Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
BMC Biol ; 22(1): 79, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600528

RESUMO

BACKGROUND: Throughout its nearly four-billion-year history, life has undergone evolutionary transitions in which simpler subunits have become integrated to form a more complex whole. Many of these transitions opened the door to innovations that resulted in increased biodiversity and/or organismal efficiency. The evolution of multicellularity from unicellular forms represents one such transition, one that paved the way for cellular differentiation, including differentiation of male and female gametes. A useful model for studying the evolution of multicellularity and cellular differentiation is the volvocine algae, a clade of freshwater green algae whose members range from unicellular to colonial, from undifferentiated to completely differentiated, and whose gamete types can be isogamous, anisogamous, or oogamous. To better understand how multicellularity, differentiation, and gametes evolved in this group, we used comparative genomics and fossil data to establish a geologically calibrated roadmap of when these innovations occurred. RESULTS: Our ancestral-state reconstructions, show that multicellularity arose independently twice in the volvocine algae. Our chronograms indicate multicellularity evolved during the Carboniferous-Triassic periods in Goniaceae + Volvocaceae, and possibly as early as the Cretaceous in Tetrabaenaceae. Using divergence time estimates we inferred when, and in what order, specific developmental changes occurred that led to differentiated multicellularity and oogamy. We find that in the volvocine algae the temporal sequence of developmental changes leading to differentiated multicellularity is much as proposed by David Kirk, and that multicellularity is correlated with the acquisition of anisogamy and oogamy. Lastly, morphological, molecular, and divergence time data suggest the possibility of cryptic species in Tetrabaenaceae. CONCLUSIONS: Large molecular datasets and robust phylogenetic methods are bringing the evolutionary history of the volvocine algae more sharply into focus. Mounting evidence suggests that extant species in this group are the result of two independent origins of multicellularity and multiple independent origins of cell differentiation. Also, the origin of the Tetrabaenaceae-Goniaceae-Volvocaceae clade may be much older than previously thought. Finally, the possibility of cryptic species in the Tetrabaenaceae provides an exciting opportunity to study the recent divergence of lineages adapted to live in very different thermal environments.


Assuntos
Clorofíceas , Volvox , Filogenia , Evolução Biológica , Volvox/genética , Fósseis , Plantas , Diferenciação Celular
2.
Int. microbiol ; 27(1): 213-225, Feb. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-230255

RESUMO

Long non-coding RNAs (lncRNAs) are identified as important regulatory molecules related to diverse biological processes. In recent years, benefiting from the rapid development of high-throughput sequencing technology, RNA-seq, and analysis methods, more lncRNAs have been identified and discovered in various plant and algal species. However, so far, only limited studies related to algal lncRNAs are available. Volvox carteri f. nagariensis is the best multicellular model organism to study in developmental and evolutionary biology; therefore, studying and increasing information about this species is important. This study identified lncRNAs in the multicellular green algae Volvox carteri and 1457 lncRNAs were reported, using RNA-seq data and with the help of bioinformatics tools and software. This study investigated the effect of low-dose UV-B radiation on changes in the expression profile of lncRNAs in gonidial and somatic cells. The differential expression of lncRNAs was analyzed between the treatment (UV-B) and the control (WL) groups in gonidial and somatic cells. A total of 37 and 26 lncRNAs with significant differential expression in gonidial and somatic cells, respectively, were reported. Co-expression analysis between the lncRNAs and their neighbor protein-coding genes (in the interval of ± 10 Kb) was accomplished. In gonidial cells, 184 genes with a positive correlation and 13 genes with a negative correlation (greater than 0.95), and in somatic cells, 174 genes with a positive correlation, and 18 genes with a negative correlation were detected. Functional analysis of neighboring coding genes was also performed based on gene ontology. The results of the current work may help gain deeper insight into the regulation of gene expression in the studied model organism, Volvox carteri.(AU)


Assuntos
Humanos , Volvox/metabolismo , Sequência de Bases , Clorófitas/microbiologia , Evolução Biológica , RNA Longo não Codificante/genética , Microbiologia , Técnicas Microbiológicas , Clorófitas/genética , Clorófitas/metabolismo , RNA Longo não Codificante/metabolismo
3.
Int Microbiol ; 27(1): 213-225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37264144

RESUMO

Long non-coding RNAs (lncRNAs) are identified as important regulatory molecules related to diverse biological processes. In recent years, benefiting from the rapid development of high-throughput sequencing technology, RNA-seq, and analysis methods, more lncRNAs have been identified and discovered in various plant and algal species. However, so far, only limited studies related to algal lncRNAs are available. Volvox carteri f. nagariensis is the best multicellular model organism to study in developmental and evolutionary biology; therefore, studying and increasing information about this species is important. This study identified lncRNAs in the multicellular green algae Volvox carteri and 1457 lncRNAs were reported, using RNA-seq data and with the help of bioinformatics tools and software. This study investigated the effect of low-dose UV-B radiation on changes in the expression profile of lncRNAs in gonidial and somatic cells. The differential expression of lncRNAs was analyzed between the treatment (UV-B) and the control (WL) groups in gonidial and somatic cells. A total of 37 and 26 lncRNAs with significant differential expression in gonidial and somatic cells, respectively, were reported. Co-expression analysis between the lncRNAs and their neighbor protein-coding genes (in the interval of ± 10 Kb) was accomplished. In gonidial cells, 184 genes with a positive correlation and 13 genes with a negative correlation (greater than 0.95), and in somatic cells, 174 genes with a positive correlation, and 18 genes with a negative correlation were detected. Functional analysis of neighboring coding genes was also performed based on gene ontology. The results of the current work may help gain deeper insight into the regulation of gene expression in the studied model organism, Volvox carteri.


Assuntos
RNA Longo não Codificante , Volvox , Volvox/genética , Volvox/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Evolução Biológica
4.
BMC Genomics ; 24(1): 654, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904088

RESUMO

BACKGROUND: Cell type specialization is a hallmark of complex multicellular organisms and is usually established through implementation of cell-type-specific gene expression programs. The multicellular green alga Volvox carteri has just two cell types, germ and soma, that have previously been shown to have very different transcriptome compositions which match their specialized roles. Here we interrogated another potential mechanism for differentiation in V. carteri, cell type specific alternative transcript isoforms (CTSAI). METHODS: We used pre-existing predictions of alternative transcripts and de novo transcript assembly with HISAT2 and Ballgown software to compile a list of loci with two or more transcript isoforms, identified a small subset that were candidates for CTSAI, and manually curated this subset of genes to remove false positives. We experimentally verified three candidates using semi-quantitative RT-PCR to assess relative isoform abundance in each cell type. RESULTS: Of the 1978 loci with two or more predicted transcript isoforms 67 of these also showed cell type isoform expression biases. After curation 15 strong candidates for CTSAI were identified, three of which were experimentally verified, and their predicted gene product functions were evaluated in light of potential cell type specific roles. A comparison of genes with predicted alternative splicing from Chlamydomonas reinhardtii, a unicellular relative of V. carteri, identified little overlap between ortholog pairs with alternative splicing in both species. Finally, we interrogated cell type expression patterns of 126 V. carteri predicted RNA binding protein (RBP) encoding genes and found 40 that showed either somatic or germ cell expression bias. These RBPs are potential mediators of CTSAI in V. carteri and suggest possible pre-adaptation for cell type specific RNA processing and a potential path for generating CTSAI in the early ancestors of metazoans and plants. CONCLUSIONS: We predicted numerous instances of alternative transcript isoforms in Volvox, only a small subset of which showed cell type specific isoform expression bias. However, the validated examples of CTSAI supported existing hypotheses about cell type specialization in V. carteri, and also suggested new hypotheses about mechanisms of functional specialization for their gene products. Our data imply that CTSAI operates as a minor but important component of V. carteri cellular differentiation and could be used as a model for how alternative isoforms emerge and co-evolve with cell type specialization.


Assuntos
Volvox , Volvox/genética , Transcriptoma , Isoformas de Proteínas/genética
5.
Genes (Basel) ; 14(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37510294

RESUMO

The multicellular green alga Volvox carteri has emerged as a valuable model organism for investigating various aspects of multicellularity and cellular differentiation, photoreception and phototaxis, cell division, biogenesis of the extracellular matrix and morphogenetic movements. While a range of molecular tools and bioinformatics resources have been made available for exploring these topics, the establishment of cell type-specific promoters in V. carteri has not been achieved so far. Therefore, here, we conducted a thorough screening of transcriptome data from RNA sequencing analyses of V. carteri in order to identify potential cell type-specific promoters. Eventually, we chose two putative strong and cell type-specific promoters, with one exhibiting specific expression in reproductive cells (gonidia), the PCY1 promoter, and the other in somatic cells, the PFP promoter. After cloning both promoter regions, they were introduced upstream of a luciferase reporter gene. By using particle bombardment, the DNA constructs were stably integrated into the genome of V. carteri. The results of the expression analyses, which were conducted at both the transcript and protein levels, demonstrated that the two promoters drive cell type-specific expression in their respective target cell types. Transformants with considerably diverse expression levels of the chimeric genes were identifiable. In conclusion, the screening and analysis of transcriptome data from RNA sequencing allowed for the identification of potential cell type-specific promoters in V. carteri. Reporter gene constructs demonstrated the actual usability of two promoters. The investigated PCY1 and PFP promoters were proven to be potent molecular tools for genetic engineering in V. carteri.


Assuntos
Volvox , Volvox/genética , Volvox/metabolismo , Regiões Promotoras Genéticas , Genes Reporter , Sequência de Bases , Transcriptoma/genética
6.
Genes (Basel) ; 14(4)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37107699

RESUMO

The evolutionary transition from single-celled to multicellular individuality requires organismal fitness to shift from the cell level to a cell group. This reorganization of fitness occurs by re-allocating the two components of fitness, survival and reproduction, between two specialized cell types in the multicellular group: soma and germ, respectively. How does the genetic basis for such fitness reorganization evolve? One possible mechanism is the co-option of life history genes present in the unicellular ancestors of a multicellular lineage. For instance, single-celled organisms must regulate their investment in survival and reproduction in response to environmental changes, particularly decreasing reproduction to ensure survival under stress. Such stress response life history genes can provide the genetic basis for the evolution of cellular differentiation in multicellular lineages. The regA-like gene family in the volvocine green algal lineage provides an excellent model system to study how this co-option can occur. We discuss the origin and evolution of the volvocine regA-like gene family, including regA-the gene that controls somatic cell development in the model organism Volvox carteri. We hypothesize that the co-option of life history trade-off genes is a general mechanism involved in the transition to multicellular individuality, making volvocine algae and the regA-like family a useful template for similar investigations in other lineages.


Assuntos
Clorófitas , Volvox , Filogenia , Volvox/genética , Modelos Biológicos , Diferenciação Celular/genética
7.
Phys Rev E ; 107(1-1): 014404, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797913

RESUMO

A fundamental issue in biology is the nature of evolutionary transitions from unicellular to multicellular organisms. Volvocine algae are models for this transition, as they span from the unicellular biflagellate Chlamydomonas to multicellular species of Volvox with up to 50,000 Chlamydomonas-like cells on the surface of a spherical extracellular matrix. The mechanism of phototaxis in these species is of particular interest since they lack a nervous system and intercellular connections; steering is a consequence of the response of individual cells to light. Studies of Volvox and Gonium, a 16-cell organism with a plate-like structure, have shown that the flagellar response to changing illumination of the cellular photosensor is adaptive, with a recovery time tuned to the rotation period of the colony around its primary axis. Here, combining high-resolution studies of the flagellar photoresponse of micropipette-held Chlamydomonas with 3D tracking of freely swimming cells, we show that such tuning also underlies its phototaxis. A mathematical model is developed based on the rotations around an axis perpendicular to the flagellar beat plane that occur through the adaptive response to oscillating light levels as the organism spins. Exploiting a separation of timescales between the flagellar photoresponse and phototurning, we develop an equation of motion that accurately describes the observed photoalignment. In showing that the adaptive timescales in Volvocine algae are tuned to the organisms' rotational periods across three orders of magnitude in cell number, our results suggest a unified picture of phototaxis in green algae in which the asymmetry in torques that produce phototurns arise from the individual flagella of Chlamydomonas, the flagellated edges of Gonium, and the flagellated hemispheres of Volvox.


Assuntos
Chlamydomonas , Clorófitas , Volvox , Filogenia , Fototaxia , Evolução Biológica
8.
Environ Res ; 221: 115251, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36657592

RESUMO

Recently, large-scale biofuel production is mainly dependent on third-generation feedstock, especially microalgae. Since most microalgae can sequester carbon dioxide and utilize it for the enhancement of their growth parameter. In the present study, CO2 sequestration and Biodiesel production from Volvox aureus a newly isolated green microalgal species from industrial wastewater. Volvox aureus was isolated from the wastewater sample collected from the sewage treatment plant. The isolated V.aureus was grown in the BBM culture containing excess nutrients along with Artificial CO2 supply to the bioreactor. The addition of an external carbon dioxide source enhanced the total lipid content by up to 27.95%. Further, the lipid was extracted using soxhlet extraction from the isolated microalgal biomass. The extracted lipid was converted into biodiesel using a base catalyst potassium hydroxide. The produced biodiesel was analyzed to test their fuel properties and compared with the diesel standard. This study approach investigated the potential of a future possible environmental pollution reduction and significant potential for a viable biofuel production from microalgae.


Assuntos
Microalgas , Volvox , Águas Residuárias , Dióxido de Carbono , Biocombustíveis , Biomassa , Lipídeos
9.
Biol Lett ; 18(6): 20220059, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35728616

RESUMO

Understanding how cooperation evolved and is maintained remains an important and often controversial topic because cheaters that reap the benefits of cooperation without paying the costs can threaten the evolutionary stability of cooperative traits. Cooperation-and especially reproductive altruism-is particularly relevant to the evolution of multicellularity, as somatic cells give up their reproductive potential in order to contribute to the fitness of the newly emerged multicellular individual. Here, we investigated cheating in a simple multicellular species-the green alga Volvox carteri, in the context of the mechanisms that can stabilize reproductive altruism during the early evolution of clonal multicellularity. We found that the benefits cheater mutants can gain in terms of their own reproduction are pre-empted by a cost in survival due to increased sensitivity to stress. This personal cost of cheating reflects the antagonistic pleiotropic effects that the gene coding for reproductive altruism-regA-has at the cell level. Specifically, the expression of regA in somatic cells results in the suppression of their reproduction potential but also confers them with increased resistance to stress. Since regA evolved from a life-history trade-off gene, we suggest that co-opting trade-off genes into cooperative traits can provide a built-in safety system against cheaters in other clonal multicellular lineages.


Assuntos
Altruísmo , Volvox , Evolução Biológica , Reprodução , Volvox/genética
11.
Elife ; 112022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188101

RESUMO

The prevalence of multicellular organisms is due in part to their ability to form complex structures. How cells pack in these structures is a fundamental biophysical issue, underlying their functional properties. However, much remains unknown about how cell packing geometries arise, and how they are affected by random noise during growth - especially absent developmental programs. Here, we quantify the statistics of cellular neighborhoods of two different multicellular eukaryotes: lab-evolved 'snowflake' yeast and the green alga Volvox carteri. We find that despite large differences in cellular organization, the free space associated with individual cells in both organisms closely fits a modified gamma distribution, consistent with maximum entropy predictions originally developed for granular materials. This 'entropic' cellular packing ensures a degree of predictability despite noise, facilitating parent-offspring fidelity even in the absence of developmental regulation. Together with simulations of diverse growth morphologies, these results suggest that gamma-distributed cell neighborhood sizes are a general feature of multicellularity, arising from conserved statistics of cellular packing.


Assuntos
Evolução Molecular Direcionada , Volvox/genética , Leveduras/genética , Tamanho Celular , Filogenia , Volvox/citologia , Volvox/fisiologia , Leveduras/citologia , Leveduras/fisiologia
12.
Plant Cell ; 34(4): 1326-1353, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35018470

RESUMO

Cell division is fundamental to all organisms and the green alga used here exhibits both key animal and plant functions. Specifically, we analyzed the molecular and cellular dynamics of early embryonic divisions of the multicellular green alga Volvox carteri (Chlamydomonadales). Relevant proteins related to mitosis and cytokinesis were identified in silico, the corresponding genes were cloned, fused to yfp, and stably expressed in Volvox, and the tagged proteins were studied by live-cell imaging. We reveal rearrangements of the microtubule cytoskeleton during centrosome separation, spindle formation, establishment of the phycoplast, and generation of previously unknown structures. The centrosomes participate in initiation of spindle formation and determination of spindle orientation. Although the nuclear envelope does not break down during early mitosis, intermixing of cytoplasm and nucleoplasm results in loss of nuclear identity. Finally, we present a model for mitosis in Volvox. Our study reveals enormous dynamics, clarifies spatio-temporal relationships of subcellular structures, and provides insight into the evolution of cell division.


Assuntos
Volvox , Animais , Divisão Celular/genética , Volvox/genética
13.
Int J Biol Macromol ; 201: 29-36, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998872

RESUMO

Intrinsically disordered proteins (IDPs) are proteins that lack rigid structures yet play important roles in myriad biological phenomena. A distinguishing feature of IDPs is that they often mediate specific biological outcomes via multivalent weak cooperative interactions with multiple partners. Here, we show that several proteins specifically associated with processes that were key in the evolution of complex multicellularity in the lineage leading to the multicellular green alga Volvox carteri are IDPs. We suggest that, by rewiring cellular protein interaction networks, IDPs facilitated the co-option of ancestral pathways for specialized multicellular functions, underscoring the importance of IDPs in the early evolution of complex multicellularity.


Assuntos
Proteínas Intrinsicamente Desordenadas , Volvox
14.
Cells ; 12(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36611928

RESUMO

The spheroidal green algae Volvox carteri serves as a model system to investigate the formation of a complex, multifunctional extracellular matrix (ECM) in a relatively simple, multicellular organism with cell differentiation. The V. carteri ECM is mainly composed of hydroxyproline-rich glycoproteins (HRGPs) and there are diverse region-specific, anatomically distinct structures in the ECM. One large protein family with importance for ECM biosynthesis stands out: the pherophorins. The few pherophorins previously extracted from the ECM and characterized, were specifically expressed by somatic cells. However, the localization and function of most pherophorins is unknown. Here, we provide a phylogenetic analysis of 153 pherophorins of V. carteri and its unicellular relative Chlamydomonas reinhardtii. Our analysis of cell type-specific mRNA expression of pherophorins in V. carteri revealed that, contrary to previous assumptions, only about half (52%) of the 102 investigated pherophorin-related genes show stronger expression in somatic cells, whereas about one-third (34%) of the genes show significant higher expression in reproductive cells (gonidia). We fused two pherophorin genes that are expressed by different cell types to yfp, stably expressed them in Volvox and studied the tagged proteins by live-cell imaging. In contrast to earlier biochemical approaches, this genetic approach also allows the in vivo analysis of non-extractable, covalently cross-linked ECM proteins. We demonstrate that the soma-specific pherophorin SSG185 is localized in the outermost ECM structures of the spheroid, the boundary zone and at the flagellar hillocks. SSG185:YFP is detectable as early as 1.5 h after completion of embryogenesis. It is then present for the rest of the life cycle. The gonidia-specific pherophorin PhG is localized in the gonidial cellular zone 1 ("gonidial vesicle") suggesting its involvement in the protection of gonidia and developing embryos until hatching. Even if somatic cells produce the main portion of the ECM of the spheroids, ECM components produced by gonidia are also required to cooperatively assemble the total ECM. Our results provide insights into the evolution of the pherophorin protein family and convey a more detailed picture of Volvox ECM synthesis.


Assuntos
Clorófitas , Volvox , Volvox/genética , Volvox/metabolismo , Filogenia , Matriz Extracelular/metabolismo , Clorófitas/genética , Proteínas da Matriz Extracelular/metabolismo
15.
Sci Rep ; 11(1): 22231, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811380

RESUMO

Germ-soma differentiation evolved independently in many eukaryotic lineages and contributed to complex multicellular organizations. However, the molecular genetic bases of such convergent evolution remain unresolved. Two multicellular volvocine green algae, Volvox and Astrephomene, exhibit convergent evolution of germ-soma differentiation. The complete genome sequence is now available for Volvox, while genome information is scarce for Astrephomene. Here, we generated the de novo whole genome sequence of Astrephomene gubernaculifera and conducted RNA-seq analysis of isolated somatic and reproductive cells. In Volvox, tandem duplication and neofunctionalization of the ancestral transcription factor gene (RLS1/rlsD) might have led to the evolution of regA, the master regulator for Volvox germ-soma differentiation. However, our genome data demonstrated that Astrephomene has not undergone tandem duplication of the RLS1/rlsD homolog or acquisition of a regA-like gene. Our RNA-seq analysis revealed the downregulation of photosynthetic and anabolic gene expression in Astrephomene somatic cells, as in Volvox. Among genes with high expression in somatic cells of Astrephomene, we identified three genes encoding putative transcription factors, which may regulate somatic cell differentiation. Thus, the convergent evolution of germ-soma differentiation in the volvocine algae may have occurred by the acquisition of different regulatory circuits that generate a similar division of labor.


Assuntos
Evolução Biológica , Diferenciação Celular/genética , Clorofíceas/genética , Clorófitas/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Células Germinativas , Volvox/genética , Sequenciamento Completo do Genoma
16.
PLoS One ; 16(10): e0259138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34699573

RESUMO

Photo-induced behavioral responses (photobehaviors) are crucial to the survival of motile phototrophic organisms in changing light conditions. Volvocine green algae are excellent model organisms for studying the regulatory mechanisms of photobehavior. We recently reported that unicellular Chlamydomonas reinhardtii and multicellular Volvox rousseletii exhibit similar photobehaviors, such as phototactic and photoshock responses, via different ciliary regulations. To clarify how the regulatory systems have changed during the evolution of multicellularity, we investigated the photobehaviors of four-celled Tetrabaena socialis. Surprisingly, unlike C. reinhardtii and V. rousseletii, T. socialis did not exhibit immediate photobehaviors after light illumination. Electrophysiological analysis revealed that the T. socialis eyespot does not function as a photoreceptor. Instead, T. socialis exhibited slow accumulation toward the light source in a photosynthesis-dependent manner. Our assessment of photosynthetic activities showed that T. socialis chloroplasts possess higher photoprotection abilities against strong light than C. reinhardtii. These data suggest that C. reinhardtii and T. socialis employ different strategies to avoid high-light stress (moving away rapidly and gaining photoprotection, respectively) despite their close phylogenetic relationship.


Assuntos
Clorófitas/fisiologia , Fototropismo/fisiologia , Volvox/fisiologia , Estimulação Luminosa
17.
Protist ; 172(5-6): 125834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34695730

RESUMO

The evolution of germ-soma cellular differentiation represents a key step in the evolution of multicellular individuality. Volvox carteri and its relatives, the volvocine green algae, provide a model system for studying the evolution of cellular differentiation. In V. carteri, the regA gene controls somatic cell differentiation and is found in a group of paralogs called the reg cluster, along with rlsA, rlsB, and rlsC. However, the developmental program of V. carteri is derived compared to other volvocine algae. Here we examine Volvox powersii which possesses an ancestral developmental program and independent evolution of the Volvox body plan. We sequenced the reg cluster from V. powersii wild-type and a mutant with fewer cells and altered germ-soma ratio. We found that the mutant strain's rlsB gene has a deletion predicted to cause a truncated protein product. We developed a genetic transformation procedure to insert wild-type rlsB into the mutant strain. Transformation did not result in phenotypic rescue, suggesting the rlsB mutation is insufficient for generating the mutant phenotype. The transformation techniques and sequences described here provide essential tools to study V. powersii, a species well suited for studying the evolution of cellular differentiation and convergent evolution of Volvox morphology.


Assuntos
Clorófitas , Volvox , Sequência de Bases , Diferenciação Celular , Volvox/genética
18.
Annu Rev Genet ; 55: 603-632, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34546795

RESUMO

The repeated evolution of multicellularity across the tree of life has profoundly affected the ecology and evolution of nearly all life on Earth. Many of these origins were in different groups of photosynthetic eukaryotes, or algae. Here, we review the evolution and genetics of multicellularity in several groups of green algae, which include the closest relatives of land plants. These include millimeter-scale, motile spheroids of up to 50,000 cells in the volvocine algae; decimeter-scale seaweeds in the genus Ulva (sea lettuce); and very plantlike, meter-scale freshwater algae in the genus Chara (stoneworts). We also describe algae in the genus Caulerpa, which are giant, multinucleate, morphologically complex single cells. In each case, we review the life cycle, phylogeny, and genetics of traits relevant to the evolution of multicellularity, and genetic and genomic resources available for the group in question. Finally, we suggest routes toward developing these groups as model organisms for the evolution of multicellularity.


Assuntos
Clorófitas , Volvox , Evolução Biológica , Clorófitas/genética , Genoma , Filogenia , Volvox/genética
19.
BMC Biol ; 19(1): 182, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465312

RESUMO

BACKGROUND: The volvocine algae, which include the single-celled species Chlamydomonas reinhardtii and the colonial species Volvox carteri, serve as a model in which to study the evolution of multicellularity and cellular differentiation. Studies reconstructing the history of this group have by and large relied on datasets of one to a few genes for phylogenetic inference and ancestral character state reconstruction. As a result, volvocine phylogenies lack concordance depending on the number and/or type of genes (i.e., chloroplast vs nuclear) chosen for phylogenetic inference. While multiple studies suggest that multicellularity evolved only once in the volvocine algae, that each of its three colonial families is monophyletic, and that there have been at least three independent origins of cellular differentiation in the group, other studies call into question one or more of these conclusions. An accurate assessment of the evolutionary history of the volvocine algae requires inference of a more robust phylogeny. RESULTS: We performed RNA sequencing (RNA-seq) on 55 strains representing 47 volvocine algal species and obtained similar data from curated databases on 13 additional strains. We then compiled a dataset consisting of transcripts for 40 single-copy, protein-coding, nuclear genes and subjected the predicted amino acid sequences of these genes to maximum likelihood, Bayesian inference, and coalescent-based analyses. These analyses show that multicellularity independently evolved at least twice in the volvocine algae and that the colonial family Goniaceae is not monophyletic. Our data further indicate that cellular differentiation arose independently at least four, and possibly as many as six times, within the volvocine algae. CONCLUSIONS: Altogether, our results demonstrate that multicellularity and cellular differentiation are evolutionarily labile in the volvocine algae, affirming the importance of this group as a model system for the study of major transitions in the history of life.


Assuntos
Filogenia , Teorema de Bayes , Evolução Biológica , Diferenciação Celular , Chlamydomonas reinhardtii , Transcriptoma , Volvox/genética
20.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201658

RESUMO

The death of photoreceptor cells is induced by continuous light exposure. However, it is unclear whether light damage was induced in retinal ganglion cells with photosensitivity by transduction of optogenetic genes. In this study, we evaluated the phototoxicities of continuous light exposure on retinal ganglion cells after transduction of the optogenetic gene mVChR1 using an adeno-associated virus vector. Rats were exposed to continuous light for a week, and visually evoked potentials (VEPs) were recorded. The intensities of continuous light (500, 1000, 3000, and 5000 lx) increased substantially after VEP recordings. After the final recording of VEPs, retinal ganglion cells (RGCs) were retrogradely labeled with a fluorescein tracer, FluoroGold, and the number of retinal ganglion cells was counted under a fluorescent microscope. There was no significant reduction in the amplitudes of VEPs and the number of RGCs after exposure to any light intensity. These results indicated that RGCs were photosensitive after the transduction of optogenetic genes and did not induce any phototoxicity by continuous light exposure.


Assuntos
Optogenética/métodos , Células Ganglionares da Retina/fisiologia , Rodopsina/genética , Animais , Dependovirus/genética , Potenciais Evocados Visuais , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Luz/efeitos adversos , Técnicas de Patch-Clamp , Estimulação Luminosa , Ratos , Células Ganglionares da Retina/patologia , Rodopsina/metabolismo , Estilbamidinas/química , Estilbamidinas/metabolismo , Transdução Genética , Volvox/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...