Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2120003119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377795

RESUMO

Lymphatic filariasis is a vector-borne neglected tropical disease prioritized for global elimination. The filarial nematodes that cause the disease host a symbiotic bacterium, Wolbachia, which has been targeted using antibiotics, leading to cessation of parasite embryogenesis, waning of circulating larvae (microfilariae [mf]), and gradual cure of adult infection. One of the benefits of the anti-Wolbachia mode of action is that it avoids the rapid killing of mf, which can drive inflammatory adverse events. However, mf depleted of Wolbachia persist for several months in circulation, and thus patients treated with antibiotics are assumed to remain at risk for transmitting infections. Here, we show that Wolbachia-depleted mf rapidly lose the capacity to develop in the mosquito vector through a defect in exsheathment and inability to migrate through the gut wall. Transcriptomic and Western blotting analyses demonstrate that chitinase, an enzyme essential for mf exsheathment, is down-regulated in Wolbachia-depleted mf and correlates with their inability to exsheath and escape the mosquito midgut. Supplementation of in vitro cultures of Wolbachia-depleted mf with chitinase enzymes restores their ability to exsheath to a similar level to that observed in untreated mf. Our findings elucidate a mechanism of rapid transmission-blocking activity of filariasis after depletion of Wolbachia and adds to the broad range of biological processes of filarial nematodes that are dependent on Wolbachia symbiosis.


Assuntos
Antibacterianos , Quitinases , Filariose Linfática , Microfilárias , Wolbachia , Animais , Antibacterianos/farmacologia , Quitinases/genética , Filariose Linfática/transmissão , Humanos , Microfilárias/enzimologia , Microfilárias/crescimento & desenvolvimento , Microfilárias/microbiologia , Mosquitos Vetores/parasitologia , Wolbachia/efeitos dos fármacos , Wolbachia/genética
2.
Parasitol Res ; 121(4): 1199-1206, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35006317

RESUMO

The filarial nematode Onchocerca volvulus causes onchocerciasis (river blindness), a neglected tropical disease affecting 21 million people, mostly in Sub-Saharan Africa. Targeting the endosymbiont Wolbachia with antibiotics leads to permanent sterilization and killing of adult worms. The gold standard to assess Wolbachia depletion is the histological examination of adult worms in nodules beginning at 6 months post-treatment. However, nodules can only be used once, limiting the time points to monitor Wolbachia depletion. A diagnostic to longitudinally monitor Wolbachia depletion from microfilariae (MF) at more frequent intervals < 6 months post-treatment would accelerate clinical trials of antiwolbachials. We developed a TaqMan qPCR amplifying the single-copy gene wOvftsZ to quantify Wolbachia from as few as one MF that had migrated from skin biopsies and compared quantification using circular and linearized plasmids or synthetic dsDNA (gBlock®). qPCR for MF from the rodent nematode Litomosoides sigmodontis was used to support the reproducibility and validate the principle. The qPCR using as few as 2 MF from O. volvulus and L. sigmodontis reproducibly quantified Wolbachia. Use of a linearized plasmid standard or synthesized dsDNA resulted in numbers of Wolbachia/MF congruent with biologically plausible estimates in O. volvulus and L. sigmodontis MF. The qPCR assay yielded a median of 48.8 (range 1.5-280.5) Wolbachia/O. volvulus MF. The qPCR is a sensitive tool for quantifying Wolbachia in a few MF from skin biopsies and allows for establishing the qPCR as a surrogate parameter for monitoring Wolbachia depletion in adult worms of new antiwolbachial candidates.


Assuntos
Filarioidea , Onchocerca volvulus , Wolbachia , Animais , Humanos , Microfilárias , Onchocerca , Onchocerca volvulus/genética , Reprodutibilidade dos Testes , Wolbachia/efeitos dos fármacos , Wolbachia/genética
3.
Sci Rep ; 11(1): 8455, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875732

RESUMO

Filarial infections affect millions of individuals and are responsible for some notorious disabilities. Current treatment options involve repeated mass drug administrations, which have been met with several challenges despite some successes. Administration of doxycycline, an anti-Wolbachia agent, has shown clinical effectiveness but has several limitations, including long treatment durations and contraindications. We describe the use of an in silico drug repurposing approach to screening a library of over 3200 FDA-approved medications against the filarial endosymbiont, Wolbachia. We target the enzyme which catalyzes the first step of heme biosynthesis in the Wolbachia. This presents an opportunity to inhibit heme synthesis, which leads to depriving the filarial worm of heme, resulting in a subsequent macrofilaricidal effect. High throughput virtual screening, molecular docking and molecular simulations with binding energy calculations led to the identification of paritaprevir and nilotinib as potential anti-Wolbachia agents. Having higher binding affinities to the catalytic pocket than the natural substrate, these drugs have the structural potential to bind and engage active site residues of the wolbachia 5'-Aminolevulinic Acid Synthase. We hereby propose paritaprevir and nilotinib for experimental validations as anti-Wolbachia agents.


Assuntos
5-Aminolevulinato Sintetase/antagonistas & inibidores , Simulação por Computador , Ciclopropanos/farmacologia , Reposicionamento de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Lactamas Macrocíclicas/farmacologia , Prolina/análogos & derivados , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Wolbachia/efeitos dos fármacos , Sequência de Aminoácidos , Humanos , Prolina/farmacologia , Homologia de Sequência , Wolbachia/enzimologia , Wolbachia/crescimento & desenvolvimento
4.
Parasit Vectors ; 14(1): 118, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627171

RESUMO

BACKGROUND: Onchocerciasis (river blindness) and lymphatic filariasis (elephantiasis) are two human neglected tropical diseases that cause major disabilities. Mass administration of drugs targeting the microfilarial stage has reduced transmission and eliminated these diseases in several countries but a macrofilaricidal drug that kills or sterilizes the adult worms is critically needed to eradicate the diseases. The causative agents of onchocerciasis and lymphatic filariasis are filarial worms that harbor the endosymbiotic bacterium Wolbachia. Because filarial worms depend on Wolbachia for reproduction and survival, drugs targeting Wolbachia hold great promise as a means to eliminate these diseases. METHODS: To better understand the relationship between Wolbachia and its worm host, adult Brugia pahangi were exposed to varying concentrations of doxycycline, minocycline, tetracycline and rifampicin in vitro and assessed for Wolbachia numbers and worm motility. Worm motility was monitored using the Worminator system, and Wolbachia titers were assessed by qPCR of the single copy gene wsp from Wolbachia and gst from Brugia to calculate IC50s and in time course experiments. Confocal microscopy was also used to quantify Wolbachia located at the distal tip region of worm ovaries to assess the effects of antibiotic treatment in this region of the worm where Wolbachia are transmitted vertically to the microfilarial stage. RESULTS: Worms treated with higher concentrations of antibiotics had higher Wolbachia titers, i.e. as antibiotic concentrations increased there was a corresponding increase in Wolbachia titers. As the concentration of antibiotic increased, worms stopped moving and never recovered despite maintaining Wolbachia titers comparable to controls. Thus, worms were rendered moribund by the higher concentrations of antibiotics but Wolbachia persisted suggesting that these antibiotics may act directly on the worms at high concentration. Surprisingly, in contrast to these results, antibiotics given at low concentrations reduced Wolbachia titers. CONCLUSION: Wolbachia in B. pahangi display a counterintuitive dose response known as the "Eagle effect." This effect in Wolbachia suggests a common underlying mechanism that allows diverse bacterial and fungal species to persist despite exposure to high concentrations of antimicrobial compounds. To our knowledge this is the first report of this phenomenon occurring in an intracellular endosymbiont, Wolbachia, in its filarial host.


Assuntos
Brugia Malayi/fisiologia , Microfilárias/microbiologia , Onchocerca/fisiologia , Simbiose , Wolbachia/fisiologia , Animais , Antibacterianos/farmacologia , Brugia Malayi/efeitos dos fármacos , Brugia Malayi/microbiologia , Doxiciclina/farmacologia , Feminino , Masculino , Microfilárias/efeitos dos fármacos , Microfilárias/fisiologia , Onchocerca/efeitos dos fármacos , Onchocerca/microbiologia , Simbiose/efeitos dos fármacos , Wolbachia/efeitos dos fármacos
5.
PLoS Negl Trop Dis ; 14(12): e0008930, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33284808

RESUMO

Current efforts to eliminate the neglected tropical diseases onchocerciasis and lymphatic filariasis, caused by the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti or Brugia spp., respectively, are hampered by lack of a short-course macrofilaricidal-adult-worm killing-treatment. Anti-wolbachial antibiotics, e.g. doxycycline, target the essential Wolbachia endosymbionts of filariae and are a safe prototype adult-worm-sterilizing and macrofilaricidal regimen, in contrast to standard treatments with ivermectin or diethylcarbamazine, which mainly target the microfilariae. However, treatment regimens of 4-5 weeks necessary for doxycycline and contraindications limit its use. Therefore, we tested the preclinical anti-Wolbachia drug candidate Corallopyronin A (CorA) for in vivo efficacy during initial and chronic filarial infections in the Litomosoides sigmodontis rodent model. CorA treatment for 14 days beginning immediately after infection cleared >90% of Wolbachia endosymbionts from filariae and prevented development into adult worms. CorA treatment of patently infected microfilaremic gerbils for 14 days with 30 mg/kg twice a day (BID) achieved a sustained reduction of >99% of Wolbachia endosymbionts from adult filariae and microfilariae, followed by complete inhibition of filarial embryogenesis resulting in clearance of microfilariae. Combined treatment of CorA and albendazole, a drug currently co-administered during mass drug administrations and previously shown to enhance efficacy of anti-Wolbachia drugs, achieved microfilarial clearance after 7 days of treatment at a lower BID dose of 10 mg/kg CorA, a Human Equivalent Dose of 1.4 mg/kg. Importantly, this combination led to a significant reduction in the adult worm burden, which has not yet been published with other anti-Wolbachia candidates tested in this model. In summary, CorA is a preclinical candidate for filariasis, which significantly reduces treatment times required to achieve sustained Wolbachia depletion, clearance of microfilariae, and inhibition of embryogenesis. In combination with albendazole, CorA is robustly macrofilaricidal after 7 days of treatment and fulfills the Target Product Profile for a macrofilaricidal drug.


Assuntos
Filariose/tratamento farmacológico , Filaricidas/uso terapêutico , Filarioidea/efeitos dos fármacos , Lactonas/uso terapêutico , Wolbachia/efeitos dos fármacos , Animais , Feminino , Filariose/parasitologia , Filarioidea/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Simbiose/efeitos dos fármacos
6.
Elife ; 92020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32779567

RESUMO

The filarial nematode Brugia malayi represents a leading cause of disability in the developing world, causing lymphatic filariasis in nearly 40 million people. Currently available drugs are not well-suited to mass drug administration efforts, so new treatments are urgently required. One potential vulnerability is the endosymbiotic bacteria Wolbachia-present in many filariae-which is vital to the worm. Genome scale metabolic networks have been used to study prokaryotes and protists and have proven valuable in identifying therapeutic targets, but have only been applied to multicellular eukaryotic organisms more recently. Here, we present iDC625, the first compartmentalized metabolic model of a parasitic worm. We used this model to show how metabolic pathway usage allows the worm to adapt to different environments, and predict a set of 102 reactions essential to the survival of B. malayi. We validated three of those reactions with drug tests and demonstrated novel antifilarial properties for all three compounds.


Assuntos
Brugia Malayi/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Filariose/tratamento farmacológico , Filaricidas/farmacologia , Simbiose , Wolbachia/efeitos dos fármacos , Animais , Brugia Malayi/microbiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Biológicos , Simbiose/efeitos dos fármacos
7.
PLoS Pathog ; 16(7): e1008623, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32639986

RESUMO

Antibiotic treatment has emerged as a promising strategy to sterilize and kill filarial nematodes due to their dependence on their endosymbiotic bacteria, Wolbachia. Several studies have shown that novel and FDA-approved antibiotics are efficacious at depleting the filarial nematodes of their endosymbiont, thus reducing female fecundity. However, it remains unclear if antibiotics can permanently deplete Wolbachia and cause sterility for the lifespan of the adult worms. Concerns about resistance arising from mass drug administration necessitate a careful exploration of potential Wolbachia recrudescence. In the present study, we investigated the long-term effects of the FDA-approved antibiotic, rifampicin, in the Brugia pahangi jird model of infection. Initially, rifampicin treatment depleted Wolbachia in adult worms and simultaneously impaired female worm fecundity. However, during an 8-month washout period, Wolbachia titers rebounded and embryogenesis returned to normal. Genome sequence analyses of Wolbachia revealed that despite the population bottleneck and recovery, no genetic changes occurred that could account for the rebound. Clusters of densely packed Wolbachia within the worm's ovarian tissues were observed by confocal microscopy and remained in worms treated with rifampicin, suggesting that they may serve as privileged sites that allow Wolbachia to persist in worms while treated with antibiotic. To our knowledge, these clusters have not been previously described and may be the source of the Wolbachia rebound.


Assuntos
Brugia pahangi/microbiologia , Filariose/microbiologia , Filaricidas/farmacologia , Rifampina/farmacologia , Wolbachia/efeitos dos fármacos , Animais , Feminino , Gerbillinae
8.
Vet Parasitol ; 283: 109141, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32502919

RESUMO

The endosymbiont bacteria Wolbachia plays an important role in the pathogenesis and inflammatory immune response to heartworm (Dirofilaria immitis) infection in dogs. Doxycycline is used to reduce Wolbachia from all life stages of heartworm to avoid large releases of the bacteria during the death of the worms. However, the dose and duration currently recommended have been extrapolated from the treatment of other rickettsial infections. Therefore, the aim was to study the dynamics of Wolbachia IgG antibodies in heartworm-infected dogs under adulticide treatment using different dosages of doxycycline. Forty-nine heartworm-infected dogs were recruited. On day 0 (diagnosis), monthly ivermectin (6 µg/kg) was prescribed, as well as daily doxycycline for 30 days, at 10 mg/kg/12 h (n = 13), 5 mg/kg/12 h (n = 19), and 10 mg/kg/24 h (n = 17). Dogs underwent adulticide treatment and blood samples were collected on days 0, 30, 90, and 120. All dogs had antibodies against recombinant Wolbachia surface protein (rWSP), confirming the important role of the bacteria in heartworm. No significant differences were found in anti-rWSP response by presence/absence of microfilariae, or by parasite burden on day 0. In all treated groups, the anti-rWSP antibody response was not significantly different between days 0 and 30 but was significantly lower between days 0 and 120 (p < 0.05). The results of the present study suggest that the administration of a lower dose than currently recommended is sufficient to achieve a significant reduction of Wolbachia in dogs infected by D. immitis.


Assuntos
Antibacterianos/farmacologia , Anticorpos Antibacterianos/sangue , Doxiciclina/farmacologia , Wolbachia/fisiologia , Animais , Antinematódeos/administração & dosagem , Dirofilariose/tratamento farmacológico , Dirofilariose/parasitologia , Doenças do Cão/tratamento farmacológico , Doenças do Cão/parasitologia , Cães , Relação Dose-Resposta a Droga , Wolbachia/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-32122896

RESUMO

There is an ongoing need for safe and effective anti-bedbug compounds. Here, we tested the toxicity of three antimicrobial agents against bedbugs when administered orally. We reveal that doxycycline has direct insecticidal activity at 250 µg/ml (0.025%) that is particularly strong against immature bedbugs and appears to be independent of antimicrobial activity. Future studies to determine the mechanisms behind this property could be useful for the development of orally active insecticides or anti-bedbug therapeutics.


Assuntos
Antibacterianos/farmacologia , Percevejos-de-Cama/efeitos dos fármacos , Percevejos-de-Cama/microbiologia , Doxiciclina/farmacologia , Wolbachia/efeitos dos fármacos , Animais , Inseticidas/farmacologia , Penicilinas/farmacologia , Rifampina/farmacologia , Simbiose/efeitos dos fármacos , Wolbachia/metabolismo
10.
ACS Infect Dis ; 6(4): 662-671, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32091199

RESUMO

Neglected parasitic helminth diseases such as onchocerciasis and lymphatic filariasis affect an estimated 145 million people worldwide, creating a serious health burden in endemic areas such as sub-Saharan Africa and India. Although these diseases are not usually lethal, these filarial nematodes, transmitted by blood-feeding insect vectors, cause severe debilitation and cause chronic disability to infected individuals. The adult worms can reproduce from 5 to up to 14 years, releasing millions of microfilariae, juvenile worms, over an infected individual's lifetime. The current treatments for controlling human filarial infections is focused on killing microfilariae, the earliest larval stage. Currently, there is an unmet medical need for treatments consisting of a macrofilaricidal regimen, one that targets the adult stage of the parasite, to increase the rate of elimination, allow for safe use in coendemic regions of Onchocerca volvulus and Loa loa, and to provide a rapid method to resolve reinfections. Herein, recent approaches for targeting human filarial diseases are discussed, including direct acting agents to target parasitic nematodes and antibacterial approaches to target the endosymbiotic bacteria, Wolbachia.


Assuntos
Filaricidas/química , Filaricidas/farmacologia , Helmintíase/tratamento farmacológico , África Subsaariana , Animais , Antibacterianos/administração & dosagem , Helmintíase/classificação , Helmintíase/parasitologia , Humanos , Índia , Estágios do Ciclo de Vida/efeitos dos fármacos , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/parasitologia , Wolbachia/efeitos dos fármacos , Wolbachia/fisiologia
11.
Benef Microbes ; 11(1): 79-89, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32066253

RESUMO

Alzheimer's disease (AD) is a progressive disease and one of the most common forms of neurodegenerative disorders. Emerging evidence is supporting the use of various strategies that modulate gut microbiota to exert neurological and psychological changes. This includes the utilisation of probiotics as a natural and dietary intervention for brain health. Here, we showed the potential AD-reversal effects of Lactobacillus probiotics through feeding to our Drosophila melanogaster AD model. The administration of Lactobacillus strains was able to rescue the rough eye phenotype (REP) seen in AD-induced Drosophila, with a more prominent effect observed upon the administration of Lactobacillus plantarum DR7 (DR7). Furthermore, we analysed the gut microbiota of the AD-induced Drosophila and found elevated levels of Wolbachia. The administration of DR7 restored the gut microbiota diversity of AD-induced Drosophila with a significant reduction in Wolbachia's relative abundance, accompanied by an increase of Stenotrophomonas and Acetobacter. Through functional predictive analyses, Wolbachia was predicted to be positively correlated with neurodegenerative disorders, such as Parkinson's, Huntington's and Alzheimer's diseases, while Stenotrophomonas was negatively correlated with these neurodegenerative disorders. Altogether, our data exhibited DR7's ability to ameliorate the AD effects in our AD-induced Drosophila. Thus, we propose that Wolbachia be used as a potential biomarker for AD.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus plantarum , Doenças Neurodegenerativas/microbiologia , Probióticos/administração & dosagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/microbiologia , Animais , Biomarcadores , Modelos Animais de Doenças , Drosophila melanogaster , Doenças Neurodegenerativas/tratamento farmacológico , Probióticos/farmacologia , Wolbachia/efeitos dos fármacos
12.
PLoS Negl Trop Dis ; 14(1): e0007957, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31986143

RESUMO

The elimination of filarial diseases such as onchocerciasis and lymphatic filariasis is hampered by the lack of a macrofilaricidal-adult worm killing-drug. In the present study, we tested the in vivo efficacy of AN11251, a boron-pleuromutilin that targets endosymbiotic Wolbachia bacteria from filarial nematodes and compared its efficacy to doxycycline and rifampicin. Doxycycline and rifampicin were previously shown to deplete Wolbachia endosymbionts leading to a permanent sterilization of the female adult filariae and adult worm death in human clinical studies. Twice-daily oral treatment of Litomosoides sigmodontis-infected mice with 200 mg/kg AN11251 for 10 days achieved a Wolbachia depletion > 99.9% in the adult worms, exceeding the Wolbachia reduction by 10-day treatments with bioequivalent human doses of doxycycline and a similar reduction as high-dose rifampicin (35 mg/kg). Wolbachia reductions of > 99% were also accomplished by 14 days of oral AN11251 at a lower twice-daily dose (50 mg/kg) or once-per-day 200 mg/kg AN11251 treatments. The combinations tested of AN11251 with doxycycline had no clear beneficial impact on Wolbachia depletion, achieving a > 97% Wolbachia reduction with 7 days of treatment. These results indicate that AN11251 is superior to doxycycline and comparable to high-dose rifampicin in the L. sigmodontis mouse model, allowing treatment regimens as short as 10-14 days. Therefore, AN11251 represents a promising pre-clinical candidate that was identified in the L. sigmodontis model, and could be further evaluated and developed as potential clinical candidate for human lymphatic filariasis and onchocerciasis.


Assuntos
Antibacterianos/farmacologia , Diterpenos/farmacologia , Filariose/tratamento farmacológico , Filarioidea/efeitos dos fármacos , Compostos Policíclicos/farmacologia , Wolbachia/efeitos dos fármacos , Animais , Boro , Doxiciclina/farmacologia , Feminino , Filariose/microbiologia , Filarioidea/microbiologia , Camundongos Endogâmicos BALB C , Rifampina/farmacologia , Simbiose , Pleuromutilinas
13.
Sci Rep ; 10(1): 63, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919396

RESUMO

Mosquitoes that carry Wolbachia endosymbionts may help control the spread of arboviral diseases, such as dengue, Zika and chikungunya. Wolbachia frequencies systematically increase only when the frequency-dependent advantage due to cytoplasmic incompatibility exceeds frequency-independent costs, which may be intrinsic to the Wolbachia and/or can be associated with the genetic background into which Wolbachia are introduced. Costs depend on field conditions such as the environmental pesticide load. Introduced mosquitoes need adequate protection against insecticides to ensure survival after release. We model how insecticide resistance of transinfected mosquitoes determines the success of local Wolbachia introductions and link our theoretical results to field data. Two Ae. aegypti laboratory strains carrying Wolbachia were released in an isolated district of Rio de Janeiro, Brazil: wMelBr (susceptible to pyrethroids) and wMelRio (resistant to pyrethroids). Our models elucidate why releases of the susceptible strain failed to result in Wolbachia establishment, while releases of the resistant strain led to Wolbachia transforming the native Ae. aegypti population. The results highlight the importance of matching insecticide resistance levels in release stocks to those in the target natural populations during Wolbachia deployment.


Assuntos
Aedes/microbiologia , Resistência a Inseticidas , Wolbachia/fisiologia , Animais , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/toxicidade , Modelos Biológicos , Dinâmica Populacional , Piretrinas/toxicidade , Simbiose , Wolbachia/efeitos dos fármacos , Wolbachia/isolamento & purificação
14.
Artigo em Inglês | MEDLINE | ID: mdl-31869759

RESUMO

The quinazolines CBR417 and CBR490 were previously shown to be potent anti-wolbachials that deplete Wolbachia endosymbionts of filarial nematodes and present promising pre-clinical candidates for human filarial diseases such as onchocerciasis. In the present study we tested both candidates in two models of chronic filarial infection, namely the Litomosoides sigmodontis and Brugia pahangi jird model and assessed their long-term effect on Wolbachia depletion, microfilariae counts and filarial embryogenesis 16-18 weeks after treatment initiation (wpt). Once per day (QD) oral treatment with CBR417 (50 mg/kg) for 4 days or twice per day (BID) with CBR490 (25 mg/kg) for 7 days during patent L. sigmodontis infection reduced the Wolbachia load by >99% and completely cleared peripheral microfilaremia from 10-14 wpt. Similarly, 7 days of QD treatments (40 mg/kg) with CBR417 or CBR490 cleared >99% of Wolbachia from B. pahangi and reduced peritoneal microfilariae counts by 93% in the case of CBR417 treatment. Transmission electron microscopy analysis indicated intensive damage to the B. pahangi ovaries following CBR417 treatment and in accordance filarial embryogenesis was inhibited in both models after CBR417 or CBR490 treatment. Suboptimal treatment regimens of CBR417 or CBR490 did not lead to a maintained reduction of the microfilariae and Wolbachia load. In conclusion, CBR417 or CBR490 are pre-clinical candidates for filarial diseases, which achieve long-term clearance of Wolbachia endosymbionts of filarial nematodes, inhibit filarial embryogenesis and clear microfilaremia with treatments as short as 7 days.


Assuntos
Antibacterianos/uso terapêutico , Filariose/tratamento farmacológico , Oncocercose/tratamento farmacológico , Quinazolinas/uso terapêutico , Wolbachia/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Brugia pahangi/efeitos dos fármacos , Feminino , Filariose/microbiologia , Filarioidea/efeitos dos fármacos , Gerbillinae/microbiologia , Gerbillinae/parasitologia , Microfilárias/efeitos dos fármacos , Quinazolinas/administração & dosagem , Simbiose/efeitos dos fármacos
15.
Indian J Med Res ; 149(6): 706-714, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31496523

RESUMO

Onchocerciasis and lymphatic filariasis (LF) are human filarial diseases belonging to the group of neglected tropical diseases, leading to permanent and long-term disability in infected individuals in the endemic countries such as Africa and India. Microfilaricidal drugs such as ivermectin and albendazole have been used as the standard therapy in filariasis, although their efficacy in eliminating the diseases is not fully established. Anti-Wolbachia therapy employs antibiotics and is a promising approach showing potent macrofilaricidal activity and also prevents embryogenesis. This has translated to clinical benefits resulting in successful eradication of microfilarial burden, thus averting the risk of adverse events from target species as well as those due to co-infection with loiasis. Doxycycline shows potential as an anti-Wolbachia treatment, leading to the death of adult parasitic worms. It is readily available, cheap and safe to use in adult non-pregnant patients. Besides doxycycline, several other potential antibiotics are also being investigated for the treatment of LF and onchocerciasis. This review aims to discuss and summarise recent developments in the use of anti-Wolbachia drugs to treat onchocerciasis and LF.


Assuntos
Filariose Linfática/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico , Oncocercose/tratamento farmacológico , Wolbachia/patogenicidade , Adulto , Albendazol/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Doxiciclina/uso terapêutico , Quimioterapia Combinada , Filariose Linfática/epidemiologia , Filariose Linfática/microbiologia , Humanos , Índia/epidemiologia , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/microbiologia , Oncocercose/epidemiologia , Oncocercose/microbiologia , Medicina Tropical , Wolbachia/efeitos dos fármacos
16.
Curr Microbiol ; 76(11): 1306-1312, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471686

RESUMO

Wolbachia are the most common symbionts in arthropods; antibiotic treatment for eliminating the symbionts from their host is necessary to investigate the functions. Tetracycline antibiotics are widely used to remove endosymbiont Wolbachia from insect hosts. However, very little has been known on the effects of tetracycline on population size of Wolbachia in small brown planthopper (SBPH), Laodelphax striatellus (Fallén), an important insect pest of rice in Asia. Here, we investigated the dynamics of Wolbachia population density in females and males of L. striatellus by real-time fluorescent quantitative PCR method. The Wolbachia density in females and males of L. striatellus all declined sharply after treatment with 2 mg/mL tetracycline for one generation, and continued to decrease to a level which could not be detected by both qPCR and diagnostic PCR after treated for another generation, then maintained at 0 in the following three generations with continuous antibiotic treatment. Wolbachia infection did not recover in L. striatellus after stopping tetracycline treatment for ten generations. This is the first report to precisely monitor the population dynamics of Wolbachia in L. striatellus during successive tetracycline treatment and after that. The results provide a useful method for evaluating the efficiency of artificial operation of endosymbionts.


Assuntos
Antibacterianos/farmacologia , Hemípteros/microbiologia , Tetraciclina/farmacologia , Wolbachia/efeitos dos fármacos , Animais , Biodiversidade , Feminino , Masculino , Wolbachia/crescimento & desenvolvimento
17.
PLoS Negl Trop Dis ; 13(8): e0007636, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31381563

RESUMO

Depletion of Wolbachia endosymbionts of human pathogenic filariae using 4-6 weeks of doxycycline treatment can lead to permanent sterilization and adult filarial death. We investigated the anti-Wolbachia drug candidate ABBV-4083 in the Litomosoides sigmodontis rodent model to determine Wolbachia depletion kinetics with different regimens. Wolbachia reduction occurred in mice as early as 3 days after the initiation of ABBV-4083 treatment and continued throughout a 10-day treatment period. Importantly, Wolbachia levels continued to decline after a 5-day-treatment from 91.5% to 99.9% during a 3-week washout period. In jirds, two weeks of ABBV-4083 treatment (100mg/kg once-per-day) caused a >99.9% Wolbachia depletion in female adult worms, and the kinetics of Wolbachia depletion were recapitulated in peripheral blood microfilariae. Similar to Wolbachia depletion, inhibition of embryogenesis was time-dependent in ABBV-4083-treated jirds, leading to a complete lack of late embryonic stages (stretched microfilariae) and lack of peripheral microfilariae in 5/6 ABBV-4083-treated jirds by 14 weeks after treatment. Twice daily treatment in comparison to once daily treatment with ABBV-4083 did not significantly improve Wolbachia depletion. Moreover, up to 4 nonconsecutive daily treatments within a 14-dose regimen did not significantly erode Wolbachia depletion. Within the limitations of an animal model that does not fully recapitulate human filarial disease, our studies suggest that Wolbachia depletion should be assessed clinically no earlier than 3-4 weeks after the end of treatment, and that Wolbachia depletion in microfilariae may be a viable surrogate marker for the depletion within adult worms. Furthermore, strict daily adherence to the dosing regimen with anti-Wolbachia candidates may not be required, provided that the full regimen is subsequently completed.


Assuntos
Antibacterianos/farmacologia , Filarioidea/microbiologia , Microfilárias/microbiologia , Wolbachia/efeitos dos fármacos , Wolbachia/fisiologia , Animais , Doxiciclina/farmacologia , Feminino , Filariose , Filarioidea/efeitos dos fármacos , Gerbillinae , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Microfilárias/efeitos dos fármacos , Microfilárias/embriologia , Modelos Animais
18.
Sci Transl Med ; 11(491)2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068442

RESUMO

Parasitic filarial nematodes cause debilitating infections in people in resource-limited countries. A clinically validated approach to eliminating worms uses a 4- to 6-week course of doxycycline that targets Wolbachia, a bacterial endosymbiont required for worm viability and reproduction. However, the prolonged length of therapy and contraindication in children and pregnant women have slowed adoption of this treatment. Here, we describe discovery and optimization of quinazolines CBR417 and CBR490 that, with a single dose, achieve >99% elimination of Wolbachia in the in vivo Litomosoides sigmodontis filarial infection model. The efficacious quinazoline series was identified by pairing a primary cell-based high-content imaging screen with an orthogonal ex vivo validation assay to rapidly quantify Wolbachia elimination in Brugia pahangi filarial ovaries. We screened 300,368 small molecules in the primary assay and identified 288 potent and selective hits. Of 134 primary hits tested, only 23.9% were active in the worm-based validation assay, 8 of which contained a quinazoline heterocycle core. Medicinal chemistry optimization generated quinazolines with excellent pharmacokinetic profiles in mice. Potent antiwolbachial activity was confirmed in L. sigmodontis, Brugia malayi, and Onchocerca ochengi in vivo preclinical models of filarial disease and in vitro selectivity against Loa loa (a safety concern in endemic areas). The favorable efficacy and in vitro safety profiles of CBR490 and CBR417 further support these as clinical candidates for treatment of filarial infections.


Assuntos
Antibacterianos/uso terapêutico , Descoberta de Drogas , Filariose/tratamento farmacológico , Filariose/parasitologia , Filarioidea/fisiologia , Quinazolinas/uso terapêutico , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Modelos Animais de Doenças , Feminino , Filarioidea/efeitos dos fármacos , Filarioidea/microbiologia , Ensaios de Triagem em Larga Escala , Camundongos , Fenótipo , Quinazolinas/química , Quinazolinas/farmacologia , Bibliotecas de Moléculas Pequenas , Wolbachia/efeitos dos fármacos
19.
ACS Chem Biol ; 14(6): 1174-1182, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31074963

RESUMO

Lymphatic filariasis and onchocerciasis diseases caused by filarial parasite infections can lead to profound disability and affect millions of people worldwide. Standard mass drug administration campaigns require repetitive delivery of anthelmintics for years to temporarily block parasite transmission but do not cure infection because long-lived adult worms survive the treatment. Depletion of the endosymbiont Wolbachia, present in most filarial nematode species, results in death of adult worms and therefore represents a promising target for the treatment of filariasis. Here, we used a high-content imaging assay to screen the pure compounds collection of the natural products library at The Scripps Research Institute for anti- Wolbachia activity, leading to the identification of kirromycin B (1) as a lead candidate. Two additional congeners, kirromycin (2) and kirromycin C (3), were isolated and characterized from the same producing strain Streptomyces sp. CB00686. All three kirromycin congeners depleted Wolbachia in LDW1 Drosophila cells in vitro with half-maximal inhibitory concentrations (IC50) in nanomolar range, while doxycycline, a registered drug with anti- Wolbachia activity, showed lower activity with an IC50 of 152 ± 55 nM. Furthermore, 1-3 eliminated the Wolbachia endosymbiont in Brugia pahangi ovaries ex vivo with higher efficiency (65%-90%) at 1 µM than that of doxycycline (50%). No cytotoxicity against HEK293T and HepG2 mammalian cells was observed with 1-3 at the highest concentration (40 µM) used in the assay. These results suggest kirromycin is an effective lead scaffold, further exploration of which could potentially lead to the development of novel treatments for filarial nematode infections.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Descoberta de Drogas , Streptomyces/química , Wolbachia/efeitos dos fármacos , Animais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Drosophila/microbiologia , Células HEK293 , Humanos , Piridonas/química , Piridonas/farmacologia
20.
SLAS Discov ; 24(5): 537-547, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30958712

RESUMO

The Anti- Wolbachia (A·WOL) consortium at the Liverpool School of Tropical Medicine (LSTM) has partnered with the Global High-Throughput Screening (HTS) Centre at AstraZeneca to create the first anthelmintic HTS for neglected tropical diseases (NTDs). The A·WOL consortium aims to identify novel macrofilaricidal drugs targeting the essential bacterial symbiont ( Wolbachia) of the filarial nematodes causing onchocerciasis and lymphatic filariasis. Working in collaboration, we have validated a robust high-throughput assay capable of identifying compounds that selectively kill Wolbachia over the host insect cell. We describe the development and validation process of this complex, phenotypic high-throughput assay and provide an overview of the primary outputs from screening the AstraZeneca library of 1.3 million compounds.


Assuntos
Antibacterianos/farmacologia , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Wolbachia/efeitos dos fármacos , Antibacterianos/química , Técnicas de Cultura de Células/métodos , Descoberta de Drogas , Filariose Linfática/tratamento farmacológico , Humanos , Citometria por Imagem , Oncocercose/tratamento farmacológico , Wolbachia/patogenicidade , Wolbachia/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...