Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(18): 12367-12385, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36099150

RESUMO

Chronic pain and depression are both widely prevalent comorbid medical conditions. While efficient, µ-opioid receptor-based medications are associated with life-threatening side effects, including respiratory depression, dependence, and addiction. The δ-opioid receptor is a promising alternative biological target for chronic pain and depression due to its significantly reduced on-target side effects compared to the µ-opioid receptor. A previous study identified two δ-opioid receptor positive allosteric modulators. Herein, we report the design of five series of compounds targeting previously unexplored regions of the originally described SAR. Analogs were assessed for their ability to potentiate the agonist response of Leu-enkephalin. Of the 30 analogs, compound 6g displayed trends toward enhancing the ERK1/2 phosphorylation signaling compared to cAMP inhibition, while compound 11c exhibited a trend in shifting the signaling bias toward cAMP inhibition. Both 6g and 11c emerged as promising tool compounds toward the design of prospective therapeutics requiring specific downstream signaling attributes.


Assuntos
Dor Crônica , Depressão , Receptores Opioides delta , Antidepressivos/química , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Dor Crônica/tratamento farmacológico , Depressão/tratamento farmacológico , Encefalina Leucina/farmacologia , Humanos , Receptores Opioides mu/agonistas , Xantenos/síntese química , Xantenos/farmacologia
2.
Bioorg Med Chem Lett ; 58: 128524, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34995690

RESUMO

A similarity search was conducted on the U.S. Enhanced National Cancer Institute Database Browser 2.2 to find structures related to 1,5-dihydroxy-9H-xanthen-9-one, a previously established EGFR-TK inhibitor. Compounds were virtually screened and selected for bioactivity testing revealed 5 candidates, mostly displayed stronger antiproliferative activities than erlotinib with IC50 values between 0.95 and 17.71 µM against overexpressed EGFR-TK cancer cell lines: A431 and HeLa. NSC107228 displayed the strongest antiproliferative effects with IC50 values of 2.84 and 0.95 µM against A431 and HeLa cancer cell lines, respectively. Three compounds, NSC81111, NSC381467 and NSC114126 inhibited EGFR-TK with IC50 values between 0.15 and 30.18 nM. NSC81111 was the best inhibitor with IC50 = 0.15 nM. Molecular docking analysis of the 3 compounds predicted hydrogen bonding and hydrophobic interactions with key residues were important for the bioactivities observed. Furthermore, calculations of the physicochemical properties suggest the compounds are drug-like and are potentially active orally.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Compostos Heterocíclicos/farmacologia , Oxigênio/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Xantenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , National Cancer Institute (U.S.) , Oxigênio/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Estados Unidos , Xantenos/síntese química , Xantenos/química
3.
Eur J Med Chem ; 227: 113912, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34653771

RESUMO

The diversity of drimane hydroquinones was significantly expanded by the facile construction of (+)-chromazonarol relevant natural products, isomers, and analogues for the discovery of new pharmaceutical leads. The structure-activity relationship of (+)-chromazonarol relevant (non)-natural products was delineated via the synergistic interaction of the programmable synthesis and bioactivity-guided screening. The first divergent derivatization of (+)-chromazonarol demonstrated that the phenolic hydroxyl group is one inviolable requirement for antifungal effect. Pinpoint modification of (+)-yahazunol manifested the position of hydroxyl group was crucial for both antifungal and antitumor activities. (+)-Albaconol, (+)-neoalbaconol, and two (+)-yahazunol isomers (24 and 25) proved to be the novel pharmaceutical leads. The probable macromolecular targets were estimated to deliver new information about the biological potentials resident in (+)-yahazunol relevant products. This work also featured the first synthesis of (+)-albaconol and (+)-neoalbaconol, the first biological exploration of (+)-dictyvaric acid and improved preparation of (+)-8-epi-puupehedione and a promising pelorol analogue.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Xantenos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Xantenos/síntese química , Xantenos/química
4.
J Am Chem Soc ; 143(33): 13428-13440, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428913

RESUMO

The cationic Ru-H complex [(C6H6)(PCy3)(CO)RuH]+BF4- (1) was found to be an effective catalyst for the dehydrative C-H coupling reaction of phenols and aldehydes to form 2-alkylphenol products. The coupling reaction of phenols with branched aldehydes selectively formed 1,1-disubstituted benzofurans, while the coupling reaction with salicylaldehydes yielded xanthene derivatives. A normal deuterium isotope effect was observed from the coupling reaction of 3-methoxyphenol with benzaldehyde and 2-propanol/2-propanol-d8 (kH/kD = 2.3 ± 0.3). The carbon isotope effect was observed on the benzylic carbon of the alkylation product from the coupling reaction of 3-methoxyphenol with 4-methoxybenzaldehyde (C(3) 1.021(3)) and on both benzylic and ortho-arene carbons from the coupling reaction with 4-trifluorobenzaldehdye (C(2) 1.017(3), C(3) 1.011(2)). The Hammett plot from the coupling reaction of 3-methoxyphenol with para-substituted benzaldehydes p-X-C6H4CHO (X = OMe, Me, H, F, Cl, CF3) displayed a V-shaped linear slope. Catalytically relevant Ru-H complexes were observed by NMR from a stoichiometric reaction mixture of 1, 3-methoxyphenol, benzaldehyde, and 2-propanol in CD2Cl2. The DFT calculations provided a detailed catalysis mechanism featuring an electrophilic aromatic substitution of the aldehyde followed by the hydrogenolysis of the hydroxy group. The calculations also revealed a mechanistic rationale for the strong electronic effect of the benzaldehdye substrates p-X-C6H4CHO (X = OMe, CF3) in controlling the turnover-limiting step. The catalytic C-H coupling method provides an efficient synthetic protocol for 2-alkylphenols, 1,1-disubstituted benzofurans, and xanthene derivatives without employing any reactive reagents or forming wasteful byproducts.


Assuntos
Aldeídos/química , Complexos de Coordenação/química , Fenóis/química , Rutênio/química , Benzofuranos/síntese química , Benzofuranos/química , Catálise , Desidratação , Estrutura Molecular , Fenóis/síntese química , Xantenos/síntese química , Xantenos/química
5.
Molecules ; 26(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208536

RESUMO

A ChCl: Gly (DESs) promoted environmentally benign method was developed for the first time using the reaction of aryl aldehydes and dimedone to give excellent yields of xanthene analogues. The major application of this present protocol is the use of green solvent, a wide range of substrate, short reaction times, ease of recovery, the recyclability of the catalyst, high reaction yield, and ChCl: Gly as an alternative catalyst and solvent. In addition to this, all the synthesized compounds were evaluated for their in vitro antimycobacterial activity against M. tuberculosis H37Ra (MTB) and M. bovis BCG strains. The compounds 3d, 3e, 3f, and 3j showed significant antitubercular activity against MTB and M. bovis strains with minimum inhibitory concentration (MIC) values of 2.5-15.10 µg/mL and 0.26-14.92 µg/mL, respectively. The compounds 3e, 3f, and 3j were found to be nontoxic against MCF-7, A549, HCT 116, and THP-1 cell lines. All the prepared compounds were confirmed by 1H NMR and 13C NMR analysis.


Assuntos
Cicloexanonas/química , Solventes/química , Xantenos/síntese química , Aldeídos/química , Antituberculosos/farmacologia , Linhagem Celular Tumoral , Glicerol/química , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Xantenos/química , Xantenos/isolamento & purificação
6.
Bioorg Med Chem Lett ; 47: 128195, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119614

RESUMO

Cytochrome P450 (CYPs) are oxidoreductases distributed in various tissues in plants and animals. Among the CYP families, CYP3A is the most abundant in vivo, particularly in humans, and it is involved in the metabolism of many drugs. It is crucial to measure CYP3A activity for both pharmaceuticals and agrochemicals because inhibition or induction of this enzyme can seriously affect the occurrence of toxicity or efficacy. In the present study, a novel fluorescent probe, 6-(2,5-bis(trifluoromethyl)benzyloxy)-9-(4-methoxy-2-methylphenyl)-3H-xanthen-3-one (BMX, quantum efficiency: 21%), was designed and synthesized. The design was done by photoinduced electron transfer strategy. BMX was specifically metabolized only using CYP3A to generate 2-Me-4-MeO TokyoGreen (quantum efficiency: 85%), resulting in strong fluorescence in the presence of CYP3A isozymes. Protein assays using recombinant human, rat, and mouse CYP isozymes demonstrated the selective metabolism of BMX and production of fluorescence only by CYP3A in all species.


Assuntos
Citocromo P-450 CYP3A/análise , Desenho de Fármacos , Corantes Fluorescentes/química , Xantenos/química , Citocromo P-450 CYP3A/metabolismo , Relação Dose-Resposta a Droga , Transporte de Elétrons , Corantes Fluorescentes/síntese química , Humanos , Estrutura Molecular , Processos Fotoquímicos , Relação Estrutura-Atividade , Xantenos/síntese química
7.
Acta Chim Slov ; 68(1): 51-64, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34057520

RESUMO

In this work the multi-component reactions of either of the arylhydrazocyclohexan-1,3-dione derivatives 3a-c with either of benzaldehyde (4a), 4-chlorobenzaldehyde (4b) or 4-methoxybenzaldehyde (4c) and either malononitrile (5a) or ethyl cyanoacetate (5b) giving the 5,6,7,8-tetrahydro-4H-chromene derivatives 6a-r, respectively, are presented. The reaction of two equivalents of cyclohexan-1,3-dione with benzaldehyde gave the hexahydro-1H-xanthene-1,8(2H)-dione derivative 7. On the other hand, the multi-component reactions of compound 1 with dimedone and benzaldehyde gave 13. Both of 7 and 13 underwent heterocyclization reactions to produce fused thiophene, pyran and thiazole derivatives. Selected compounds among the synthesized compounds were tested against six cancer cell lines where most of them gave high inhibitions; especially compounds 3b, 3c, 6b, 6c, 6d, 6f, 6i, 6m, 6n, 8b, 14a, 15 and 16 being the most cytotoxic compounds. Further tests against the five tyrosine kinases c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR and Pim-1 kinase showed that compounds 3c, 6c, 6d, 6f, 6n, 14a and 15 were the most potent of the tested compounds toward the five tyrosine kinases and compounds 3c, 6c, 6d, 6n and 15 displayed the highest inhibitions toward Pim-1 kinase.


Assuntos
Antineoplásicos/farmacologia , Cicloexanonas/química , Inibidores de Proteínas Quinases/farmacologia , Xantenos/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrazonas/química , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/farmacologia , Tiofenos/síntese química , Tiofenos/farmacologia , Xantenos/síntese química
8.
ChemMedChem ; 16(13): 2121-2129, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831272

RESUMO

Despite the increasing incidence of hepatocellular carcinoma (HCC) worldwide, current pharmacological treatments are still unsatisfactory. We have previously shown that lysophosphatidic acid receptor 6 (LPAR6) supports HCC growth and that 9-xanthenylacetic acid (XAA) acts as an LPAR6 antagonist inhibiting HCC growth without toxicity. Here, we synthesized four novel XAA derivatives, (±)-2-(9H-xanthen-9-yl)propanoic acid (compound 4 - MC9), (±)-2-(9H-xanthen-9-yl)butanoic acid (compound 5 - MC6), (±)-2-(9H-xanthen-9-yl)hexanoic acid (compound 7 - MC11), and (±)-2-(9H-xanthen-9-yl)octanoic acid (compound 8 - MC12, sodium salt) by introducing alkyl groups of increasing length at the acetic α-carbon atom. Two of these compounds were characterized by X-ray powder diffraction and quantum mechanical calculations, while molecular docking simulations suggested their enantioselectivity for LPAR6. Biological data showed anti-HCC activity for all XAA derivatives, with the maximum effect observed for MC11. Our findings support the view that increasing the length of the alkyl group improves the inhibitory action of XAA and that enantioselectivity can be exploited for designing novel and more effective XAA-based LPAR6 antagonists.


Assuntos
Ácido Acético/farmacologia , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Xantenos/farmacologia , Ácido Acético/síntese química , Ácido Acético/química , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estrutura Molecular , Receptores de Ácidos Lisofosfatídicos/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Xantenos/síntese química , Xantenos/química
9.
Org Lett ; 23(4): 1383-1387, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33529042

RESUMO

A convenient and an efficient protocol for the assembly of diverse xanthenes bearing a biologically interesting oxindole nucleus is developed by utilizing the In(III)-catalyzed spiro coupling of 1,4-benzoquinones or 1,4-naphthoquinones with oxindoles. This novel protocol proceeds via a cascade of double Michael additions and intramolecular cyclization. The synthesized compounds have potential use as fluorophores for the selective imaging of heavy metals in living cells.


Assuntos
Corantes Fluorescentes/química , Índio/química , Ionóforos/química , Oxindóis/química , Quinonas/química , Xantenos/química , Catálise , Ciclização , Estrutura Molecular , Xantenos/síntese química
10.
Bioorg Chem ; 107: 104559, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33418315

RESUMO

Cyclohexan-1,3-dione derivatives are versatile scaffolds for the synthesis of a variety of value-added organic molecules including heterocycles and natural products. Six-membered oxygen heterocycles prepared from cyclohexan-1,3-diones are of much importance as they are intermediate for the synthesis of a number of natural products and several other valuable bioactive molecules which shows anti-viral, anti-bacterial, analgesic, antimalarial, anti-inflammatory, anti-allergic, anti-tumor and anti-cancer activities. These advantages have inspired us to write a detailed survey on the newly developed methods which are very essential in the construction of six-membered oxygen heterocycles. Further, the versatility in the chemistry of cyclohexan-1,3-dione and its derivatives is due to the presence of highly active methylene moiety and its active di-carbonyl groups. Recently, reactions of cyclohexane-1,3-dione and its derivatives with other substrates for instance aldehydes, malononitriles, NMSM, chalcones, isatin etc. have been established for the construction of a variety of six-membered oxygen heterocycles. The studies reported in this review article involved the synthesis of six-membered oxygen-containing heterocycles which includes 4H-chromen-5(6H)-one, 2H-xanthen-1(9H)-one, 2H-xanthen-1,8(5H,9H)-dione, 6H-chromen-2,5-dione derivatives and natural products having six-membered oxygen heterocycles from cyclohexane-1,3-dione and its derivatives as one of the substrate.


Assuntos
Cicloexanos/química , Compostos Heterocíclicos/química , Oxigênio/química , Analgésicos/síntese química , Analgésicos/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Benzopiranos/síntese química , Benzopiranos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Compostos Heterocíclicos/síntese química , Sesquiterpenos/síntese química , Sesquiterpenos/química , Xantenos/síntese química , Xantenos/química
11.
Comb Chem High Throughput Screen ; 24(5): 683-694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32972337

RESUMO

BACKGROUND: Nanoscale metal oxide catalysts have been extensively employed in organic reactions because they have been found to influence the chemical and physical properties of bulk material. The chromene (benzopyran) nucleus constitutes the core structure in a major class of many biologically active compounds, and interest in their chemistry consequently continues because of their numerous biological activities. The xanthene (dibenzopyran) derivatives are classified as highly significant compounds which display a number of various bioactive properties. Pyrimidinones have also gained interest due to their remarkable biological utilization, such as antiviral, antibacterial, antihypertensive, antitumor, and calcium blockers effects. OBJECTIVE: The aim of this work presented herein was to prepare activated carbon/MoO3 nanocomposite and explore its role as a green and recyclable catalyst for the synthesis of chromeno[d]pyrimidinediones and xanthenones under ethanol-drop grinding at room temperature. METHODS: The activated carbon/MoO3 nanocomposite was prepared successfully via a simple route in which the carbonization of gums as new natural precursors was used for the synthesis of activated carbon. This nanocomposite was then effectively used in a reaction of 3,4-methylenedioxyphenol, aromatic aldehydes, and active methylene compounds, including 1,3-dimethylbarbituric acid and dimedone, to synthesize a series of chromeno[d]pyrimidinediones and xanthenones in high yields. The synthesized catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), Powder x-ray diffractometry (XRD), Scanning electron microscope (SEM), Raman spectroscopy, and also by TGA analysis. Confirmation of the structures of compounds 5(a-g) and 6(a-g) were also established with IR, 1H NMR, and 13C NMR spectroscopic data and also by elemental analyses. RESULTS: A number of 6,8-dimethyl-10-phenyl-6,10-dihydro-7H-[1,3]dioxolo[4´,5´:6,7]chromeno[2,3- d]pyrimidine-7,9(8H)-diones and 7,7-dimethyl-10-(4-methylphenyl)-6,7,8,10-tetrahydro-9H-[1,3]dioxolo[ 4,5-b]xanthen-9-ones were effectively synthesized using activated carbon/MoO3 nanocomposite (0.05 gr) as a catalyst under ethanol-drop grinding at room temperature. The desired products were obtained in high yields (93-97%) within short reaction times (15-20 min). CONCLUSION: This paper investigates the catalytic potential of the synthesized activated carbon/MoO3 nanocomposite for the preparation of chromeno[d]pyrimidinediones and xanthenones under the ethanol-drop grinding procedure. The mildness of the reaction conditions, high yields of products, short reaction times, experimental simplicity, and avoiding the use of harmful solvents or reagents makes this procedure preferable for the synthesis of these compounds.


Assuntos
Carbono/química , Molibdênio/química , Óxidos/química , Pirimidinonas/síntese química , Xantenos/síntese química , Catálise , Estrutura Molecular , Pirimidinonas/química , Xantenos/química
12.
Chem Commun (Camb) ; 57(4): 480-483, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33326520

RESUMO

A novel water-soluble near-infrared fluorescent probe named QX-P with simple synthesis is developed. QX-P has high sensitivity and selectivity to ALP. Moreover, the probe can not only visualize ALP activity in four cell lines, but also real-time image ALP activity during the diagnosis and treatment of diabetes in mice.


Assuntos
Fosfatase Alcalina/metabolismo , Diabetes Mellitus Experimental/enzimologia , Corantes Fluorescentes/química , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Fluorometria , Humanos , Limite de Detecção , Camundongos , Compostos de Quinolínio/síntese química , Compostos de Quinolínio/química , Compostos de Quinolínio/toxicidade , Espectrometria de Fluorescência , Xantenos/síntese química , Xantenos/química , Xantenos/toxicidade
13.
Eur J Med Chem ; 210: 113085, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33310284

RESUMO

BACKGROUND: Xanthenes are a special class of oxygen-incorporating tricyclic compounds. Structurally related to xanthones, the presence of different substituents in position 9 strongly influences their physical and chemical properties, as well as their biological applications. This review explores the synthetic methodologies developed to obtain 9H-xanthene, 9-hydroxyxanthene and xanthene-9-carboxylic acid, as well as respective derivatives, from simple starting materials or through modification of related structures. Azaxanthenes, bioisosteres of xanthenes, are also explored. Efficiency, safety, ecological impact and applicability of the described synthetic methodologies are discussed. Synthesis of multi-functionalized derivatives with drug-likeness properties are also reported and their activities explored. Synthetic methodologies for obtaining (aza)xanthenes from simple building blocks are available, and electrochemical and/or metal free procedures recently developed arise as greener and efficient methodologies. Nonetheless, the synthesis of xanthenes through the modification of the carbonyl in position 9 of xanthones represents the most straightforward procedure to easily obtain a variety of (aza)xanthenes. (Aza)xanthene derivatives displayed biological activity as neuroprotector, antitumor, antimicrobial, among others, proving the versatility of this nucleus for different biological applications. However, in some cases their chemical structures suggest a lack of pharmacokinetic properties being associated with safety concerns, which should be overcome if intended for clinical evaluation.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Xantenos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Bactérias/efeitos dos fármacos , Química Farmacêutica , Fungos/efeitos dos fármacos , Humanos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Xantenos/síntese química , Xantenos/química
14.
J Mater Chem B ; 8(38): 8838-8844, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026403

RESUMO

The viscosity of lysosomes plays a significant role in modulating biological processes and reflects the status and function of this kind of organelle, e.g., locations, morphologies, and components. Herein, we constructed a novel near-infrared (NIR) lysosome-targeting viscosity probe, Lyso-cy, for monitoring viscosity changes in biological systems. The Lyso-cy probe showed very strong fluorescence emission at around 710 nm in viscous media. The fluorescence intensity of Lyso-cy increased 122-fold from when in water to when in 95% glycerol. Moreover, Lyso-cy proved to be an ideal lysosome-targeting tracer for monitoring fluctuations in the viscosity of a living cell with high spatial and temporal resolution under laser confocal microscopy.


Assuntos
Corantes Fluorescentes/química , Indóis/química , Lisossomos/metabolismo , Xantenos/química , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Indóis/síntese química , Lisossomos/química , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Viscosidade , Xantenos/síntese química
15.
Bioorg Chem ; 104: 104190, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32919130

RESUMO

Interactions of two newly synthesized and six previously reported benzoxanthene lignans (BXLs), analogues of rare natural products, with DNA/RNA, G-quadruplex and HSA were evaluated by a set of spectrophotometric methods. Presence/absence of methoxy and hydroxy groups on the benzoxanthene core and minor modifications at C-1/C-2 side pendants - presence/absence of phenyl ring and presence/absence of methoxy and hydroxy groups on phenyl ring - influenced the fluorescence changes and the binding strength to double-stranded (ds-) and G-quadruplex structures. In general, compounds without phenyl ring showed stronger fluorescence changes upon binding than phenyl-substituted BXLs. On the other hand, BXLs with an unsubstituted phenyl ring showed the best stabilization effects of G-quadruplex. Circular dichroism spectroscopy results suggest mixed binding mode, groove binding and partial intercalation, to ds-DNA/RNA and end-stacking to top or bottom G-tetrads as the main binding modes of BXLs to those targets. All compounds exhibited micromolar binding affinities toward HSA and an increased protein thermal stability. Moderate to strong antiradical scavenging activity was observed for all BXLs with hydroxy groups at C-6, C-9 and C-10 positions of the benzoxanthene core, except for derivative bearing methoxy groups at these positions. BXLs with unsubstituted or low-substituted phenyl ring and one derivative without phenyl ring showed strong growth inhibition of Gram-positive Staphylococcus aureus. All compounds showed moderate to strong tumor cell growth-inhibitory activity and cytotoxicity.


Assuntos
Antineoplásicos/farmacologia , DNA Tumoral Circulante/química , Lignanas/farmacologia , RNA Neoplásico/química , Albumina Sérica Humana/química , Xantenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli K12/citologia , Escherichia coli K12/efeitos dos fármacos , Humanos , Lignanas/síntese química , Lignanas/química , Estrutura Molecular , Salmonella enterica/citologia , Salmonella enterica/efeitos dos fármacos , Staphylococcus aureus/citologia , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Xantenos/síntese química , Xantenos/química
16.
Arch Pharm (Weinheim) ; 353(8): e2000030, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32452582

RESUMO

In this study, 3,4-dihydro-12-aryl-1H-benzo[b]xanthene-1,6,11-(2H,12H)trione compounds were obtained through one-pot condensation of various substituted aromatic aldehydes, 2-hydroxy-1,4-naphthoquinone, and dimedone in the presence of Bi(OTf)3 as a green and reusable catalyst. The structural characterization of these novel substituted benzo[b]xanthenes was performed by spectroscopic methods, and their inhibitory actions against butyrylcholinesterase (BChE), acetylcholinesterase (AChE), and glutathione S-transferase (GST) were investigated. GST is an enzyme responsible for removing toxic molecules during Phase II reactions in the detoxification mechanism. The AChE and BChE enzymes, which are called cholinesterases, are among the enzymes that occur especially during dementia such as brain damage or Alzheimer's disease. Inhibition effects of the benzo[b]xanthene derivatives on AChE, BChE, and GST were found at the millimolar level. The best inhibitor for GST is compound 4a (31.18 ± 6.13 mM), for AChE, it is compound 4d (28.16 ± 3.46 mM), and for BChE, it is compound 4f (36.24 ± 3.19 mM). Compound 4a inhibited the dimerization of GST subunits, and compounds 4d and 4f directly inhibited the catalytic activity by interacting with the catalytic active site or a related site of the AChE and BChE enzymes, respectively.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Mesilatos/química , Xantenos/farmacologia , Animais , Catálise , Relação Dose-Resposta a Droga , Electrophorus , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glutationa Transferase/metabolismo , Cavalos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Xantenos/síntese química , Xantenos/química
17.
Curr Org Synth ; 17(6): 440-456, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32271697

RESUMO

BACKGROUND: Sulfonated carbon-based solid acids (CBSAs) have been reported as an efficient solid acid catalyst for many acid-catalyzed reactions. Furthermore, the use of carbon obtained from biomass waste has been explored and these materials showed a higher catalytic performance and higher stability compared to other solid acids. OBJECTIVE: Novel biomass carbon-based solid acids nanoparticles with high catalytic activity in organic transformation, such as Grape pomace waste-SO3H Nanoparticles (GPW-SO3H NPs), were successfully synthesized. MATERIALS AND METHODS: Grape pomace waste-SO3H Nanoparticles (GPW-SO3H NPs) were successfully synthesized. The grape pomace waste was dried in an oven at a temperature of 70°C and crushed to powder using an electric spice grinder. A mixture of powdered grape pomace waste (1 g) and concentrated sulfuric acid (>98%, 10 mL) was stirred at room temperature. Then, the resultant mixture was transferred into a 100 mL sealed Teflon-lined autoclave and kept at 180°C for 12 h. After cooling to room temperature, the resulting black solid was dried at 100°C in an oven under vacuum and the sulfonic acid-functionalized magnetic nanoparticles (Fe3O4@C-SO3H) were obtained. RESULTS AND DISCUSSIONS: The catalytic activity of GPW-SO3H was assessed through an easy and rapid protocol developed for the one-pot synthesis of 14-aryl-14-H-dibenzo [a,j]xanthene, arylmethylene [bis(3- hydroxy-2-cyclohexene-1-one)], bis(indolyl)alkane and 2-amino-4-aryl-7-hydroxy-4H-chromene-3-carbonitrile derivatives in excellent yields. The advantages of this method include use of waste material for catalyst synthesis, high yields, mild reaction conditions, uncomplicated work-up procedures, neutral conditions, and recoverable catalyst. CONCLUSION: We have shown that biomass-derived solid acids, prepared from grape pomace waste, serve as a non-toxic, inexpensive and a promising eco-friendly and novel carbon-based solid acid nanocatalyst for organic transformations.


Assuntos
Antibacterianos/farmacologia , Benzopiranos/farmacologia , Cicloexanonas/farmacologia , Indóis/farmacologia , Nanopartículas/química , Xantenos/farmacologia , Antibacterianos/síntese química , Benzopiranos/síntese química , Biomassa , Catálise , Cicloexanonas/síntese química , Escherichia coli/efeitos dos fármacos , Indóis/síntese química , Resíduos Industriais , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Vitis/química , Xantenos/síntese química
18.
J Fluoresc ; 30(3): 601-612, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32285236

RESUMO

A new turn on fluorescence probe based on 3',6'-dihydroxy-6-methyl-2-((pyridin-2-ylmethylene)amino)-4-(p-tolyl)spiro[benzo[f]isoindole-1,9'-xanthen]-3(2H)-one (BFFPH) derived from benzo[f]fluorescein was prepared. Full characterization of the prepared probe using spectroscopic analysis was described such as IR, NMR and MS spectra. The sensitivity of BFFPH for monitoring of pH change in alkaline medium was studied. BFFPH exhibited a high sensitivity to alkaline pH by two pKa values at 8.82 and 10.66 in UV/vis spectroscopy titration. The pH monitoring was studied in broad range of pH values (2.5-12.2) at two pKa values at 8.72 and 10.73 by recording the effect of pH on the fluorescence intensity of BFFPH. The acid-base reversibility character of the probe was investigated as well as the effect of the pH change on the fluorescence quantum yield. The application of the prepared BFFPH probe for detection of living Escherichia coli (E. coli) bacteria using confocal fluorescence microscope was investigated.


Assuntos
Técnicas Biossensoriais , Colorimetria , Escherichia coli/isolamento & purificação , Corantes Fluorescentes/química , Imagem Óptica , Xantenos/química , Corantes Fluorescentes/síntese química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Xantenos/síntese química
19.
J Am Chem Soc ; 142(7): 3430-3439, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32040300

RESUMO

Pancreatic ß cells are responsible for insulin secretion and are important for glucose regulation in a healthy body and diabetic disease patient without prelabeling of islets. While the conventional biomarkers for diabetes have been glucose and insulin concentrations in the blood, the direct determination of the pancreatic ß cell mass would provide critical information for the disease status and progression. By combining fluorination and diversity-oriented fluorescence library strategy, we have developed a multimodal pancreatic ß cell probe PiF for both fluorescence and for PET (positron emission tomography). By simple tail vein injection, PiF stains pancreatic ß cells specifically and allows intraoperative fluorescent imaging of pancreatic islets. PiF-injected pancreatic tissue even facilitated an antibody-free islet analysis within 2 h, dramatically accelerating the day-long histological procedure without any fixing and dehydration step. Not only islets in the pancreas but also the low background of PiF in the liver allowed us to monitor the intraportal transplanted islets, which is the first in vivo visualization of transplanted human islets without a prelabeling of the islets. Finally, we could replace the built-in fluorine atom in PiF with radioactive 18F and successfully demonstrate in situ PET imaging for pancreatic islets.


Assuntos
Corantes Fluorescentes/química , Células Secretoras de Insulina/citologia , Xantenos/química , Animais , Diabetes Mellitus Experimental/patologia , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/toxicidade , Humanos , Células Secretoras de Insulina/transplante , Transplante das Ilhotas Pancreáticas , Fígado/citologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Tomografia por Emissão de Pósitrons , Ratos , Xantenos/síntese química , Xantenos/farmacocinética , Xantenos/toxicidade
20.
Angew Chem Int Ed Engl ; 59(11): 4360-4364, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-31943607

RESUMO

A highly convergent approach was developed to achieve the first asymmetric and scalable total synthesis of FD-594, a complex polycyclic xanthone natural product from Streptomyces sp. TA-0256, in a longest linear sequence (LLS) of 20 steps. The trans-9,10-dihydrophenanthrene-9,10-diol fragment (B-C-D ring) was generated through a new strategy involving asymmetric dihydroxylation followed by Cu-mediated oxidative cyclization. Late-stage stereoselective glycosylation assembled the angular hexacyclic framework with a ß-linked 2,6-dideoxy trisaccharide fragment.


Assuntos
Produtos Biológicos/síntese química , Fenantrenos/química , Piranos/síntese química , Xantenos/síntese química , Catálise , Cobre/química , Ciclização , Glicosilação , Hidroxilação , Estereoisomerismo , Trissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...