Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Physiol ; 193(3): 2232-2247, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37534747

RESUMO

Bacterial blight seriously affects the growth and production of cassava (Manihot esculenta Crantz), but disease resistance genes and the underlying molecular mechanism remain unknown. In this study, we found that LESION SIMULATING DISEASE 3 (MeLSD3) is essential for disease resistance in cassava. MeLSD3 physically interacts with SIRTUIN 1 (MeSRT1), inhibiting MeSRT1-mediated deacetylation modification at the acetylation of histone 3 at K9 (H3K9Ac). This leads to increased H3K9Ac levels and transcriptional activation of SUPPRESSOR OF BIR1 (SOBIR1) and FLAGELLIN-SENSITIVE2 (FLS2) in pattern-triggered immunity, resulting in immune responses in cassava. When MeLSD3 was silenced, the release of MeSRT1 directly decreased H3K9Ac levels and inhibited the transcription of SOBIR1 and FLS2, leading to decreased disease resistance. Notably, DELLA protein GIBBERELLIC ACID INSENSITIVE 1 (MeGAI1) also interacted with MeLSD3, which enhanced the interaction between MeLSD3 and MeSRT1 and further strengthened the inhibition of MeSRT1-mediated deacetylation modification at H3K9Ac of defense genes. In summary, this study illustrates the mechanism by which MeLSD3 interacts with MeSRT1 and MeGAI1, thereby mediating the level of H3K9Ac and the transcription of defense genes and immune responses in cassava.


Assuntos
Manihot , Xanthomonas axonopodis , Xanthomonas axonopodis/metabolismo , Manihot/genética , Manihot/metabolismo , Manihot/microbiologia , Histonas/metabolismo , Resistência à Doença/genética , Acetilação , Doenças das Plantas/microbiologia
2.
Pest Manag Sci ; 79(10): 4083-4093, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37291956

RESUMO

BACKGROUND: p-Aminobenzoic acid (pABA) is an environmentally friendly bioactive metabolite synthesized by Lysobacter antibioticus. This compound showed an unusual antifungal mode of action based on cytokinesis inhibition. However, the potential antibacterial properties of pABA remain unexplored. RESULTS: In this study, pABA showed antibacterial activity against Gram-negative bacteria. This metabolite inhibited growth (EC50 = 4.02 mM), and reduced swimming motility, extracellular protease activity, and biofilm formation in the soybean pathogen Xanthomonas axonopodis pv. glycines (Xag). Although pABA was previously reported to inhibit fungal cell division, no apparent effect was observed on Xag cell division genes. Instead, pABA reduced the expression of various membrane integrity-related genes, such as cirA, czcA, czcB, emrE, and tolC. Consistently, scanning electron microscopy observations revealed that pABA caused major alternations in Xag morphology and blocked the formation of bacterial consortiums. In addition, pABA reduced the content and profile of outer membrane proteins and lipopolysaccharides in Xag, which may explain the observed effects. Preventive and curative applications of 10 mM pABA reduced Xag symptoms in soybean plants by 52.1% and 75.2%, respectively. CONCLUSIONS: The antibacterial properties of pABA were studied for the first time, revealing new insights into its potential application for the management of bacterial pathogens. Although pABA was previously reported to show an antifungal mode of action based on cytokinesis inhibition, this compound inhibited Xag growth by altering the outer membrane's integrity. © 2023 Society of Chemical Industry.


Assuntos
Fabaceae , Xanthomonas axonopodis , Xanthomonas , Glycine max/microbiologia , Xanthomonas axonopodis/genética , Xanthomonas axonopodis/metabolismo , Ácido 4-Aminobenzoico/farmacologia , Ácido 4-Aminobenzoico/química , Ácido 4-Aminobenzoico/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Glicina/metabolismo , Antibacterianos/farmacologia , Doenças das Plantas/microbiologia , Xanthomonas/metabolismo
3.
Pest Manag Sci ; 78(8): 3664-3675, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35611815

RESUMO

BACKGROUND: Xanthomonas axonopodis pv. glycines (Xag) is the causal agent of bacterial pustule disease and results in enormous losses in soybean production. Although isoflavones are known to be involved in soybean resistance against pathogen infection, the effects of exogenous isoflavones on soybean plants remain unexplored. RESULTS: Irrigation of soybean plants with isoflavone genistein inhibited plant growth for short periods, probably by inhibiting the tyrosine (brassinosteroids) kinase pathway, and increased disease resistance against Xag. The number of lesions was reduced by 59%-63% when applying 50 µg ml-1 genistein. The effects on disease resistance were observed for 15 days after treatment. Genistein also enhanced the disease resistance of soybean against the fungal pathogen Sclerotinia sclerotiorum. Exogenous genistein increased antioxidant capacity, decreased H2 O2 level and promoted the accumulation of phenolics in Xag-infected soybean leaves. Exogenous genistein reduced the amounts of endogenous daidzein, genistein and glycitein and increased the concentration of genistin, which was found to show strong antibacterial activity against the pathogen and to reduce the expression of virulence factor yapH, and flagella formation gene flgK. The expression of several soybean defense genes, such as chalcone isomerase, glutathione S-transferase and 1-aminocyclopropane-1-carboxylate oxidase 1, was upregulated after genistein treatment. CONCLUSIONS: The effects of exogenous genistein on soybean plants were examined for the first time, revealing new insights into the roles of isoflavones in soybean defense and demonstrating that irrigation with genistein can be a suitable method to induce disease resistance in soybean plants. © 2022 Society of Chemical Industry.


Assuntos
Fabaceae , Isoflavonas , Xanthomonas axonopodis , Resistência à Doença , Genisteína/metabolismo , Genisteína/farmacologia , Glicina/metabolismo , Isoflavonas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Glycine max/microbiologia , Xanthomonas axonopodis/genética , Xanthomonas axonopodis/metabolismo
4.
Anal Biochem ; 582: 113358, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31278898

RESUMO

2'-Fucosyllactose (2'-FL) is the most abundant milk oligosaccharide in human breast milk and it has several benefits for infant health. The quantification of 2'-FL in breast milk or in samples from other sources generally requires lengthy analyses. These methods cannot be used to simultaneously detect 2'-FL in numerous samples, which would be more time-efficient. In this study, two genes, namely α1,2-fucosidase from Xanthomonas manihotis and l-fucose dehydrogenase from Pseudomonas sp. no. 1143, were identified, cloned and overexpressed in E. coli. The recombinant enzymes were produced as 6 × His-tagged proteins and were purified to homogeneity using Ni2+ affinity chromatography. The purified α1,2-fucosidase and l-fucose dehydrogenase are monomers with molecular masses of 63 kDa and 36 kDa, respectively. Both enzymes have sufficiently high activities in phosphate-buffered saline (pH 7.0) at 37 °C, making it possible to develop a coupled enzyme reaction in a single buffer system for the quantitative determination of 2'-FL in a large number of samples simultaneously. This method can be used to quantify 2'-FL in infant formulas and in samples collected from different phases of the biotechnological production of this oligosaccharide. Furthermore, the method is applicable for the rapid screening of active variants during the development of microbial strains producing 2'-FL.


Assuntos
Ensaios Enzimáticos , Fórmulas Infantis/química , Leite Humano/química , Trissacarídeos/análise , Desidrogenases de Carboidrato/química , Humanos , Lactente , Recém-Nascido , Pseudomonas/metabolismo , Xanthomonas axonopodis/metabolismo , alfa-L-Fucosidase/química
5.
Sci Rep ; 9(1): 2446, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792399

RESUMO

Xanthomonas axonopodis pv. glycines (Xag) is a phytopathogenic bacterium causing bacterial pustule disease in soybean. Functions of DNA methyltransferases have been characterized in animal pathogenic bacteria, but are poorly understood in plant pathogens. Here, we report that functions of a putative DNA methyltransferase, EadM, in Xag. An EadM-overexpressing strain, Xag(EadM), was less virulent than the wild-type carrying an empty vector, Xag(EV). Interestingly, the viable cell numbers of Xag(EadM) were much lower (10-fold) than those of Xag(EV) at the same optical density. Comparative proteomic analysis revealed that proteins involved in cell wall/membrane/envelope and iron-transport were more abundant. Based on proteomic analysis we carried out diverse phenotypic assays. Scanning electron microscopy revealed abnormal bacterial envelopes in Xag(EadM). Additionally, Xag(EadM) showed decreased stress tolerance against ciprofloxacin and sorbitol, but enhanced resistance to desiccation. Exopolysaccharide production in Xag(EadM) was also decreased. Production of siderophores, which are iron-chelators, was much higher in Xag(EadM). As in Xag, Escherichia coli expressing EadM showed significantly reduced (1000-fold) viable cell numbers at the same optical density. Thus, EadM is associated with virulence, envelope biogenesis, stress tolerance, exopolysaccharide production, and siderophore production. Our results provide valuable and fundamental information regarding DNA methyltransferase functions and their related cellular mechanisms in plant pathogenic bacteria.


Assuntos
Metiltransferases/metabolismo , Xanthomonas axonopodis/enzimologia , Xanthomonas axonopodis/metabolismo , Metilação de DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fabaceae/microbiologia , Metiltransferases/genética , Organismos Geneticamente Modificados , Fenótipo , Doenças das Plantas/microbiologia , Proteômica , Sideróforos/genética , Sideróforos/metabolismo , Glycine max/microbiologia , Virulência/genética , Xanthomonas axonopodis/genética
6.
J Pineal Res ; 64(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29151275

RESUMO

With 1 AP2 domain and 1 B3 domain, 7 MeRAVs in apetala2/ethylene response factor (AP2/ERF) gene family have been identified in cassava. However, the in vivo roles of these remain unknown. Gene expression assays showed that the transcripts of MeRAVs were commonly regulated after Xanthomonas axonopodis pv manihotis (Xam) and MeRAVs were specifically located in plant cell nuclei. Through virus-induced gene silencing (VIGS) in cassava, we found that MeRAV1 and MeRAV2 are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of Xam in plant leaves. Through VIGS in cassava leaves and overexpression in cassava leave protoplasts, we found that MeRAV1 and MeRAV2 positively regulated melatonin biosynthesis genes and the endogenous melatonin level. Further investigation showed that MeRAV1 and MeRAV2 are direct transcriptional activators of 3 melatonin biosynthesis genes in cassava, as evidenced by chromatin immunoprecipitation-PCR in cassava leaf protoplasts and electrophoretic mobility shift assay. Moreover, cassava melatonin biosynthesis genes also positively regulated plant disease resistance. Taken together, this study identified MeRAV1 and MeRAV2 as common and upstream transcription factors of melatonin synthesis genes in cassava and revealed a model of MeRAV1 and MeRAV2-melatonin biosynthesis genes-melatonin level in plant disease resistance against cassava bacterial blight.


Assuntos
Melatonina/biossíntese , Xanthomonas axonopodis/patogenicidade , Resistência à Doença , Doenças das Plantas , Fatores de Transcrição/metabolismo , Xanthomonas axonopodis/metabolismo
7.
Electron. j. biotechnol ; 30: 18-23, nov. 2017. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1021065

RESUMO

Background: The aim of the present study was to evaluate gum productivity of a local strain, Xanthomonas axonopodis pv. vesicatoria, isolated from pepper plant, and its rheological behavior for the first time compared to the standard strain, Xanthomonas campestris DSM 19000 (NRRL B-1459). The influence of operational conditions (agitation rate and inoculum volume) on gum production and rheological properties of gums from the Xanthomonas strains were investigated. Results: The isolated strain of Xanthomonas showed similar xanthan yield compared to the standard strain. Furthermore, this study clearly confirmed that gum yield depended on bacterial strain, agitation rate, and inoculum size. The most suitable conditions for the gum production in an orbital shaker in terms of agitation rate and inoculum size were 180 rpm and 5%, respectively, resulting in an average production of 10.96 and 11.19 g/L for X. axonopodis pv.vesicatoria and X. campestris DSM 19000, respectively. Regarding the rheological properties, Ostwald-de-Waele and power law models were used to describe flow and oscillatory behavior of the gum solutions, respectively. Consistency of the novel gum solution remarkably was much higher than the commercial xanthan gum solution. Flow and oscillatory behavior and their temperature ramps showed that weak gel-like structure could be obtained with less gum concentrations when the novel gum was used. Conclusion: Therefore, yield and technological properties of the aqueous solutions of the exopolysaccharide synthesized by X. axonopodis pv. vesicatoria were observed to be more suitable for industrial production.


Assuntos
Polissacarídeos Bacterianos/biossíntese , Xanthomonas vesicatoria/metabolismo , Xanthomonas axonopodis/metabolismo , Reologia , Temperatura , Viscosidade , Biodegradação Ambiental , Capsicum , Xanthomonas campestris/metabolismo
8.
Microbiol Res ; 193: 111-120, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27825479

RESUMO

Bacterial blight caused by Xanthomonas axonopodis pv. punicae (Xap) is a major disease of pomegranate. Xap secretes effector proteins via type III secretion system (T3SS) to suppress pathogen-associated molecular pattern (PAMP)-triggered plant immunity (PTI). Previously we reported that XopN, a conserved effector of Xap, modulate in planta bacterial growth, and blight disease. In continuation to that here we report the deletion of XopN from Xap caused higher accumulation of reactive oxygen species (ROS) including H2O2 and O2-. We quantitatively assessed the higher accumulation of H2O2 in pomegranate leaves infiltrated with Xap ΔxopN compared to Xap wild-type. We analysed that 1.5 to 3.3 fold increase in transcript expression of ROS and flg22-inducible genes, namely FRK1, GST1, WRKY29, PR1, PR2 and PR5 in Arabidopsis when challenged with Xap ΔxopN; contrary, the up-regulation of all the genes were compromised when challenged with either Xap wild-type or Xap ΔxopN+xopN. Further, we demonstrated the plasma-membrane based localization of XopN protein both in its natural and experimental hosts. All together, the present study suggested that XopN-T3SS effector of Xap gets localized in the plasma membrane and suppresses ROS-mediated early defense responses during blight pathogenesis in pomegranate.


Assuntos
Membrana Celular/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lythraceae/microbiologia , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Virulência/análise , Xanthomonas axonopodis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Deleção de Genes , Lythraceae/genética , Lythraceae/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/genética
9.
J Biotechnol ; 179: 15-6, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24657734

RESUMO

Xanthomonas axonopodis pv. glycines 8ra is a causal agent of bacterial pustule disease in soybean. This bacterium possesses transcription activator-like (TAL) effectors which are useful for genetic/protein engineering applications in higher organisms including plants and humans. Here, we report that the draft genome sequence consists of 5,337,885-bp double-stranded DNA encoding 4674 open reading frames (ORFs) in 13 different contigs. This genome sequence would be useful in applications of TAL effectors in genetic engineering and in elucidating virulence factors against plants.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Xanthomonas axonopodis/genética , Proteínas de Bactérias/metabolismo , Engenharia Genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Glycine max/microbiologia , Fatores de Virulência/genética , Xanthomonas axonopodis/classificação , Xanthomonas axonopodis/metabolismo
10.
World J Microbiol Biotechnol ; 29(11): 2173-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23719672

RESUMO

L-glutamate plays a central role in nitrogen metabolism in all living organisms. In the genus Xanthomonas, the nitrogen nutrition is an important factor involved in the xanthan gum production, an important exopolysaccharide with various industrial and biotechnological applications. In this report, we demonstrate that the use of L-glutamate by the phytopathogen Xanthomonas axonopodis pv. citri as a nitrogen source in defined medium significantly increases the production of xanthan gum. This increase is dependent on the L-glutamate concentration. In addition, we have also characterized a glutamate transport system that is dependent on a proton gradient and on ATP and is modulated by amino acids that are structurally related to glutamate. This is the first biochemical characterization of an energy substrate transport system observed in a bacterial phytopathogen with a broad economic and industrial impact due to xanthan gum production.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Ácido Glutâmico/metabolismo , Polissacarídeos Bacterianos/metabolismo , Xanthomonas axonopodis/crescimento & desenvolvimento , Xanthomonas axonopodis/metabolismo , Trifosfato de Adenosina/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Nitrogênio/metabolismo , Prolina/metabolismo , Prótons , Especificidade por Substrato
11.
Mol Plant Pathol ; 14(1): 84-95, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22947214

RESUMO

Many plant-pathogenic bacteria suppress pathogen-associated molecular pattern (PAMP)-triggered immunity by injecting effector proteins into the host cytoplasm during infection through the type III secretion system (TTSS). This type III secretome plays an important role in bacterial pathogenicity in susceptible hosts. Xanthomonas axonopodis pv. manihotis (Xam), the causal agent of cassava bacterial blight, injects several effector proteins into the host cell, including TALE1(Xam) . This protein is a member of the Transcriptional Activator-Like effector (TALE) protein family, formerly known as the AvrBs3/PthA family. TALE1(Xam) has 13.5 tandem repeats of 34 amino acids each, as well as two nuclear localization signals and an acidic activation domain at the C-terminus. In this work, we demonstrate the importance of TALE1(Xam) in the pathogenicity of Xam. We use versions of the gene that lack different domains in the protein in structure-function studies to show that the eukaryotic domains at the 3' end are critical for pathogenicity. In addition, we demonstrate that, similar to the characterized TALE proteins from other Xanthomonas species, TALE1(Xam) acts as a transcriptional activator in plant cells. This is the first report of the identification of a TALE in Xam, and contributes to our understanding of the pathogenicity mechanisms employed by this bacterium to colonize and cause disease in cassava.


Assuntos
Proteínas de Bactérias/metabolismo , Manihot/citologia , Manihot/microbiologia , Células Vegetais/metabolismo , Transativadores/metabolismo , Xanthomonas axonopodis/metabolismo , Xanthomonas axonopodis/patogenicidade , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Evolução Molecular , Loci Gênicos/genética , Dados de Sequência Molecular , Mutação/genética , Filogenia , Células Vegetais/microbiologia , Plasmídeos/genética , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Transativadores/química
12.
PLoS One ; 7(7): e40051, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792211

RESUMO

Xanthomonas axonopodis pv. citri (Xac) is the phytopathogen responsible for citrus canker, one of the most devastating citrus diseases in the world. A broad range of pathogens is recognized by plants through so-called pathogen-associated molecular patterns (PAMPs), which are highly conserved fragments of pathogenic molecules. In plant pathogenic bacteria, lipopolisaccharyde (LPS) is considered a virulence factor and it is being recognized as a PAMP. The study of the participation of Xac LPS in citrus canker establishment could help to understand the molecular bases of this disease. In the present work we investigated the role of Xac LPS in bacterial virulence and in basal defense during the interaction with host and non host plants. We analyzed physiological features of Xac mutants in LPS biosynthesis genes (wzt and rfb303) and the effect of these mutations on the interaction with orange and tobacco plants. Xac mutants showed an increased sensitivity to external stresses and differences in bacterial motilities, in vivo and in vitro adhesion and biofilm formation. Changes in the expression levels of the LPS biosynthesis genes were observed in a medium that mimics the plant environment. Xacwzt exhibited reduced virulence in host plants compared to Xac wild-type and Xacrfb303. However, both mutant strains produced a lower increase in the expression levels of host plant defense-related genes respect to the parental strain. In addition, Xac LPS mutants were not able to generate HR during the incompatible interaction with tobacco plants. Our findings indicate that the structural modifications of Xac LPS impinge on other physiological attributes and lead to a reduction in bacterial virulence. On the other hand, Xac LPS has a role in the activation of basal defense in host and non host plants.


Assuntos
Citrus/microbiologia , Lipopolissacarídeos/metabolismo , Doenças das Plantas/microbiologia , Xanthomonas axonopodis/metabolismo , Xanthomonas axonopodis/patogenicidade , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Mutação , Fenótipo , Doenças das Plantas/imunologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Estresse Fisiológico , Virulência , Xanthomonas axonopodis/genética
13.
Curr Microbiol ; 65(3): 304-12, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22674174

RESUMO

Xanthomonas axonopodis pv. citri (Xac) is the causal agent of citrus bacterial canker, an economically important disease to world citrus industry. To monitor the infection process of Xac in different citrus plants, the enhanced green florescent protein (EGFP) visualizing system was constructed to visualize the propagation and localization in planta. First, the wild-type Xac was isolated from the diseased leaves of susceptible 'Bingtang' sweet orange, and then the isolated Xac was labeled with EGFP by triparental mating. After PCR identification, the growth kinetics and pathogenicity of the transformants were analyzed in comparison with the wild-type Xac. The EGFP-labeled bacteria were inoculated by spraying on the surface and infiltration in the mesophyll of 'Bingtang' sweet orange leaves. The bacterial cell multiplication and diffusion processes were observed directly under confocal laser scanning microscope at different intervals after inoculation. The results indicated that the EGFP-labeled Xac releasing clear green fluorescence light under fluorescent microscope showed the infection process and had the same pathogenicity as the wild type to citrus. Consequently, the labeled Xac demonstrated the ability as an efficient tool to monitor the pathogen infection.


Assuntos
Citrus sinensis/microbiologia , Proteínas de Fluorescência Verde/química , Doenças das Plantas/microbiologia , Xanthomonas axonopodis/química , Xanthomonas axonopodis/patogenicidade , Análise de Variância , Citrus sinensis/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Folhas de Planta/química , Folhas de Planta/microbiologia , Xanthomonas axonopodis/genética , Xanthomonas axonopodis/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(28): E1972-9, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22699502

RESUMO

Cassava bacterial blight (CBB), incited by Xanthomonas axonopodis pv. manihotis (Xam), is the most important bacterial disease of cassava, a staple food source for millions of people in developing countries. Here we present a widely applicable strategy for elucidating the virulence components of a pathogen population. We report Illumina-based draft genomes for 65 Xam strains and deduce the phylogenetic relatedness of Xam across the areas where cassava is grown. Using an extensive database of effector proteins from animal and plant pathogens, we identify the effector repertoire for each sequenced strain and use a comparative sequence analysis to deduce the least polymorphic of the conserved effectors. These highly conserved effectors have been maintained over 11 countries, three continents, and 70 y of evolution and as such represent ideal targets for developing resistance strategies.


Assuntos
Manihot/metabolismo , Manihot/microbiologia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA/métodos , Xanthomonas axonopodis/metabolismo , Área Sob a Curva , Progressão da Doença , Genoma Bacteriano , Genômica , Geografia , Imunidade Inata , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/genética , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Fatores de Tempo
15.
J Mol Biol ; 415(1): 102-17, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22056344

RESUMO

Comparisons among evolutionarily related enzymes offer opportunities to reveal how structural differences produce different catalytic activities. Two structurally related enzymes, Escherichia coli alkaline phosphatase (AP) and Xanthomonas axonopodis nucleotide pyrophosphatase/phosphodiesterase (NPP), have nearly identical binuclear Zn(2+) catalytic centers but show tremendous differential specificity for hydrolysis of phosphate monoesters or phosphate diesters. To determine if there are differences in Zn(2+) coordination in the two enzymes that might contribute to catalytic specificity, we analyzed both x-ray absorption spectroscopic and x-ray crystallographic data. We report a 1.29-Å crystal structure of AP with bound phosphate, allowing evaluation of interactions at the AP metal site with high resolution. To make systematic comparisons between AP and NPP, we measured zinc extended x-ray absorption fine structure for AP and NPP in the free-enzyme forms, with AMP and inorganic phosphate ground-state analogs and with vanadate transition-state analogs. These studies yielded average zinc-ligand distances in AP and NPP free-enzyme forms and ground-state analog forms that were identical within error, suggesting little difference in metal ion coordination among these forms. Upon binding of vanadate to both enzymes, small increases in average metal-ligand distances were observed, consistent with an increased coordination number. Slightly longer increases were observed in NPP relative to AP, which could arise from subtle rearrangements of the active site or differences in the geometry of the bound vanadyl species. Overall, the results suggest that the binuclear Zn(2+) catalytic site remains very similar between AP and NPP during the course of a reaction cycle.


Assuntos
Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Zinco/química , Zinco/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X/métodos , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Hidrólise , Ligantes , Metais/química , Metais/metabolismo , Modelos Moleculares , Fosfatos/química , Fosfatos/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/química , Pirofosfatases/metabolismo , Especificidade por Substrato , Vanadatos/química , Vanadatos/metabolismo , Espectroscopia por Absorção de Raios X/métodos , Xanthomonas axonopodis/genética , Xanthomonas axonopodis/metabolismo
16.
PLoS One ; 6(7): e21804, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21750733

RESUMO

Xanthomonas axonopodis pv. citri (Xac) causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS) and/or lipopolysaccharide (LPS), 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS), encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic determinants and regulatory mechanism of biofilm formation.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Genoma Bacteriano/genética , Xanthomonas axonopodis/genética , Proteínas de Bactérias/metabolismo , Citrus/microbiologia , Elementos de DNA Transponíveis/genética , Lipopolissacarídeos/biossíntese , Modelos Genéticos , Família Multigênica/genética , Mutagênese , Mutagênese Insercional , Doenças das Plantas/microbiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Xanthomonas axonopodis/metabolismo , Xanthomonas axonopodis/fisiologia
17.
Protein J ; 30(5): 324-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21626158

RESUMO

Several Gram-negative bacterial pathogens have developed type III secretion systems (T3SSs) to deliver virulence proteins directly into eukaryotic cells in a process essential for many diseases. The type III secretion processes require customized chaperones with high specificity for binding partners, thus providing the secretion to occur. Due to the very low sequence similarities among secretion chaperones, annotation and discrimination of a great majority of them is extremely difficult and a task with low scores even if genes are encountered that codify for small (<20 kDa) proteins with low pI and a tendency to dimerise. Concerning about this, herein, we present structural features on two hypothetical T3SSs chaperones belonging to plant pathogen Xanthomonas axonopodis pv. citri and suggest how low resolution models based on Small Angle X-ray Scattering patterns can provide new structural insights that could be very helpful in their analysis and posterior classification.


Assuntos
Proteínas de Bactérias/química , Chaperonas Moleculares/química , Xanthomonas axonopodis/química , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Dicroísmo Circular , Escherichia coli , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Xanthomonas axonopodis/metabolismo
18.
J Biol Chem ; 286(29): 25628-43, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21596742

RESUMO

Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo2Hex6GalA3Fuc3NAcRha4 and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response.


Assuntos
Citrus sinensis/imunologia , Citrus sinensis/microbiologia , Imunidade Inata , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Xanthomonas axonopodis/fisiologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Carboidratos , Citrus sinensis/anatomia & histologia , Citrus sinensis/genética , Regulação da Expressão Gênica de Plantas/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/isolamento & purificação , Dados de Sequência Molecular , Peróxidos/metabolismo , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/imunologia , Estômatos de Plantas/microbiologia , Xanthomonas axonopodis/metabolismo
19.
Mol Plant Microbe Interact ; 24(6): 649-61, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21261465

RESUMO

Xanthomonas axonopodis pv. citri is the causal agent of citrus canker, which is one of the most serious diseases of citrus. To understand the virulence mechanisms of X. axonopodis pv. citri, we designed and conducted genome-wide microarray analyses to characterize the HrpG and HrpX regulons, which are critical for the pathogenicity of X. axonopodis pv. citri. Our analyses revealed that 232 and 181 genes belonged to the HrpG and HrpX regulons, respectively. In total, 123 genes were overlapped in the two regulons at any of the three selected timepoints representing three growth stages of X. axonopodis pv. citri in XVM2 medium. Our results showed that HrpG and HrpX regulated all 24 type III secretion system genes, 23 type III secretion system effector genes, and 29 type II secretion system substrate genes. Our data revealed that X. axonopodis pv. citri regulates multiple cellular activities responding to the host environment, such as amino acid biosynthesis; oxidative phosphorylation; pentose-phosphate pathway; transport of sugar, iron, and potassium; and phenolic catabolism, through HrpX and HrpG. We found that 124 and 90 unknown genes were controlled by HrpG and HrpX, respectively. Our results suggest that HrpG and HrpX interplay with a global signaling network and co-ordinate the expression of multiple virulence factors for modification and adaption of host environment during X. axonopodis pv. citri infection.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fatores de Transcrição/metabolismo , Xanthomonas axonopodis/patogenicidade , Aminoácidos/biossíntese , Proteínas de Bactérias/genética , Transporte Biológico , Quimiotaxia , Perfilação da Expressão Gênica , Mutagênese Insercional , Mutação , Análise Serial de Proteínas , Fatores de Transcrição/genética , Virulência , Xanthomonas axonopodis/classificação , Xanthomonas axonopodis/genética , Xanthomonas axonopodis/metabolismo
20.
BMC Plant Biol ; 10: 51, 2010 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-20302677

RESUMO

BACKGROUND: Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. The citrus pathogen Xanthomonas axonopodis pv. citri possesses a PNP-like peptide (XacPNP) uniquely present in this bacteria. Previously we observed that the expression of XacPNP is induced upon infection and that lesions produced in leaves infected with a XacPNP deletion mutant were more necrotic and lead to earlier bacterial cell death, suggesting that the plant-like bacterial PNP enables the plant pathogen to modify host responses in order to create conditions favorable to its own survival. RESULTS: Here we measured chlorophyll fluorescence parameters and water potential of citrus leaves infiltrated with recombinant purified XacPNP and demonstrate that the peptide improves the physiological conditions of the tissue. Importantly, the proteomic analysis revealed that these responses are mirrored by rapid changes in the host proteome that include the up-regulation of Rubisco activase, ATP synthase CF1 alpha subunit, maturase K, and alpha- and beta-tubulin. CONCLUSIONS: We demonstrate that XacPNP induces changes in host photosynthesis at the level of protein expression and in photosynthetic efficiency in particular. Our findings suggest that the biotrophic pathogen can use the plant-like hormone to modulate the host cellular environment and in particular host metabolism and that such modulations weaken host defence.


Assuntos
Citrus/metabolismo , Citrus/microbiologia , Interações Hospedeiro-Patógeno , Peptídeos Natriuréticos/metabolismo , Proteoma/metabolismo , Xanthomonas axonopodis/metabolismo , Arabidopsis/metabolismo , Clorofila/metabolismo , Biologia Computacional , Eletroforese em Gel Bidimensional , Fluorescência , Espectrometria de Massas , Mutação/genética , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/química , Regiões Promotoras Genéticas/genética , Proteoma/química , Proteômica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...