, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098102

RESUMO

Disulfide bond formation is a catalyzed reaction essential for the folding and stability of proteins in the secretory pathway. In prokaryotes, disulfide bonds are generated by DsbB or VKOR homologs that couple the oxidation of a cysteine pair to quinone reduction. Vertebrate VKOR and VKOR-like enzymes have gained the epoxide reductase activity to support blood coagulation. The core structures of DsbB and VKOR variants share the architecture of a four-transmembrane-helix bundle that supports the coupled redox reaction and a flexible region containing another cysteine pair for electron transfer. Despite considerable similarities, recent high-resolution crystal structures of DsbB and VKOR variants reveal significant differences. DsbB activates the cysteine thiolate by a catalytic triad of polar residues, a reminiscent of classical cysteine/serine proteases. In contrast, bacterial VKOR homologs create a hydrophobic pocket to activate the cysteine thiolate. Vertebrate VKOR and VKOR-like maintain this hydrophobic pocket and further evolved two strong hydrogen bonds to stabilize the reaction intermediates and increase the quinone redox potential. These hydrogen bonds are critical to overcome the higher energy barrier required for epoxide reduction. The electron transfer process of DsbB and VKOR variants uses slow and fast pathways, but their relative contribution may be different in prokaryotic and eukaryotic cells. The quinone is a tightly bound cofactor in DsbB and bacterial VKOR homologs, whereas vertebrate VKOR variants use transient substrate binding to trigger the electron transfer in the slow pathway. Overall, the catalytic mechanisms of DsbB and VKOR variants have fundamental differences.


Assuntos
Bactérias , Cisteína , Cisteína/metabolismo , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/metabolismo , Oxirredução , Bactérias/metabolismo , Quinonas , Dissulfetos/química , Dissulfetos/metabolismo , Proteínas de Bactérias/metabolismo
3.
Blood Adv ; 7(10): 2271-2282, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-36508285

RESUMO

Missense vitamin K epoxide reductase (VKOR) mutations in patients cause resistance to warfarin treatment but not abnormal bleeding due to defective VKOR activity. The underlying mechanism of these phenotypes remains unknown. Here we show that the redox state of these mutants is essential to their activity and warfarin resistance. Using a mass spectrometry-based footprinting method, we found that severe warfarin-resistant mutations change the VKOR active site to an aberrantly reduced state in cells. Molecular dynamics simulation based on our recent crystal structures of VKOR reveals that these mutations induce an artificial opening of the protein conformation that increases access of small molecules, enabling them to reduce the active site and generating constitutive activity uninhibited by warfarin. Increased activity also compensates for the weakened substrate binding caused by these mutations, thereby maintaining normal VKOR function. The uninhibited nature of severe resistance mutations suggests that patients showing signs of such mutations should be treated by alternative anticoagulation strategies.


Assuntos
Erros Inatos do Metabolismo , Varfarina , Humanos , Varfarina/farmacologia , Vitamina K Epóxido Redutases/química , Anticoagulantes/farmacologia
4.
J Thromb Haemost ; 20(9): 1971-1983, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35748323

RESUMO

Vitamin K antagonists (VKAs), such as warfarin, are oral anticoagulants widely used to treat and prevent thromboembolic diseases. Therapeutic use of these drugs requires frequent monitoring and dose adjustments, whereas overdose often causes severe bleeding. Addressing these drawbacks requires mechanistic understandings at cellular and structural levels. As the target of VKAs, vitamin K epoxide reductase (VKOR) generates the active, hydroquinone form of vitamin K, which in turn drives the γ-carboxylation of several coagulation factors required for their activity. Crystal structures revealed that VKAs inhibit VKOR via mimicking its catalytic process. At the active site, two strong hydrogen bonds that facilitate the catalysis also afford the binding specificity for VKAs. Binding of VKAs induces a global change from open to closed conformation. Similar conformational change is induced by substrate binding to promote an electron transfer process that reduces the VKOR active site. In the cellular environment, reducing partner proteins or small reducing molecules may afford electrons to maintain the VKOR activity. The catalysis and VKA inhibition require VKOR in different cellular redox states, explaining the complex kinetics behavior of VKAs. Recent studies also revealed the mechanisms underlying warfarin resistance, warfarin dose variation, and antidoting by vitamin K. These mechanistic understandings may lead to improved anticoagulation strategies targeting the vitamin K cycle.


Assuntos
Anticoagulantes , Varfarina , Anticoagulantes/farmacologia , Domínio Catalítico , Fibrinolíticos , Humanos , Vitamina K/metabolismo , Vitamina K 1/metabolismo , Vitamina K Epóxido Redutases/química , Varfarina/química
5.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409257

RESUMO

Human vitamin K epoxide reductase (hVKORC1) enzymatic activity requires an initial activation by a specific redox protein, a less studied step in the hVKORC1 vital cycle. Significant steric conditions must be met by enzymes, being that to adapt their configurations is mandatory for hVKORC1 activation. We studied, by molecular dynamics (MD) simulations, the folding and conformational plasticity of hVKORC1 in its inactive (fully oxidised) state using available structures, crystallographic and from de novo modelling. According to the obtained results, hVKORC1 is a modular protein composed of the stable transmembrane domain (TMD) and intrinsically disordered luminal (L) loop, possessing the great plasticity/adaptability required to perform various steps of the activation process. The docking (HADDOCK) of Protein Disulfide Isomerase (PDI) onto different hVKORC1 conformations clearly indicated that the most interpretable solutions were found on the target closed L-loop form, a prevalent conformation of hVKORC1's oxidised state. We also suggest that the cleaved L-loop is an appropriate entity to study hVKORC1 recognition/activation by its redox protein. Additionally, the application of hVKORC1 (membrane protein) in aqueous solution is likely to prove to be very useful in practice in either in silico studies or in vitro experiments.


Assuntos
Simulação de Dinâmica Molecular , Isomerases de Dissulfetos de Proteínas , Humanos , Oxirredução , Isomerases de Dissulfetos de Proteínas/metabolismo , Domínios Proteicos , Vitamina K/metabolismo , Vitamina K Epóxido Redutases/química
6.
FEBS J ; 289(15): 4564-4579, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35113495

RESUMO

Vitamin K epoxide reductases (VKORs) are a large family of integral membrane enzymes found from bacteria to humans. Human VKOR, specific target of warfarin, has both the epoxide and quinone reductase activity to maintain the vitamin K cycle. Bacterial VKOR homologs, however, are insensitive to warfarin inhibition and are quinone reductases incapable of epoxide reduction. What affords the epoxide reductase activity in human VKOR remains unknown. Here, we show that a representative bacterial VKOR homolog can be converted to an epoxide reductase that is also inhibitable by warfarin. To generate this new activity, we first substituted several regions surrounding the active site of bacterial VKOR by those from human VKOR based on comparison of their crystal structures. Subsequent systematic substitutions narrowed down to merely eight residues, with the addition of a membrane anchor domain, that are responsible for the epoxide reductase activity. Substitutions corresponding to N80 and Y139 in human VKOR provide strong hydrogen bonding interactions to facilitate the epoxide reduction. The rest of six substitutions increase the size and change the shape of the substrate-binding pocket, and the membrane anchor domain stabilizes this pocket while allowing certain flexibility for optimal binding of the epoxide substrate. Overall, our study reveals the structural features of the epoxide reductase activity carried out by a subset of VKOR family in the membrane environment.


Assuntos
Oxirredutases , Varfarina , Compostos de Epóxi , Humanos , Oxirredutases/genética , Vitamina K 1/análogos & derivados , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/genética , Varfarina/química , Varfarina/farmacologia
7.
Angew Chem Int Ed Engl ; 60(16): 8867-8873, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33751812

RESUMO

A free-radical footprinting approach is described for integral membrane protein (IMP) that extends, significantly, the "fast photochemical oxidation of proteins" (FPOP) platform. This new approach exploits highly hydrophobic perfluoroisopropyl iodide (PFIPI) together with tip sonication to ensure efficient transport into the micelle interior, allowing laser dissociation and footprinting of the transmembrane domains. In contrast to water soluble footprinters, PFIPI footprints both the hydrophobic intramembrane and the hydrophilic extramembrane domains of the IMP vitamin K epoxide reductase (VKOR). The footprinting is fast, giving high coverage for Tyr (100 %) and Trp. The incorporation of the reagent with sonication does not significantly affect VKOR's enzymatic function, and tyrosine iodination does not compromise protease digestion and the subsequent analysis. The locations for the modifications are largely consistent with the corresponding solvent accessibilities, recommending this approach for future membrane protein footprinting.


Assuntos
Detergentes/metabolismo , Vitamina K Epóxido Redutases/metabolismo , Detergentes/química , Radicais Livres/química , Radicais Livres/metabolismo , Micelas , Estrutura Molecular , Fotólise , Sonicação , Vitamina K Epóxido Redutases/química
8.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466919

RESUMO

Redox (reduction-oxidation) reactions control many important biological processes in all organisms, both prokaryotes and eukaryotes. This reaction is usually accomplished by canonical disulphide-based pathways involving a donor enzyme that reduces the oxidised cysteine residues of a target protein, resulting in the cleavage of its disulphide bonds. Focusing on human vitamin K epoxide reductase (hVKORC1) as a target and on four redoxins (protein disulphide isomerase (PDI), endoplasmic reticulum oxidoreductase (ERp18), thioredoxin-related transmembrane protein 1 (Tmx1) and thioredoxin-related transmembrane protein 4 (Tmx4)) as the most probable reducers of VKORC1, a comparative in-silico analysis that concentrates on the similarity and divergence of redoxins in their sequence, secondary and tertiary structure, dynamics, intraprotein interactions and composition of the surface exposed to the target is provided. Similarly, hVKORC1 is analysed in its native state, where two pairs of cysteine residues are covalently linked, forming two disulphide bridges, as a target for Trx-fold proteins. Such analysis is used to derive the putative recognition/binding sites on each isolated protein, and PDI is suggested as the most probable hVKORC1 partner. By probing the alternative orientation of PDI with respect to hVKORC1, the functionally related noncovalent complex formed by hVKORC1 and PDI was found, which is proposed to be a first precursor to probe thiol-disulphide exchange reactions between PDI and hVKORC1.


Assuntos
Domínios Proteicos , Dobramento de Proteína , Tiorredoxinas/química , Vitamina K Epóxido Redutases/química , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Oxirredução , Proteína Dissulfeto Redutase (Glutationa)/química , Proteína Dissulfeto Redutase (Glutationa)/genética , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo
9.
J Biol Chem ; 296: 100145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273012

RESUMO

Vitamin K epoxide reductases (VKORs) constitute a major family of integral membrane thiol oxidoreductases. In humans, VKOR sustains blood coagulation and bone mineralization through the vitamin K cycle. Previous chemical models assumed that the catalysis of human VKOR (hVKOR) starts from a fully reduced active site. This state, however, constitutes only a minor cellular fraction (5.6%). Thus, the mechanism whereby hVKOR catalysis is carried out in the cellular environment remains largely unknown. Here we use quantitative mass spectrometry (MS) and electrophoretic mobility analyses to show that KO likely forms a covalent complex with a cysteine mutant mimicking hVKOR in a partially oxidized state. Trapping of this potential reaction intermediate suggests that the partially oxidized state is catalytically active in cells. To investigate this activity, we analyze the correlation between the cellular activity and the cellular cysteine status of hVKOR. We find that the partially oxidized hVKOR has considerably lower activity than hVKOR with a fully reduced active site. Although there are more partially oxidized hVKOR than fully reduced hVKOR in cells, these two reactive states contribute about equally to the overall hVKOR activity, and hVKOR catalysis can initiate from either of these states. Overall, the combination of MS quantification and biochemical analyses reveals the catalytic mechanism of this integral membrane enzyme in a cellular environment. Furthermore, these results implicate how hVKOR is inhibited by warfarin, one of the most commonly prescribed drugs.


Assuntos
Vitamina K 1/análogos & derivados , Vitamina K Epóxido Redutases/metabolismo , Catálise , Domínio Catalítico , Células Cultivadas , Humanos , Mutação , Conformação Proteica , Vitamina K 1/química , Vitamina K 1/metabolismo , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/genética
10.
Science ; 371(6524)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33154105

RESUMO

Vitamin K antagonists are widely used anticoagulants that target vitamin K epoxide reductases (VKOR), a family of integral membrane enzymes. To elucidate their catalytic cycle and inhibitory mechanism, we report 11 x-ray crystal structures of human VKOR and pufferfish VKOR-like, with substrates and antagonists in different redox states. Substrates entering the active site in a partially oxidized state form cysteine adducts that induce an open-to-closed conformational change, triggering reduction. Binding and catalysis are facilitated by hydrogen-bonding interactions in a hydrophobic pocket. The antagonists bind specifically to the same hydrogen-bonding residues and induce a similar closed conformation. Thus, vitamin K antagonists act through mimicking the key interactions and conformational changes required for the VKOR catalytic cycle.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Vitamina K Epóxido Redutases/química , Vitamina K/antagonistas & inibidores , Animais , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Estrutura Secundária de Proteína , Takifugu
11.
Elife ; 92020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870157

RESUMO

Vitamin K epoxide reductase (VKOR) drives the vitamin K cycle, activating vitamin K-dependent blood clotting factors. VKOR is also the target of the widely used anticoagulant drug, warfarin. Despite VKOR's pivotal role in coagulation, its structure and active site remain poorly understood. In addition, VKOR variants can cause vitamin K-dependent clotting factor deficiency or alter warfarin response. Here, we used multiplexed, sequencing-based assays to measure the effects of 2,695 VKOR missense variants on abundance and 697 variants on activity in cultured human cells. The large-scale functional data, along with an evolutionary coupling analysis, supports a four transmembrane domain topology, with variants in transmembrane domains exhibiting strongly deleterious effects on abundance and activity. Functionally constrained regions of the protein define the active site, and we find that, of four conserved cysteines putatively critical for function, only three are absolutely required. Finally, 25% of human VKOR missense variants show reduced abundance or activity, possibly conferring warfarin sensitivity or causing disease.


Assuntos
Domínio Catalítico , Variação Genética , Mutação de Sentido Incorreto , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/genética , Cisteína/química , Resistência a Medicamentos , Células HEK293 , Humanos , Erros Inatos do Metabolismo , Modelos Moleculares , Análise de Sequência de DNA , Varfarina/farmacologia
12.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429051

RESUMO

Vitamin K (VK) is a key nutrient for several biological processes (e.g., blood clotting and bone metabolism). To fulfill VK nutritional requirements, VK action as an activator of pregnane X receptor (Pxr) signaling pathway, and as a co-factor of γ-glutamyl carboxylase enzyme, should be considered. In this regard, VK recycling through vitamin K epoxide reductases (Vkors) is essential and should be better understood. Here, the expression patterns of vitamin K epoxide reductase complex subunit 1 (vkorc1) and vkorc1 like 1 (vkorc1l1) were determined during the larval ontogeny of Senegalese sole (Solea senegalensis), and in early juveniles cultured under different physiological conditions. Full-length transcripts for ssvkorc1 and ssvkorc1l1 were determined and peptide sequences were found to be evolutionarily conserved. During larval development, expression of ssvkorc1 showed a slight increase during absence or low feed intake. Expression of ssvkorc1l1 continuously decreased until 24 h post-fertilization, and remained constant afterwards. Both ssvkors were ubiquitously expressed in adult tissues, and highest expression was found in liver for ssvkorc1, and ovary and brain for ssvkorc1l1. Expression of ssvkorc1 and ssvkorc1l1 was differentially regulated under physiological conditions related to fasting and re-feeding, but also under VK dietary supplementation and induced deficiency. The present work provides new and basic molecular clues evidencing how VK metabolism in marine fish is sensitive to nutritional and environmental conditions.


Assuntos
Linguados/crescimento & desenvolvimento , Linguados/metabolismo , Especificidade de Órgãos , Vitamina K Epóxido Redutases/metabolismo , Vitamina K/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , DNA Complementar/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Linguados/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Filogenia , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/genética
13.
J Mol Biol ; 432(18): 5197-5208, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32445640

RESUMO

Intramembrane enzymes are often difficult for biochemical characterization. Human vitamin K epoxide reductase (VKOR) is the target of warfarin. However, this intramembrane enzyme becomes insensitive to warfarin inhibition in vitro, preventing the characterization of inhibition kinetics for decades. Here we employ structural biology methods to identify stable VKOR and VKOR-like proteins and purify them to near homogeneity. We find that the key to maintain their warfarin sensitivity is to stabilize their native protein conformation in vitro. Reduced glutathione drastically increases the warfarin sensitivity of a VKOR-like protein from Takifugu rubripes, presumably through maintaining a disulfide-bonded conformation. Effective inhibition of human VKOR-like requires also the use of LMNG, a mild detergent developed for crystallography to increase membrane protein stability. Human VKOR needs to be preserved in ER-enriched microsomes to exhibit warfarin sensitivity, whereas human VKOR purified in LMNG is stable only with pre-bound warfarin. Under these optimal conditions, warfarin inhibits with tight-binding kinetics. Overall, our studies show that structural biology methods are ideal for stabilizing intramembrane enzymes. Optimizing toward their inhibitor-binding conformation enables the characterization of enzyme kinetics in difficult cases.


Assuntos
Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/metabolismo , Varfarina/farmacologia , Animais , Estabilidade Enzimática , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Humanos , Domínios Proteicos , Takifugu/metabolismo , Vitamina K Epóxido Redutases/antagonistas & inibidores
14.
Biochemistry ; 59(13): 1351-1360, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32182040

RESUMO

The vitamin K epoxide reductase (VKORC1) enzyme is of primary importance in many physiological processes, i.e., blood coagulation, energy metabolism, and arterial calcification prevention, due to its role in the vitamin K cycle. Indeed, VKORC1 catalyzes reduction of vitamin K epoxide to quinone and then to hydroquinone. However, the three-dimensional VKORC1 structure remains experimentally undetermined, because of the endoplasmic reticulum membrane location of this enzyme. Here we present a molecular modeling investigation of the VKORC1 enzymatic site structure and function, supported by in vitro enzymatic assays. Four VKORC1 mutants were designed in silico (F55G, F55Y, N80G, and F83G) based on a previous study that identified residues F55, N80, and F83 as being crucial for vitamin K epoxide binding. F55G, N80G, and F83G nonconservative mutants were all predicted to be inactive by molecular modeling analyses. However, the F55Y conservative mutant was expected to be active compared to wild-type VKORC1. In vitro enzymatic assays performed on recombinant proteins assessed our molecular modeling hypotheses and led us to describe the role of accurate VKORC1 active site residues with respect to VKORC1. Residues F55, N80, and F83 appeared to act in a concerted manner to keep vitamin K epoxide close to the C135 catalytic residue. Residues F55 and N80 prevent naphthoquinone head rotation away from the active site, assisted by residue F83 that prevents vitamin K from sliding outside the enzymatic pocket, through hydrophobic tail stabilization. Our results thus highlighted the specific functions of VKORC1 catalytic pocket residues and evidenced the ability of our structural model to predict biological effects of VKORC1 mutations.


Assuntos
Vitamina K 1/análogos & derivados , Vitamina K Epóxido Redutases/química , Motivos de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Humanos , Modelos Moleculares , Vitamina K 1/química , Vitamina K 1/metabolismo , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-31639498

RESUMO

Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In order to suggest some factors that may help considering the mechanism of the incidents, this study focused on the avian vitamin K 2, 3-epoxide reductase (VKOR) that is the target protein of ARs. We addressed the interspecific differences in VKOR activity and inhibition related to amino acid sequence and mRNA expression of VKORC1 and VKORC1-like1 (VKORC1L1). Poultry have been considered to be more tolerant to ARs than mammals. However, VKOR activity of owls, hawks, falcon and surprisingly, canaries, was lower and inhibited by warfarin more easily than that of chickens and turkeys. The amino acid sequence of VKORC1 and VKORC1L1 implied that the value of Ki for VKOR activity to ARs could depend on the amino acid at position 140 in the TYX warfarin-binding motif in VKORC1, and other amino acid mutations in VKORC1L1. The mRNA expression ratio of VKORC1:VKORC1L1 differed between turkey (8:1) and chicken (2:3) liver. VKORC1L1 has been reported to be resistant to warfarin compared to VKORC1. Hence, both the Ki of specific VKORC1 and VKORC1L1, and the mRNA expression ratio would cause avian interspecific difference of the VKOR inhibition. Our study also suggested the high inhibition of VKOR activities in raptors and surprisingly that in canaries as well. These factors are the most likely to contribute to the high sensitivity to ARs found in raptors.


Assuntos
Anticoagulantes/intoxicação , Canários/genética , Resistência a Medicamentos/genética , Aves Predatórias/genética , Rodenticidas/intoxicação , Vitamina K Epóxido Redutases/antagonistas & inibidores , Varfarina/intoxicação , Sequência de Aminoácidos/genética , Animais , Mutação , RNA Mensageiro/biossíntese , Especificidade da Espécie , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/genética
16.
Mol Med Rep ; 19(6): 5361-5367, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059093

RESUMO

A substantial body of research has confirmed that Vitamin K epoxide reductase complex subunit 1 (VKORC1) plays a role in contributing to the high interpatient variability in the warfarin maintenance dose. The aim of the present study was to examine the impact of SNPs of miR­137 on the warfarin maintenance dose. Computational analysis and luciferase assay were used to search the targets of miR­137, and luciferase assay was also used to confirm the effect of the polymorphisms on the transcription of the promoter. The regulatory relationship between miR­137 and VKORC1 was detected using real­time PCR. We then performed statistical analysis to find the warfarin maintenance dose in the different groups. A total of 155 subjects were enrolled in our research, and the characteristics of the patients were collected. Using computational analysis, we identified that miR­137 binds to the VKORC1 3'untranslated region (3'UTR) and regulates the expression of VKORC1. This hypothesis was confirmed by luciferase reporter assay as miR­137 significantly reduced the VKORC1 3'UTR luciferase activity, while the luciferase activity of mutant VKORC1 3'UTR was similar to the scramble control. According to the result of the luciferase reporter assay, we found that miR­137 SNP with the presence of the A allele apparently reduced the luciferase activity. Using real­time PCR, we revealed that miR­137 negatively regulated the expression of VKORC1 in a concentration­dependent manner in liver cells. Furthermore, no difference was noted regarding the warfarin maintenance dose between the different age or gender groups, and furthermore AC + AA carriers showed a markedly higher warfarin maintenance dose than CC carriers. These findings collectively provide support that VKORC1 is a direct target of miR­137 and the miR­137 rs2660304 polymorphism is associated with warfarin maintenance dose in patients with atrial fibrillation. The rs2660304 polymorphism is a potential biomarker for predicting the clinical efficacy of warfarin in these patients.


Assuntos
Anticoagulantes/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Variação Genética , MicroRNAs/genética , Varfarina/uso terapêutico , Regiões 3' não Traduzidas , Adulto , Alelos , Antagomirs/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/patologia , Relação Dose-Resposta a Droga , Feminino , Genótipo , Células Hep G2 , Humanos , Coeficiente Internacional Normatizado , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo
17.
Nutrients ; 11(1)2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609653

RESUMO

Vitamin K family molecules-phylloquinone (K1), menaquinone (K2), and menadione (K3)-act as γ-glutamyl carboxylase (GGCX)-exclusive cofactors in their hydroquinone state, activating proteins of main importance for blood coagulation in the liver and for arterial calcification prevention and energy metabolism in extrahepatic tissues. Once GGCX is activated, vitamin K is found in the epoxide state, which is then recycled to quinone and hydroquinone states by vitamin K epoxide reductase (VKORC1). Nevertheless, little information is available concerning vitamin K1, K2, or K3 tissue distribution and preferential interactions towards VKORC1. Here we present a molecular modeling study of vitamin K1, menaquinones 4, 7 (MK4, MK7), and K3 structural interactions with VKORC1. VKORC1 was shown to tightly bind vitamins K1 and MK4 in the epoxide and quinone states, but not in the hydroquinone state; five VKORC1 residues were identified as crucial for vitamin K stabilization, and two other ones were essential for hydrogen bond formation. However, vitamin MK7 revealed shaky binding towards VKORC1, induced by hydrophobic tail interactions with the membrane. Vitamin K3 exhibited the lowest affinity with VKORC1 because of the absence of a hydrophobic tail, preventing structural stabilization by the enzyme. Enzymatic activity towards vitamins K1, MK4, MK7, and K3 was also evaluated by in vitro assays, validating our in silico predictions: VKORC1 presented equivalent activities towards vitamins K1 and MK4, but much lower activity with respect to vitamin MK7, and no activity towards vitamin K3. Our results revealed VKORC1's ability to recycle both phylloquinone and some menaquinones, and also highlighted the importance of vitamin K's hydrophobic tail size and membrane interactions.


Assuntos
Vitamina K 1/química , Vitamina K 2/química , Vitamina K 3/química , Vitamina K Epóxido Redutases/metabolismo , Sítios de Ligação , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Modelos Moleculares , Pichia/metabolismo , Ligação Proteica , Conformação Proteica , Vitamina K 1/metabolismo , Vitamina K 2/metabolismo , Vitamina K 3/metabolismo , Vitamina K Epóxido Redutases/química
18.
Nutrients ; 10(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050002

RESUMO

Vitamin K is an essential nutrient involved in the regulation of blood clotting and tissue mineralization. Vitamin K oxidoreductase (VKORC1) converts vitamin K epoxide into reduced vitamin K, which acts as the co-factor for the γ-carboxylation of several proteins, including coagulation factors produced by the liver. VKORC1 is also the pharmacological target of warfarin, a widely used anticoagulant. Vertebrates possess a VKORC1 paralog, VKORC1-like 1 (VKORC1L1), but until very recently, the importance of VKORC1L1 for protein γ-carboxylation and hemostasis in vivo was not clear. Here, we first review the current knowledge on the structure, function and expression pattern of VKORC1L1, including recent data establishing that, in the absence of VKORC1, VKORC1L1 can support vitamin K-dependent carboxylation in the liver during the pre- and perinatal periods in vivo. We then provide original data showing that the partial redundancy between VKORC1 and VKORC1L1 also exists in bone around birth. Recent studies indicate that, in vitro and in cell culture models, VKORC1L1 is less sensitive to warfarin than VKORC1. Genetic evidence is presented here, which supports the notion that VKORC1L1 is not the warfarin-resistant vitamin K quinone reductase present in the liver. In summary, although the exact physiological function of VKORC1L1 remains elusive, the latest findings clearly established that this enzyme is a vitamin K oxidoreductase, which can support γ-carboxylation in vivo.


Assuntos
Coagulação Sanguínea , Ácidos Carboxílicos/metabolismo , Fígado/enzimologia , Vitamina K 1/análogos & derivados , Vitamina K Epóxido Redutases/metabolismo , Animais , Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Oxirredução , Conformação Proteica , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade , Vitamina K 1/metabolismo , Vitamina K Epóxido Redutases/antagonistas & inibidores , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/genética , Varfarina/farmacologia
19.
Blood ; 132(6): 647-657, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743176

RESUMO

Vitamin K epoxide reductase (VKOR), an endoplasmic reticulum membrane protein, is the key enzyme for vitamin K-dependent carboxylation, a posttranslational modification that is essential for the biological functions of coagulation factors. VKOR is the target of the most widely prescribed oral anticoagulant, warfarin. However, the topological structure of VKOR and the mechanism of warfarin's inhibition of VKOR remain elusive. Additionally, it is not clear why warfarin-resistant VKOR mutations identified in patients significantly decrease warfarin's binding affinity, but have only a minor effect on vitamin K binding. Here, we used immunofluorescence confocal imaging of VKOR in live mammalian cells and PEGylation of VKOR's endogenous cytoplasmic-accessible cysteines in intact microsomes to probe the membrane topology of human VKOR. Our results show that the disputed loop sequence between the first and second transmembrane (TM) domain of VKOR is located in the cytoplasm, supporting a 3-TM topological structure of human VKOR. Using molecular dynamics (MD) simulations, a T-shaped stacking interaction between warfarin and tyrosine residue 139, within the proposed TY139A warfarin-binding motif, was observed. Furthermore, a reversible dynamic warfarin-binding pocket opening and conformational changes were observed when warfarin binds to VKOR. Several residues (Y25, A26, and Y139) were found essential for warfarin binding to VKOR by MD simulations, and these were confirmed by the functional study of VKOR and its mutants in their native milieu using a cell-based assay. Our findings provide new insights into the dynamics of the binding of warfarin to VKOR, as well as into warfarin's mechanism of anticoagulation.


Assuntos
Vitamina K Epóxido Redutases/antagonistas & inibidores , Varfarina/farmacologia , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Cisteína/química , Células HEK293 , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Mutação Puntual , Ligação Proteica , Conformação Proteica , Tirosina/química , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/deficiência , Vitamina K Epóxido Redutases/metabolismo
20.
J Thromb Haemost ; 16(6): 1164-1175, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29665197

RESUMO

Essentials VKORL1 and VKORC1 have a similar overall structure and warfarin-binding pocket. A peripheral region stabilizing this pocket controls warfarin sensitivity of the VKOR paralogs. A human single nucleotide polymorphism in this region renders VKORL1 sensitive to warfarin. A group of warfarin-resistant mutations in VKORC1 acts by disrupting peripheral interactions. SUMMARY: Background The human genome encodes two paralogs of vitamin-K-epoxide reductase, VKORC1 and VKORL1, that support blood coagulation and other vitamin-K-dependent processes. Warfarin inhibits both enzymes, but VKORL1 is relatively resistant to warfarin. Objectives To understand the difference between VKORL1 and VKORC1, and the cause of warfarin-resistant (WR) mutations in VKORC1. Methods We performed systematic mutagenesis and analyzed warfarin responses with a cell-based activity assay. Mass spectrometry analyses were used to detect cellular redox state. Results VKORC1 and VKORL1 adopt a similar intracellular redox state with four-transmembrane-helix topology. Most WR mutations identified in VKORC1 also confer resistance in VKORL1, indicating that warfarin inhibits these paralogs at a common binding site. A group of WR mutations, distant from the warfarin-binding site, show significantly less resistance in VKORL1 than in VKORC1, implying that their different warfarin responses are determined by peripheral interactions. Remarkably, we identify a critical peripheral region in which single mutations, Glu37Lys or His46Tyr, drastically increase the warfarin sensitivity of VKORL1. In the background of these warfarin-sensitive VKORL1 mutants, WR mutations showing relative less resistance in wild-type VKORL1 become much more resistant, suggesting a structural conversion to resemble VKORC1. At this peripheral region, we also identified a human single nucleotide polymorphism that confers warfarin sensitivity of VKORL1. Conclusions Peripheral regions of VKORC1 and VKORL1 primarily maintain the stability of their common warfarin-binding pocket, and differences of such interactions determine their relative sensitivity to warfarin inhibition. This new model also explains most WR mutations located at the peripheral regions of VKORC1.


Assuntos
Anticoagulantes/farmacologia , Resistência a Medicamentos , Vitamina K Epóxido Redutases/antagonistas & inibidores , Varfarina/farmacologia , Anticoagulantes/química , Anticoagulantes/metabolismo , Sítios de Ligação , Resistência a Medicamentos/genética , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Oxirredução , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo , Varfarina/química , Varfarina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...