Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
J Math Biol ; 88(6): 72, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678110

RESUMO

In this work, we formulate a random Wolbachia invasion model incorporating the effects of imperfect maternal transmission and incomplete cytoplasmic incompatibility (CI). Under constant environments, we obtain the following results: Firstly, the complete invasion equilibrium of Wolbachia does not exist, and thus the population replacement is not achievable in the case of imperfect maternal transmission; Secondly, imperfect maternal transmission or incomplete CI may obliterate bistability and backward bifurcation, which leads to the failure of Wolbachia invasion, no matter how many infected mosquitoes would be released; Thirdly, the threshold number of the infected mosquitoes to be released would increase with the decrease of the maternal transmission rate or the intensity of CI effect. In random environments, we investigate in detail the Wolbachia invasion dynamics of the random mosquito population model and establish the initial release threshold of infected mosquitoes for successful invasion of Wolbachia into the wild mosquito population. In particular, the existence and stability of invariant probability measures for the establishment and extinction of Wolbachia are determined.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Mosquitos Vetores , Wolbachia , Wolbachia/fisiologia , Wolbachia/patogenicidade , Animais , Feminino , Mosquitos Vetores/microbiologia , Dinâmica Populacional/estatística & dados numéricos , Citoplasma/microbiologia , Culicidae/microbiologia , Masculino , Simulação por Computador , Herança Materna
2.
mBio ; 12(5): e0292320, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34488458

RESUMO

Wolbachia is a maternally transmitted bacterium that is widespread in arthropods and filarial nematodes and confers strong antiviral protection in Drosophila melanogaster and other arthropods. Wolbachia-transinfected Aedes aegypti mosquitoes are currently being deployed to fight transmission of dengue and Zika viruses. However, the mechanism of antiviral protection and the factors influencing are still not fully understood. Here, we show that temperature modulates Wolbachia-conferred protection in Drosophila melanogaster. Temperature after infection directly impacts Drosophila C virus (DCV) replication and modulates Wolbachia protection. At higher temperatures, viruses proliferate more and are more lethal, while Wolbachia confers lower protection. Strikingly, host developmental temperature is a determinant of Wolbachia-conferred antiviral protection. While there is strong protection when flies develop from egg to adult at 25°C, the protection is highly reduced or abolished when flies develop at 18°C. However, Wolbachia-induced changes during development are not sufficient to limit virus-induced mortality, as Wolbachia is still required to be present in adults at the time of infection. This developmental effect is general, since it was present in different host genotypes, Wolbachia variants, and upon infection with different viruses. Overall, we show that Wolbachia-conferred antiviral protection is temperature dependent, being present or absent depending on the environmental conditions. This interaction likely impacts Wolbachia-host interactions in nature and, as a result, frequencies of host and symbionts in different climates. Dependence of Wolbachia-mediated pathogen blocking on developmental temperature could be used to dissect the mechanistic bases of protection and influence the deployment of Wolbachia to prevent transmission of arboviruses. IMPORTANCE Insects are often infected with beneficial intracellular bacteria. The bacterium Wolbachia is extremely common in insects and can protect them from pathogenic viruses. This effect is being used to prevent transmission of dengue and Zika viruses by Wolbachia-infected mosquitoes. To understand the biology of insects in the wild, we need to discover which factors affect Wolbachia-conferred antiviral protection. Here, we show that the temperature at which insects develop from eggs to adults can determine the presence or absence of antiviral protection. The environment, therefore, strongly influences this insect-bacterium interaction. Our work may help to provide insights into the mechanism of viral blocking by Wolbachia, deepen our understanding of the geographical distribution of host and symbiont, and incentivize further research on the temperature dependence of Wolbachia-conferred protection for control of mosquito-borne disease.


Assuntos
Dicistroviridae/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Temperatura , Wolbachia/patogenicidade , Animais , Drosophila melanogaster/virologia , Feminino , Masculino , Carga Viral , Viroses/prevenção & controle , Replicação Viral
3.
Genetics ; 217(1): 1-13, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33683351

RESUMO

Wolbachia are maternally transmitted, intracellular bacteria that can often selfishly spread through arthropod populations via cytoplasmic incompatibility (CI). CI manifests as embryonic death when males expressing prophage WO genes cifA and cifB mate with uninfected females or females harboring an incompatible Wolbachia strain. Females with a compatible cifA-expressing strain rescue CI. Thus, cif-mediated CI confers a relative fitness advantage to females transmitting Wolbachia. However, whether cif sequence variation underpins incompatibilities between Wolbachia strains and variation in CI penetrance remains unknown. Here, we engineer Drosophila melanogaster to transgenically express cognate and non-cognate cif homologs and assess their CI and rescue capability. Cognate expression revealed that cifA;B native to D. melanogaster causes strong CI, and cognate cifA;B homologs from two other Drosophila-associated Wolbachia cause weak transgenic CI, including the first demonstration of phylogenetic type 2 cifA;B CI. Intriguingly, non-cognate expression of cifA and cifB alleles from different strains revealed that cifA homologs generally contribute to strong transgenic CI and interchangeable rescue despite their evolutionary divergence, and cifB genetic divergence contributes to weak or no transgenic CI. Finally, we find that a type 1 cifA can rescue CI caused by a genetically divergent type 2 cifA;B in a manner consistent with unidirectional incompatibility. By genetically dissecting individual CI functions for type 1 and 2 cifA and cifB, this work illuminates new relationships between cif genotype and CI phenotype. We discuss the relevance of these findings to CI's genetic basis, phenotypic variation patterns, and mechanism.


Assuntos
Variação Genética , Fenótipo , Prófagos/genética , Proteínas Virais/genética , Animais , Drosophila melanogaster , Feminino , Aptidão Genética , Infertilidade/microbiologia , Masculino , Espermatozoides/microbiologia , Wolbachia/patogenicidade , Wolbachia/virologia
4.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563832

RESUMO

Wolbachia is a maternally transmitted bacterium that manipulates arthropod and nematode biology in myriad ways. The Wolbachia strain colonizing Drosophila melanogaster creates sperm-egg incompatibilities and protects its host against RNA viruses, making it a promising tool for vector control. Despite successful trials using Wolbachia-transfected mosquitoes for dengue control, knowledge of how Wolbachia and viruses jointly affect insect biology remains limited. Using the Drosophila melanogaster model, transcriptomics and gene expression network analyses revealed pathways with altered expression and splicing due to Wolbachia colonization and virus infection. Included are metabolic pathways previously unknown to be important for Wolbachia-host interactions. Additionally, Wolbachia-colonized flies exhibit a dampened transcriptomic response to virus infection, consistent with early blocking of virus replication. Finally, using Drosophila genetics, we show that Wolbachia and expression of nucleotide metabolism genes have interactive effects on virus replication. Understanding the mechanisms of pathogen blocking will contribute to the effective development of Wolbachia-mediated vector control programs.IMPORTANCE Recently developed arbovirus control strategies leverage the symbiotic bacterium Wolbachia, which spreads in insect populations and blocks viruses from replicating. While this strategy has been successful, details of how this "pathogen blocking" works are limited. Here, we use a combination of virus infections, fly genetics, and transcriptomics to show that Wolbachia and virus interact at host nucleotide metabolism pathways.


Assuntos
Drosophila melanogaster/genética , Redes e Vias Metabólicas , Interações Microbianas , Nucleotídeos/metabolismo , Transcriptoma , Vírus/patogenicidade , Wolbachia/patogenicidade , Animais , Drosophila melanogaster/microbiologia , Drosophila melanogaster/virologia , Feminino , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Masculino , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Nucleotídeos/genética , Simbiose , Viroses/virologia , Replicação Viral
5.
Sci Rep ; 11(1): 3019, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542272

RESUMO

The bacterium Wolbachia infects many insect species and spreads by diverse vertical and horizontal means. As co-inherited organisms, these bacteria often cause problems in mitochondrial phylogeny inference. The phylogenetic relationships of many closely related Palaearctic blue butterflies (Lepidoptera: Lycaenidae: Polyommatinae) are ambiguous. We considered the patterns of Wolbachia infection and mitochondrial diversity in two systems: Aricia agestis/Aricia artaxerxes and the Pseudophilotes baton species complex. We sampled butterflies across their distribution ranges and sequenced one butterfly mitochondrial gene and two Wolbachia genes. Both butterfly systems had uninfected and infected populations, and harboured several Wolbachia strains. Wolbachia was highly prevalent in A. artaxerxes and the host's mitochondrial structure was shallow, in contrast to A. agestis. Similar bacterial alleles infected both Aricia species from nearby sites, pointing to a possible horizontal transfer. Mitochondrial history of the P. baton species complex mirrored its Wolbachia infection and not the taxonomical division. Pseudophilotes baton and P. vicrama formed a hybrid zone in Europe. Wolbachia could obscure mitochondrial history, but knowledge on the infection helps us to understand the observed patterns. Testing for Wolbachia should be routine in mitochondrial DNA studies.


Assuntos
Borboletas/genética , Mitocôndrias/ultraestrutura , Filogenia , Wolbachia/genética , Animais , Borboletas/microbiologia , Borboletas/ultraestrutura , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/microbiologia , Wolbachia/patogenicidade
6.
Parasit Vectors ; 14(1): 31, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413518

RESUMO

Biting midges of the genus Culicoides transmit disease-causing agents resulting in a significant economic impact on livestock industries in many parts of the world. Localized control efforts, such as removal of larval habitat or pesticide application, can be logistically difficult, expensive and ineffective if not instituted and maintained properly. With these limitations, a population-level approach to the management of Culicoides midges should be investigated as a means to replace or supplement existing control strategies. Next-generation control methods such as Wolbachia- and genetic-based population suppression and replacement are being investigated in several vector species. Here we assess the feasibility and applicability of these approaches for use against biting midges. We also discuss the technical and logistical hurdles needing to be addressed for each method to be successful, as well as emphasize the importance of addressing community engagement and involving stakeholders in the investigation and development of these approaches.


Assuntos
Ceratopogonidae/parasitologia , Controle de Insetos/métodos , Insetos Vetores/parasitologia , Animais , Ceratopogonidae/genética , Ceratopogonidae/microbiologia , Ecossistema , Insetos Vetores/genética , Insetos Vetores/microbiologia , Larva/genética , Larva/microbiologia , Larva/parasitologia , Gado/parasitologia , Wolbachia/patogenicidade
7.
Curr Biol ; 30(24): 4837-4845.e5, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33035486

RESUMO

Progress has been made in developing the maternally inherited endosymbiotic bacterium Wolbachia as a tool for protecting humans from mosquito-borne diseases. In contrast, Wolbachia-based approaches have not yet been developed for the protection of plants from insect pests and their associated diseases, with a major challenge being the establishment of artificial Wolbachia infections expressing desired characteristics in the hemipterans that transmit the majority of plant viruses. Here, we report stable introduction of Wolbachia into the brown planthopper, Nilaparvata lugens, the most destructive rice pest that annually destroys millions of hectares of staple crops. The Wolbachia strain wStri from the small brown planthopper, Laodelphax striatellus, was transferred to this new host, where it showed high levels of cytoplasmic incompatibility, enabling rapid invasion of laboratory populations. Furthermore, wStri inhibited infection and transmission of Rice ragged stunt virus and mitigated virus-induced symptoms in rice plants, opening up the development of Wolbachia-based strategies against major agricultural pests and their transmitted pathogens. VIDEO ABSTRACT.


Assuntos
Proteção de Cultivos/métodos , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Oryza/virologia , Wolbachia/patogenicidade , Animais , Estudos de Viabilidade , Hemípteros/virologia , Oryza/parasitologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Reoviridae/patogenicidade
8.
Genetics ; 216(2): 263-268, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33023928

RESUMO

The Elizabeth W. Jones Award for Excellence in Education recognizes an individual who has had a significant impact on genetics education at any education level. Seth R. Bordenstein, Ph.D., Centennial Professor of Biological Sciences at Vanderbilt University and Founding Director of the Vanderbilt Microbiome Initiative, is the 2020 recipient in recognition of his cofounding, developing, and expanding Discover the Microbes Within! The Wolbachia Project.


Assuntos
Ciência do Cidadão/métodos , Genética/educação , Microbiota , Wolbachia/genética , Animais , Distinções e Prêmios , Ciência do Cidadão/organização & administração , Técnicas Genéticas , Genética/organização & administração , Humanos , Wolbachia/patogenicidade
9.
Commun Biol ; 3(1): 518, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948809

RESUMO

Competition between viruses and Wolbachia for host lipids is a proposed mechanism of Wolbachia-mediated virus blocking in insects. Yet, the metabolomic interaction between virus and symbiont within the mosquito has not been clearly defined. We compare the lipid profiles of Aedes aegypti mosquitoes bearing mono- or dual-infections of the Wolbachia wMel strain and dengue virus serotype 3 (DENV3). We found metabolic signatures of infection-induced intracellular events but little evidence to support direct competition between Wolbachia and virus for host lipids. Lipid profiles of dual-infected mosquitoes resemble those of DENV3 mono-infected mosquitoes, suggesting virus-driven modulation dominates over that of Wolbachia. Interestingly, knockdown of key metabolic enzymes suggests cardiolipins are host factors for DENV3 and Wolbachia replication. These findings define the Wolbachia-DENV3 metabolic interaction as indirectly antagonistic, rather than directly competitive, and reveal new research avenues with respect to mosquito × virus interactions at the molecular level.


Assuntos
Aedes/metabolismo , Vírus da Dengue/genética , Metabolismo dos Lipídeos/genética , Wolbachia/genética , Aedes/microbiologia , Aedes/patogenicidade , Aedes/virologia , Animais , Dengue/genética , Dengue/metabolismo , Dengue/microbiologia , Dengue/virologia , Vírus da Dengue/metabolismo , Vírus da Dengue/patogenicidade , Humanos , Insetos Vetores/genética , Insetos Vetores/microbiologia , Insetos Vetores/virologia , Controle Biológico de Vetores , Replicação Viral/genética , Wolbachia/metabolismo , Wolbachia/patogenicidade
10.
Parasit Vectors ; 13(1): 429, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831122

RESUMO

BACKGROUND: In the inner city of Yogyakarta, Indonesia, insecticide resistance is expected in the main dengue vector, Aedes aegypti, because of the intensive local application of pyrethroid insecticides. However, detailed information about the nature of resistance in this species is required to assist the release of Wolbachia mosquitoes in a dengue control program, so that we can ensure that insecticide resistance in the strain of Ae. aegypti being released matches that of the background population. METHODS: High-resolution melt genotyping was used to screen for kdr mutations associated with pyrethroid resistance in the voltage-sensitive sodium channel (VSSC) gene in Ae. aegypti of some areas in the inner city of Yogyakarta. RESULTS: The results show that the V1016G mutation predominated, with individuals homozygous for the 1016G allele at a frequency of 82.1% and the mutant allele G at a frequency of 92%. Two patterns of co-occurrence of mutations were detected in this study, homozygous individuals V1016G/S989P; and heterozygous individuals V1016G/F1534C/S989P. We found the simultaneous occurrence of kdr mutations V1016G and F1534C at all collection sites, but not within individual mosquitoes. Homozygous mutants at locus 1016 were homozygous wild-type at locus 1534 and vice versa, and heterozygous V1016G were also heterozygous for F1534C. The most common tri-locus genotype co-occurrences were homozygous mutant 1016GG and homozygous wild-type FF1534, combined with homozygous mutant 989PP (GG/FF/PP) at a frequency of 38.28%. CONCLUSIONS: Given the relatively small differences in frequency of resistance alleles across the city area, locality variations in resistance should have minor implications for the success of Wolbachia mosquito trials being undertaken in the Yogyakarta area.


Assuntos
Aedes , Controle de Mosquitos , Canais de Sódio Disparados por Voltagem/genética , Aedes/efeitos dos fármacos , Aedes/genética , Aedes/microbiologia , Animais , Agentes de Controle Biológico , Dengue/transmissão , Genótipo , Técnicas de Genotipagem , Indonésia , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/microbiologia , Mutação , Taxa de Mutação , Controle Biológico de Vetores , Piretrinas/farmacologia , Wolbachia/patogenicidade
11.
BMC Med ; 18(1): 186, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641039

RESUMO

BACKGROUND: Release of virus-blocking Wolbachia-infected mosquitoes is an emerging disease control strategy that aims to control dengue and other arboviral infections. Early entomological data and modelling analyses have suggested promising outcomes, and wMel Wolbachia releases are now ongoing or planned in 12 countries. To help inform government, donor, or philanthropist decisions on scale-up beyond single city releases, we assessed this technology's cost-effectiveness under alternative programmatic options. METHODS: Using costing data from existing Wolbachia releases, previous dynamic model-based estimates of Wolbachia effectiveness, and a spatially explicit model of release and surveillance requirements, we predicted the costs and effectiveness of the ongoing programme in Yogyakarta City and three new hypothetical programmes in Yogyakarta Special Autonomous Region, Jakarta, and Bali. RESULTS: We predicted Wolbachia to be a highly cost-effective intervention when deployed in high-density urban areas with gross cost-effectiveness below $1500 per DALY averted. When offsets from the health system and societal perspective were included, such programmes even became cost saving over 10-year time horizons with favourable benefit-cost ratios of 1.35 to 3.40. Sequencing Wolbachia releases over 10 years could reduce programme costs by approximately 38% compared to simultaneous releases everywhere, but also delays the benefits. Even if unexpected challenges occurred during deployment, such as emergence of resistance in the medium-term or low effective coverage, Wolbachia would remain a cost-saving intervention. CONCLUSIONS: Wolbachia releases in high-density urban areas are expected to be highly cost-effective and could potentially be the first cost-saving intervention for dengue. Sites with strong public health infrastructure, fiscal capacity, and community support should be prioritised.


Assuntos
Análise Custo-Benefício/métodos , Dengue/economia , Dengue/terapia , Wolbachia/patogenicidade , Animais , Dengue/epidemiologia , Humanos , Indonésia/epidemiologia
12.
Genetics ; 215(4): 1117-1132, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32546497

RESUMO

Maternally transmitted Wolbachia bacteria infect about half of all insect species. They usually show imperfect maternal transmission and often produce cytoplasmic incompatibility (CI). Irrespective of CI, Wolbachia frequencies tend to increase when rare only if they benefit host fitness. Several Wolbachia, including wMel that infects Drosophila melanogaster, cause weak or no CI and persist at intermediate frequencies. On the island of São Tomé off West Africa, the frequencies of wMel-like Wolbachia infecting Drosophila yakuba (wYak) and Drosophila santomea (wSan) fluctuate, and the contributions of imperfect maternal transmission, fitness effects, and CI to these fluctuations are unknown. We demonstrate spatial variation in wYak frequency and transmission on São Tomé. Concurrent field estimates of imperfect maternal transmission do not predict spatial variation in wYak frequencies, which are highest at high altitudes where maternal transmission is the most imperfect. Genomic and genetic analyses provide little support for D. yakuba effects on wYak transmission. Instead, rearing at cool temperatures reduces wYak titer and increases imperfect transmission to levels observed on São Tomé. Using mathematical models of Wolbachia frequency dynamics and equilibria, we infer that temporally variable imperfect transmission or spatially variable effects on host fitness and reproduction are required to explain wYak frequencies. In contrast, spatially stable wSan frequencies are plausibly explained by imperfect transmission, modest fitness effects, and weak CI. Our results provide insight into causes of wMel-like frequency variation in divergent hosts. Understanding this variation is crucial to explain Wolbachia spread and to improve wMel biocontrol of human disease in transinfected mosquito systems.


Assuntos
Drosophila/microbiologia , Exposição Ambiental/análise , Interação Gene-Ambiente , Infecções por Bactérias Gram-Negativas/transmissão , Interações Hospedeiro-Patógeno , Wolbachia/patogenicidade , Animais , Drosophila/classificação , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Feminino , Infecções por Bactérias Gram-Negativas/microbiologia , Masculino
13.
PLoS Negl Trop Dis ; 14(4): e0008204, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32243448

RESUMO

Wolbachia are being used to reduce dengue transmission by Aedes aegypti mosquitoes around the world. To date releases have mostly involved Wolbachia strains with limited fitness effects but strains with larger fitness costs could be used to suppress mosquito populations. However, such infections are expected to evolve towards decreased deleterious effects. Here we investigate potential evolutionary changes in the wMelPop infection transferred from Drosophila melanogaster to Aedes aegypti more than ten years (~120 generations) ago. We show that most deleterious effects of this infection have persisted despite strong selection to ameliorate them. The wMelPop-PGYP infection is difficult to maintain in laboratory colonies, likely due to the persistent deleterious effects coupled with occasional maternal transmission leakage. Furthermore, female mosquitoes can be scored incorrectly as infected due to transmission of Wolbachia through mating. Infection loss in colonies was not associated with evolutionary changes in the nuclear background. These findings suggest that Wolbachia transinfections with deleterious effects may have stable phenotypes which could ensure their long-term effectiveness if released in natural populations to reduce population size.


Assuntos
Aedes/microbiologia , Evolução Molecular , Mosquitos Vetores/microbiologia , Controle Biológico de Vetores/métodos , Wolbachia/fisiologia , Animais , Dengue/prevenção & controle , Drosophila melanogaster , Feminino , Interações entre Hospedeiro e Microrganismos , Modelos Lineares , Masculino , Controle de Mosquitos , Dinâmica Populacional , Wolbachia/patogenicidade
14.
Mol Genet Genomics ; 295(4): 891-909, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32189066

RESUMO

Wolbachia is an obligate intracellular Gram-negative alpha-proteobacterium that has diverse effects on reproduction of arthropod hosts, including cytoplasmic incompatibility, male killing, feminization, and parthenogenesis. Some of these effects have important potential for control of insect pests, including mosquitoes that vector pathogens of humans. In mosquitoes, and in most other arthropods, elimination of Wolbachia by antibiotic treatment has no effect on host survival and reverses the Wolbachia-associated phenotype. Elimination of Wolbachia strain wFol, which enables parthenogenetic reproduction of the Collembolan, Folsomia candida, would result in population extinction. However, F. candida adults remain viable and resume reproduction when antibiotics are removed, suggesting that wFol survives antibiotic treatment in a quiescent persister state similar to that induced by chromosomally encoded toxin-antitoxin (TA) modules in free-living bacteria. Computational approaches were used to document the presence of antitoxin genes upstream of Wolbachia RelE/ParE, Fic, and AbiEii toxin genes. Moreover, this analysis revealed that Wolbachia RatA toxin is encoded by a single copy gene associated with an ssrS noncoding RNA gene. Documentation of potentially functional TA modules expands our understanding of the metabolic capabilities of Wolbachia, and provides an explanation for variable and sometimes contradictory results of antibiotic treatments. The presence of chromosomal TA modules in Wolbachia genomes suggests that wFol, and potentially other strains of Wolbachia, can enter a quiescent persister state.


Assuntos
Partenogênese/genética , Reprodução/genética , Sistemas Toxina-Antitoxina/genética , Wolbachia/genética , Animais , Cromossomos Bacterianos/genética , Culicidae/microbiologia , DNA Topoisomerase IV/genética , Genoma Bacteriano/genética , Humanos , Masculino , Controle de Pragas , Simbiose/genética , Wolbachia/patogenicidade
15.
Curr Opin Insect Sci ; 39: 6-13, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32078985

RESUMO

Research on the connections between gut microbes and the neurophysiology and behavior of their animal hosts has grown exponentially in just a few years. Most studies have focused on mammalian models as their relevance to human health is widely established. However, evidence is accumulating that insect behavior may be governed by molecular mechanisms that are partly homologous to those of mammals, and therefore relevant for the understanding of their behavioral dysfunctions. Social insects in particular may provide experimentally amenable models to disentangle the contributions of individual bacterial symbionts to the gut microbiota - brain axis. In this review, we summarize findings from recent research on the neurological and behavioral effects of the gut microbiota of insects and propose an integrated approach to unravel the extended behavioral phenotypes of gut microbes in the honey bee.


Assuntos
Abelhas/microbiologia , Encéfalo , Microbioma Gastrointestinal , Insetos/microbiologia , Animais , Comportamento , Encéfalo/microbiologia , Encéfalo/fisiologia , Modelos Animais de Doenças , Drosophila/microbiologia , Interações entre Hospedeiro e Microrganismos , Hypocreales/patogenicidade , Transtornos Mentais/microbiologia , Neurofisiologia , Simbiose , Wolbachia/patogenicidade
16.
BMC Biotechnol ; 19(Suppl 2): 96, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31847836

RESUMO

BACKGROUND: Wolbachia pipientis is a widespread, obligatory intracellular and maternally inherited bacterium, that induces a wide range of reproductive alterations to its hosts. Cytoplasmic Incompatibility (CI) is causing embryonic lethality, the most common of them. Despite that Wolbachia-borne sterility has been proposed as an environmental friendly pest control method (Incompatible Insect Technique, IIT) since 1970s, the fact that Wolbachia modifies important fitness components of its hosts sets severe barriers to IIT implementation. Mass rearing of Mediterranean fruit fly, Ceratitis capitata (medfly), is highly optimized given that this pest is a model species regarding the implementation of another sterility based pest control method, the Sterile Insect Technique (SIT). We used the medfly-Wolbachia symbiotic association, as a model system, to study the effect of two different Wolbachia strains, on the life history traits of 2 C. capitata lines with different genomic background. RESULTS: Wolbachia effects are regulated by both C. capitata genetic background and the Wolbachia strain. Wolbachia infection reduces fertility rates in both C. capitata genetic backgrounds and shortens the pre-pupa developmental duration in the GSS strain. On the other hand, regardless of the strain of Wolbachia (wCer2, wCer4) infection does not affect either the sex ratio or the longevity of adults. wCer4 infection imposed a reduction in females' fecundity but wCer2 did not. Male mating competitiveness, adults flight ability and longevity under water and food deprivation were affected by both the genetic background of medfly and the strain of Wolbachia (genotype by genotype interaction). CONCLUSION: Wolbachia infection could alter important life history traits of mass-reared C. capitata lines and therefore the response of each genotype on the Wolbachia infection should be considered toward ensuring the productivity of the Wolbachia-infected insects under mass-rearing conditions.


Assuntos
Infecções por Anaplasmataceae/veterinária , Ceratitis capitata/fisiologia , Wolbachia/patogenicidade , Animais , Ceratitis capitata/classificação , Ceratitis capitata/genética , Ceratitis capitata/microbiologia , Feminino , Fertilidade , Genótipo , Masculino , Comportamento Sexual Animal , Simbiose , Wolbachia/classificação , Wolbachia/genética
17.
PLoS One ; 14(11): e0225321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31747432

RESUMO

With Wolbachia-based arbovirus control programs being scaled and operationalised around the world, cost effective and reliable detection of Wolbachia in field samples and laboratory stocks is essential for quality control. Here we validate a modified loop-mediated isothermal amplification (LAMP) assay for routine scoring of Wolbachia in mosquitoes from laboratory cultures and the field, applicable to any setting. We show that this assay is a rapid and robust method for highly sensitive and specific detection of wAlbB Wolbachia infection within Aedes aegypti under a variety of conditions. We test the quantitative nature of the assay by evaluating pooled mixtures of Wolbachia-infected and uninfected mosquitoes and show that it is capable of estimating infection frequencies, potentially circumventing the need to perform large-scale individual analysis for wAlbB infection status in the course of field monitoring. These results indicate that LAMP assays are useful for routine screening particularly under field conditions away from laboratory facilities.


Assuntos
Aedes/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Wolbachia/genética , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , Técnicas de Amplificação de Ácido Nucleico/normas , Sensibilidade e Especificidade , Wolbachia/patogenicidade
18.
Parasit Vectors ; 12(1): 483, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615544

RESUMO

BACKGROUND: Biting midges of the genus Culicoides vector multiple veterinary pathogens and are difficult to control. Endosymbionts particularly Wolbachia pipientis may offer an alternative to control populations of Culicoides and/or impact disease transmission in the form of population suppression or replacement strategies. METHODS: Culicoides sonorensis cell lines were transfected with a Wolbachia infection using a modified shell vial technique. Infections were confirmed using PCR and cell localization using fluorescent in situ hybridization (FISH). The stability of Wolbachia infections and density was determined by qPCR. qPCR was also used to examine immune genes in the IMD, Toll and JACK/STAT pathways to determine if Wolbachia were associated with an immune response in infected cells. RESULTS: Here we have transfected two Culicoides sonorensis cell lines (W3 and W8) with a Wolbachia infection (walbB) from donor Aedes albopictus Aa23 cells. PCR and FISH showed the presence of Wolbachia infections in both C. sonorensis cell lines. Infection densities were higher in the W8 cell lines when compared to W3. In stably infected cells, genes in the immune Toll, IMD and JAK/STAT pathways were upregulated, along with Attacin and an Attacin-like anti-microbial peptides. CONCLUSIONS: The successful introduction of Wolbachia infections in C. sonorensis cell lines and the upregulation of immune genes, suggest the utility of using Wolbachia for a population replacement and/or population suppression approach to limit the transmission of C. sonorensis vectored diseases. Results support the further investigation of Wolbachia induced pathogen inhibitory effects in Wolbachia-infected C. sonorensis cell lines and the introduction of Wolbachia into C. sonorensis adults via embryonic microinjection to examine for reproductive phenotypes and host fitness effects of a novel Wolbachia infection.


Assuntos
Ceratopogonidae/microbiologia , Insetos Vetores/microbiologia , Transfecção/métodos , Wolbachia/patogenicidade , Aedes/citologia , Animais , Agentes de Controle Biológico , Linhagem Celular/microbiologia , Ceratopogonidae/imunologia , Imunidade/genética , Hibridização in Situ Fluorescente , Insetos Vetores/imunologia , Controle Biológico de Vetores/métodos , Fenótipo , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Reprodução , Wolbachia/genética , Wolbachia/imunologia
19.
Proc Natl Acad Sci U S A ; 116(44): 22314-22321, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31615889

RESUMO

Wolbachia are endosymbiotic bacteria that infect nearly half of all arthropod species. This pandemic is due in part to their ability to increase their transmission through the female germline, most commonly by a mechanism called cytoplasmic incompatibility (CI). The Wolbachia cid operon, encoding 2 proteins, CidA and CidB, the latter a deubiquitylating enzyme (DUB), recapitulates CI in transgenic Drosophila melanogaster However, some CI-inducing Wolbachia strains lack a DUB-encoding cid operon; it was therefore proposed that the related cin operon codes for an alternative CI system. Here we show that the Wolbachia cin operon encodes a nuclease, CinB, and a second protein, CinA, that tightly binds CinB. Recombinant CinB has nuclease activity against both single-stranded and double-stranded DNA but not RNA under the conditions tested. Expression of the cin operon in transgenic male flies induces male sterility and embryonic defects typical of CI. Importantly, transgenic CinA can rescue defects in egg-hatch rates when expressed in females. Expression of CinA also rescues CinB-induced growth defects in yeast. CinB has 2 PD-(D/E)xK nuclease domains, and both are required for nuclease activity and for toxicity in yeast and flies. Our data suggest a distinct mechanism for CI involving a nuclease toxin and highlight the central role of toxin-antidote operons in Wolbachia-induced cytoplasmic incompatibility.


Assuntos
Proteínas de Bactérias/metabolismo , Desoxirribonucleases/metabolismo , Drosophila melanogaster/microbiologia , Interações Hospedeiro-Patógeno , Infertilidade Masculina/microbiologia , Wolbachia/patogenicidade , Animais , Proteínas de Bactérias/genética , Desoxirribonucleases/genética , Drosophila melanogaster/fisiologia , Masculino , Óperon , Controle Biológico de Vetores , Ligação Proteica , Wolbachia/enzimologia , Wolbachia/genética
20.
Indian J Med Res ; 149(6): 706-714, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31496523

RESUMO

Onchocerciasis and lymphatic filariasis (LF) are human filarial diseases belonging to the group of neglected tropical diseases, leading to permanent and long-term disability in infected individuals in the endemic countries such as Africa and India. Microfilaricidal drugs such as ivermectin and albendazole have been used as the standard therapy in filariasis, although their efficacy in eliminating the diseases is not fully established. Anti-Wolbachia therapy employs antibiotics and is a promising approach showing potent macrofilaricidal activity and also prevents embryogenesis. This has translated to clinical benefits resulting in successful eradication of microfilarial burden, thus averting the risk of adverse events from target species as well as those due to co-infection with loiasis. Doxycycline shows potential as an anti-Wolbachia treatment, leading to the death of adult parasitic worms. It is readily available, cheap and safe to use in adult non-pregnant patients. Besides doxycycline, several other potential antibiotics are also being investigated for the treatment of LF and onchocerciasis. This review aims to discuss and summarise recent developments in the use of anti-Wolbachia drugs to treat onchocerciasis and LF.


Assuntos
Filariose Linfática/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico , Oncocercose/tratamento farmacológico , Wolbachia/patogenicidade , Adulto , Albendazol/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Doxiciclina/uso terapêutico , Quimioterapia Combinada , Filariose Linfática/epidemiologia , Filariose Linfática/microbiologia , Humanos , Índia/epidemiologia , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/microbiologia , Oncocercose/epidemiologia , Oncocercose/microbiologia , Medicina Tropical , Wolbachia/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...