Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.284
Filtrar
1.
Basic Clin Pharmacol Toxicol ; 134(6): 818-832, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583870

RESUMO

BACKGROUND: Autophagy can have either beneficial or detrimental effects on various heart diseases. Pharmacological interventions improve cardiac function, which is correlated with enhanced autophagy. To assess whether a xanthine derivative (KMUP-3) treatment coincides with enhanced autophagy while also providing cardio-protection, we investigated the hypothesis that KMUP-3 treatment activation of autophagy through PI3K/Akt/eNOS signalling offered cardioprotective properties. METHODS: The pro-autophagic effect of KMUP-3 was performed in a neonatal rat model targeting cardiac fibroblasts and cardiomyocytes, and by assessing the impact of KMUP-3 treatment on cardiotoxicity, we used antimycin A-induced cardiomyocytes. RESULTS: As determined by transmission electron microscopy observation, KMUP-3 enhanced autophagosome formation in cardiac fibroblasts. Furthermore, KMUP-3 significantly increased the expressions of autophagy-related proteins, LC3 and Beclin-1, both in a time- and dose-dependent manner; moreover, the pro-autophagy and nitric oxide enhancement effects of KMUP-3 were abolished by inhibitors targeting eNOS and PI3K in cardiac fibroblasts and cardiomyocytes. Notably, KMUP-3 ameliorated cytotoxic effects induced by antimycin A, demonstrating its protective autophagic response. CONCLUSION: These findings enable the core pathway of PI3K/Akt/eNOS axis in KMUP-3-enhanced autophagy activation and suggest its principal role in safeguarding against cardiotoxicity.


Assuntos
Autofagia , Miócitos Cardíacos , Óxido Nítrico Sintase Tipo III , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Autofagia/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Animais Recém-Nascidos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Xantinas/farmacologia , Células Cultivadas , Cardiotônicos/farmacologia , Cardiotoxicidade/prevenção & controle , Proteína Beclina-1/metabolismo
2.
Drug Res (Stuttg) ; 74(3): 133-144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350632

RESUMO

In this study, the protective efficacy of pentoxifylline (PTX) as a xanthine derivative against arsenic trioxide (ATO)-induced kidney and liver damage in mice was investigated. Thirty-six mice were divided into six groups, receiving intraperitoneal injections of saline, ATO, PTX, or a combination for four weeks. Blood samples were analyzed for serum biochemistry, while hepatic tissue underwent examination for histopathological changes and assessment of oxidative stress markers and antioxidant gene expression through Real-Time PCR. ATO exposure significantly increased serum markers (creatinine, ALT, BUN, ALP, AST) and induced histopathological changes in the liver. Moreover, it elevated renal and hepatic nitric oxide (NO) and lipid peroxidation (LPO) levels, and reduced antioxidant enzyme expression (CAT, GSR, GPx, MPO, SOD), total thiol groups (TTGs), and total antioxidant capacity (TAC). Conversely, PTX treatment effectively lowered serum hepatic and renal markers, improved antioxidant markers, and induced histopathological alterations. Notably, PTX did not significantly affect renal and hepatic NO levels. These findings suggest that PTX offers therapeutic potential in mitigating liver and acute kidney injuries induced by various insults, including exposure to ATO.


Assuntos
Alcaloides , Antioxidantes , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Trióxido de Arsênio/metabolismo , Trióxido de Arsênio/farmacologia , Fígado/metabolismo , Estresse Oxidativo , Alcaloides/farmacologia , Xantinas/metabolismo , Xantinas/farmacologia
3.
Chem Commun (Camb) ; 59(72): 10809-10812, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37599611

RESUMO

Xanthine derivatives were identified as inhibitors of the N6-methyladenosine (m6A) demethylase activity of fat-mass-and-obesity-associated protein (FTO) by activity-based high-throughput screening using the m6A-sensitive ribonuclease MazF. Pentoxifylline exhibited L-ascorbic acid concentration-dependent inhibitory activity against FTO, an unprecedented mode of inhibition, indicating that L-ascorbic acid is a promising key for designing FTO-specific inhibitors.


Assuntos
Alcaloides , Ácido Ascórbico/farmacologia , Ensaios de Triagem em Larga Escala , Ribonucleases , Xantinas/farmacologia
4.
Bioorg Med Chem Lett ; 94: 129461, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652099

RESUMO

Tryptophan hydroxylase 1 (TPH1) has emerged as a target for the treatment of metabolic diseases including obesity and fatty liver disease. A series of xanthine derivatives were synthesized and evaluated for their TPH1 inhibition. Among the synthesized compounds, compound 40 showed good in vitro activity and liver microsomal stability. Docking studies revealed that compound 40 showed better binding to TPH1 via key intermolecular interactions involving the xanthine scaffold, imidazo-thiazolyl ring, and hydroxyl-containing phenacyl moiety. In addition, compound 40 effectively suppressed the adipocyte differentiation of 3 T3-L1 cells.


Assuntos
Alcaloides , Hepatopatia Gordurosa não Alcoólica , Humanos , Diuréticos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Triptofano Hidroxilase/antagonistas & inibidores , Xantinas/química , Xantinas/farmacologia
5.
Biomed Pharmacother ; 165: 115109, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406513

RESUMO

Retinal neovascularization (RNV) and cell apoptosis observed in retinopathy are the most common cause of vision loss worldwide. Increasing vascular endothelial growth factor (VEGF), which was driven by hypoxia or inflammation, would result in RNV. This study investigated the anti-inflammatory and anti-apoptotic xanthine-based derivative KMUP-1 on hypoxia-induced conditions in vitro and in vivo. In the oxygen-induced retinopathy animal model, KMUP-1 mitigated vaso-obliteration and neovascularization. In the cell model of hypoxic endothelium cultured at 1% O2, KMUP-1 inhibited endothelial migration and tube formation and had no cytotoxic effect on cell growth. Upregulation of pro-angiogenic factors, HIF-1α and VEGF, and pro-inflammatory cytokines, IL-1ß and TNF-α, expression in the retinal-derived endothelial cells, RF/6 A cells, upon hypoxia stimulation, was suppressed by KMUP-1 treatment. RF/6 A cells treated with KMUP-1 showed a reduction of PI3K/Akt, ERK, and RhoA/ROCKs signaling pathways and induction of protective pathways such as eNOS and soluble guanylyl cyclase at 1% O2. Furthermore, KMUP-1 decreased the expression of VEGF, ICAM-1, TNF-α, and IL-1ß and increased the BCL-2/BAX ratio in the oxygen-induced retinopathy mouse retina samples. In conclusion, the results of this study suggest that KMUP-1 has potential therapeutic value in retinopathy due to its triple effects on anti-angiogenesis, anti-inflammation, and anti-apoptosis in hypoxic endothelium.


Assuntos
Doenças Retinianas , Neovascularização Retiniana , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais , Fator de Necrose Tumoral alfa/farmacologia , Fosfatidilinositol 3-Quinases , Doenças Retinianas/tratamento farmacológico , Neovascularização Retiniana/tratamento farmacológico , Xantinas/farmacologia , Oxigênio/farmacologia , Hipóxia/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia
6.
Chem Biol Interact ; 371: 110347, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36627075

RESUMO

Type 2 Diabetes Mellitus (T2DM) is characterized by hepatic insulin resistance, which results in increased glucose production and reduced glycogen storage in the liver. There is no previous study in the literature that has explored the role of Xanthosine in hepatic insulin resistance. Moreover, mechanistic explanation for the beneficial effects of Xanthosine in lowering glucose production in diabetes is yet to be determined. This study for the first time investigated the beneficial effects of Tribulus terrestris (TT) and its active constituent, Xanthosine on gluconeogenesis and glycogenesis in Free Fatty Acid (FFA)-induced CC1 hepatocytes and streptozotocin (STZ)-induced Wistar rats. Xanthosine enhanced glucose uptake and decreased glucose production through phosphorylation of AMP-activated protein kinase (AMPK) and forkhead box transcription factor O1 (FoxO1), and downregulation of two rate limiting enzymes of gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression in FFA-induced CC1 cells. Xanthosine also prevented FFA-induced decreases in the phosphorylation of AKT/Protein kinase B, glycogen synthase kinase-3ß (GSK3ß), and increased glycogen synthase (GS) phosphorylation to increase the glycogen content in the hepatocytes. Moreover, in STZ-induced diabetic rats, oral administration of TT n-butanol fraction (TTBF) enriched with compound Xanthosine (10, 50 & 100 mg/kg body weight) improved insulin sensitivity, reduced fasting blood glucose levels, improved glucose homeostasis by reducing gluconeogenesis via AMPK/FoxO1-mediated PEPCK and G6Pase down-regulation and increasing glycogenesis via AKT/GSK3ß-mediated GS activation. Overall, Xanthosine may be developed further for treating insulin resistance and hyperglycemia in T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Ratos , Animais , Gluconeogênese , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glicosídeos/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Ratos Wistar , Fígado/metabolismo , Glucose/metabolismo , Xantinas/farmacologia , Glicogênio/metabolismo , Homeostase
7.
J Proteomics ; 273: 104791, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538967

RESUMO

Cryopreservation may reduce sperm fertility due to cryodamage including physical-chemical and oxidative stress damages. As a powerful antioxidant, melatonin has been reported to improve cryoprotective effect of sperm. However, the molecular mechanism of melatonin on cryopreserved ram sperm hasn't been fully understand. Give this, this study aimed to investigate the postthaw motility parameters, antioxidative enzyme activities and lipid peroxidation, as well as proteomic, metabolomic changes of Huang-huai ram spermatozoa with freezing medium supplemented with melatonin. Melatonin was firstly replenished to the medium to yield five different final concentrations: 0.1, 0.5, 1.0, 1.5, and 2.0 mM. A control (NC) group without melatonin replenishment was included. Protective effects of melatonin as evidenced by postthaw motility, activities of T-AOC, T-SOD, GSH-Px, CAT, contents of MDA, 4-HNE, as well as acrosome integrity, plasma membrane integrity, with 0.5 mM being the most effective concentration (MC group). Furthermore, 29 differentially abundant proteins involving in sperm functions were screened among Fresh, NC and MC groups of samples (n = 5) based on the 4D-LFQ, with 7 of them upregulated in Fresh and MC groups. 26 differentially abundant metabolites were obtained involving in sperm metabolism among the three groups of samples (n = 8) based on the UHPLC-QE-MS, with 18 of them upregulated in Fresh and MC groups. According to the bioinformatic analysis, melatonin may have positive effects on frozen ram spermatozoa by regulating the abundance changes of vital proteins and metabolites related to sperm function. Particularly, several proteins such as PRCP, NDUFB8, NDUFB9, SDHC, DCTN1, TUBB6, TUBA3E, SSNA1, as well as metabolites like L-histidine, L-targinine, ursolic acid, xanthine may be potential novel biomarkers for evaluating the postthaw quality of ram spermatozoa. In conclusion, a dose-dependent replenishment of melatonin to freezing medium protected ram spermatozoa during cryopreservation, which can improve motility, antioxidant enzyme activities, reduce levels of lipid peroxidation products, modify the proteomic and metabolomic profiling of cryopreserved ram spermatozoa through reduction of oxidative stress, maintenance of OXPHOS and microtubule structure. SIGNIFICANCE: Melatonin, a powerful antioxidant protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner, with 0.5 mM being the most effective concentration. Furthermore, sequencing results based on the 4D-LFQ combined with the UHPLC-QE-MS indicated that melatonin modifies proteomic and metabolomic profiling of ram sperm during cryopreservation. According to the bioinformatic analysis, melatonin may have positive effects on frozen ram spermatozoa by regulating the expression changes of vital proteins and metabolites related to sperm metabolism and function. Particularly, several potential novel biomarkers for evaluating the postthaw quality of ram spermatozoa were acquired, proteins such as PRCP, NDUFB8, NDUFB9, SDHC, DCTN1, TUBB6, TUBA3E, SSNA1, as well as metabolites like L-histidine, L-targinine, ursolic acid, xanthine.


Assuntos
Melatonina , Preservação do Sêmen , Animais , Masculino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Criopreservação/métodos , Histidina/metabolismo , Histidina/farmacologia , Melatonina/farmacologia , Melatonina/metabolismo , Proteômica , Sêmen , Preservação do Sêmen/métodos , Ovinos , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Xantinas/metabolismo , Xantinas/farmacologia , Metabolômica , Ácido Ursólico
8.
Neuropharmacology ; 222: 109296, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377091

RESUMO

Alcohol-related poisoning is the foremost cause of death resulting from excessive acute alcohol consumption. Respiratory failure is crucial to the pathophysiology of fatal alcohol poisoning. Alcohol increases accumulation of extracellular adenosine. Adenosine suppresses breathing. The goal of this investigation was to test the hypothesis that adenosine signaling contributes to alcohol-induced respiratory suppression. In the first experiment, the breathing of mice was monitored following an injection of the non-selective adenosine receptor antagonist caffeine (40 mg/kg), alcohol (5 g/kg), or alcohol and caffeine combined. Caffeine reduced alcohol-induced respiratory suppression suggesting that adenosine contributes to the effects of alcohol on breathing. The second experiment utilized the same experimental design, but with the blood brain barrier impermeant non-selective adenosine receptor antagonist 8-sulfophenyltheophylline (8-SPT, 60 mg/kg) instead of caffeine. 8-SPT did not reduce alcohol-induced respiratory suppression suggesting that adenosine is contributing to alcohol-induced respiratory suppression in the central nervous system. The third and fourth experiments used the same experimental design as the first, but with the selective A1 receptor antagonist DPCPX (1 mg/kg) and the selective A2A receptor antagonist istradefylline (3.3 mg/kg). Istradefylline, but not DPCPX, reduced alcohol-induced respiratory suppression indicating an A2A receptor mediated effect. In the fifth experiment, alcohol-induced respiratory suppression was evaluated in Adk+/- mice which have impaired adenosine metabolism. Alcohol-induced respiratory suppression was exacerbated in Adk+/- mice. These findings indicate that adenosinergic signaling contributes to alcohol-induced respiratory suppression. Improving our understanding of how alcohol affects breathing may lead to better treatment strategies and better outcomes for patients with severe alcohol poisoning.


Assuntos
Adenosina , Insuficiência Respiratória , Animais , Camundongos , Adenosina/farmacologia , Cafeína/farmacologia , Etanol , Sistema Respiratório , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptor A2A de Adenosina , Antagonistas do Receptor A2 de Adenosina/farmacologia , Xantinas/farmacologia , Receptor A1 de Adenosina
9.
Molecules ; 27(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36557921

RESUMO

Xanthine derivatives have been a great area of interest for the development of potent bioactive agents. Thirty-eight methylxanthine derivatives as acetylcholinesterase inhibitors (AChE) were designed and synthesized. Suzuki-Miyaura cross-coupling reactions of 8-chlorocaffeine with aryl(hetaryl)boronic acids, the CuAAC reaction of 8-ethynylcaffeine with several azides, and the copper(I) catalyzed one-pot three-component reaction (A3-coupling) of 8-ethynylcaffeine, 1-(prop-2-ynyl)-, or 7-(prop-2-ynyl)-dimethylxanthines with formaldehyde and secondary amines were the main approaches for the synthesis of substituted methylxanthine derivatives (yield 53-96%). The bioactivity of all new compounds was evaluated by Ellman's method, and the results showed that most of the synthesized compounds displayed good and moderate acetylcholinesterase (AChE) inhibitory activities in vitro. The structure-activity relationships were also discussed. The data revealed that compounds 53, 59, 65, 66, and 69 exhibited the most potent inhibitory activity against AChE with IC50 of 0.25, 0.552, 0.089, 0.746, and 0.121 µM, respectively. The binding conformation and simultaneous interaction modes were further clarified by molecular docking studies.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Xantinas/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular
10.
J Med Chem ; 65(19): 12747-12780, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36136378

RESUMO

Necroptosis is a form of programmed cell death. Mixed lineage kinase domain-like protein (MLKL) is the necroptosis executor, and it is involved in various diseases such as tissue damage and neurodegeneration-related diseases. Here, we report the development of novel MLKL inhibitors with a uracil nucleus through scaffold morphing from our previously reported xanthine MLKL inhibitor TC13172. After a rational structure-activity relationship study, we obtained the highly potent compounds 56 and 66. Mechanism studies revealed that these compounds partially inhibited MLKL oligomerization and significantly inhibited MLKL translocation to the membrane. Compared with TC13172, 56 and 66 have a different mode of action and, importantly, their reaction rate with glutathione is more than 150-fold lower. This reduction in potential off-target effects and cell toxicity makes this series an attractive starting point for further drug development for MLKL-related disease treatments.


Assuntos
Proteínas Quinases , Uracila , Apoptose , Glutationa/metabolismo , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Uracila/farmacologia , Xantinas/farmacologia
11.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012151

RESUMO

We report the design, synthesis, and validation of the novel compound photocaged N6-cyclopentyladenosine (cCPA) to achieve precisely localized and timed release of the parent adenosine A1 receptor agonist CPA using 405 nm light. Gi protein-coupled A1 receptors (A1Rs) modulate neurotransmission via pre- and post-synaptic routes. The dynamics of the CPA-mediated effect on neurotransmission, characterized by fast activation and slow recovery, make it possible to implement a closed-loop control paradigm. The strength of neurotransmission is monitored as the amplitude of stimulus-evoked local field potentials. It is used for feedback control of light to release CPA. This system makes it possible to regulate neurotransmission to a pre-defined level in acute hippocampal brain slices incubated with 3 µM cCPA. This novel approach of closed-loop photopharmacology holds therapeutic potential for fine-tuned control of neurotransmission in diseases associated with neuronal hyperexcitability.


Assuntos
Agonistas do Receptor A1 de Adenosina , Receptor A1 de Adenosina , Agonistas do Receptor A1 de Adenosina/farmacologia , Retroalimentação , Hipocampo/metabolismo , Receptor A1 de Adenosina/metabolismo , Transmissão Sináptica , Xantinas/farmacologia
12.
Sci Total Environ ; 850: 157772, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934030

RESUMO

As global pollution, microplastics pollution has aroused growing concerns. In our experiment, the effect of microplastics acute exposure on the liver of swordtail fish was investigated by using LC-MS metabolomics. Fishes treated with high concentration polystyrene microspheres (1 µm) for 72 h were divided into three concentration groups: (A) no microplastics, (B): 1 × 106 microspheres L-1, (C): 1 × 107 microspheres L-1. Metabolomic analysis indicated that exposure to microplastics caused alterations of metabolic profiles in swordtail fish, including 37 differential metabolites were identified in B vs. A, screened out ten significant metabolites, which involved 14 metabolic pathways. One hundred three differential metabolites were identified in C vs. A, screened out 16 significant metabolites, which involved 30 metabolic pathways. Six significant metabolites were overlapping in group B vs. A and C vs. A; they are 3-hydroxyanthranilic acid, l-histidine, citrulline, linoleic acid, pantothenate, and xanthine. In addition, four metabolic pathways are overlapping in group B vs. A and C vs. A; they are beta-alanine metabolism, biosynthesis of amino acids, linoleic acid metabolism, and aminoacyl-tRNA biosynthesis. These differential metabolites were involved in oxidative stress, immune function, energy metabolism, sugar metabolism, lipid metabolism, molecule transport, and weakened feed utilization, growth performance, nutrient metabolism, and animal growth. Furthermore, we found that the number of interfered amino acids and microplastics showed a dose-effect. In summary, great attention should be paid to the potential impact of microplastics on aquatic organisms.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Ácido 3-Hidroxiantranílico/metabolismo , Ácido 3-Hidroxiantranílico/farmacologia , Animais , Cromatografia Líquida , Citrulina/metabolismo , Citrulina/farmacologia , Ciprinodontiformes/metabolismo , Histidina/metabolismo , Histidina/farmacologia , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos/farmacologia , Fígado/metabolismo , Metabolômica , Microplásticos/toxicidade , Plásticos/metabolismo , Poliestirenos/metabolismo , Poliestirenos/toxicidade , RNA de Transferência/metabolismo , RNA de Transferência/farmacologia , Açúcares/metabolismo , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/metabolismo , Xantinas/metabolismo , Xantinas/farmacologia , beta-Alanina/metabolismo , beta-Alanina/farmacologia
13.
FASEB J ; 36(7): e22381, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661421

RESUMO

Exposure to organic dust in animal and agricultural farms and the ensuing lung inflammation are linked to the development of respiratory diseases. We found previously that elevated production of reactive oxygen species (ROS) by aqueous poultry organic dust extract (hereafter referred to as dust extract) mediates induction of proinflammatory mediators in airway epithelial cells. In the present study, we investigated whether ROS generated by NADPH oxidases (NOX) and xanthine oxidase (XO) controls induction of inflammatory mediators by dust extract and the underlying mechanisms in bronchial epithelial cells. Using chemical inhibitors and siRNA targeted knockdown, we found that NOX1, NOX2, NOX4, and XO-derived ROS regulates induction of proinflammatory mediator levels. Like airway epithelial cells in vitro, NOX inhibitor VAS2870 reduced keratinocyte chemoattractant (KC), IL-6, and TNF-α production and 4-hydroxynonenal (4-HNE) staining induced by dust extract in mouse lungs. VAS2870 inhibition of proinflammatory mediators was associated with reduced NFκB and Stat3 activation indicating that NOX generated ROS activates NFκB and Stat3 to induce proinflammatory gene expression. Dust extract increased the membrane association of p47phox in airway epithelial cells indicating NOX2 activation but had no effect on NOX2 protein levels. In summary, our studies have shown that NOX and XO generated ROS control organic dust induction of proinflammatory mediators in airway epithelial cells via NFκB and Stat3 activation.


Assuntos
NADPH Oxidases , Xantina Oxidase , Animais , Poeira , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Camundongos , NADP , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Xantinas/farmacologia
14.
Biochem Pharmacol ; 200: 115027, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35395239

RESUMO

A2B adenosine receptor (A2BAR) antagonists have therapeutic potential in inflammation-related diseases such as asthma, chronic obstructive pulmonary disease and cancer. However, no drug is currently clinically approved, creating a demand for research on novel antagonists. Over the last decade, the study of target binding kinetics, along with affinity and potency, has been proven valuable in early drug discovery stages, as it is associated with improved in vivo drug efficacy and safety. In this study, we report the synthesis and biological evaluation of a series of xanthine derivatives as A2BAR antagonists, including an isothiocyanate derivative designed to bind covalently to the receptor. All 28 final compounds were assessed in radioligand binding experiments, to evaluate their affinity and for those qualifying, kinetic binding parameters. Both structure-affinity and structure-kinetic relationships were derived, providing a clear relationship between affinity and dissociation rate constants. Two structurally similar compounds, 17 and 18, were further evaluated in a label-free assay due to their divergent kinetic profiles. An extended cellular response was associated with long A2BAR residence times. This link between a ligand's A2BAR residence time and its functional effect highlights the importance of binding kinetics as a selection parameter in the early stages of drug discovery.


Assuntos
Antagonistas de Receptores Purinérgicos P1 , Xantinas , Antagonistas do Receptor A2 de Adenosina/farmacologia , Cinética , Ensaio Radioligante , Receptor A2B de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Xantinas/farmacologia
15.
FASEB J ; 36(4): e22214, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35230706

RESUMO

Adenosine is a local mediator that regulates changes in the cardiovascular system via activation of four G protein-coupled receptors (A1 , A2A , A2B , A3 ). Here, we have investigated the effect of A2A and A2B -selective agonists on vasodilatation in three distinct vascular beds of the rat cardiovascular system. NanoBRET ligand binding studies were used to confirm receptor selectivity. The regional hemodynamic effects of adenosine A2A and A2B selective agonists were investigated in conscious rats. Male Sprague-Dawley rats (350-450 g) were chronically implanted with pulsed Doppler flow probes on the renal artery, mesenteric artery, and the descending abdominal aorta. Cardiovascular responses were measured following intravenous infusion (3 min for each dose) of the A2A -selective agonist CGS 21680 (0.1, 0.3, 1 µg kg-1 min-1 ) or the A2B -selective agonist BAY 60-6583 (4,13.3, 40 µg kg-1 min-1 ) following predosing with the A2A -selective antagonist SCH 58261 (0.1 or 1 mg kg-1 min-1 ), the A2B /A2A antagonist PSB 1115 (10 mg kg-1 min-1 ) or vehicle. The A2A -selective agonist CGS 21680 produced a striking increase in heart rate (HR) and hindquarters vascular conductance (VC) that was accompanied by a significant decrease in mean arterial pressure (MAP) in conscious rats. In marked contrast, the A2B -selective agonist BAY 60-6583 significantly increased HR and VC in the renal and mesenteric vascular beds, but not in the hindquarters. Taken together, these data indicate that A2A and A2B receptors are regionally selective in their regulation of vascular tone. These results suggest that the development of A2B receptor agonists to induce vasodilatation in the kidney may provide a good therapeutic approach for the treatment of acute kidney injury.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Hemodinâmica/efeitos dos fármacos , Receptor A2A de Adenosina/fisiologia , Receptor A2B de Adenosina/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Aminopiridinas/farmacologia , Animais , Células HEK293 , Humanos , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Masculino , Fenetilaminas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Triazóis/farmacologia , Vasodilatação/efeitos dos fármacos , Xantinas/farmacologia
16.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216410

RESUMO

Alzheimer's disease (AD) is characterized by an increased plaque burden and tangle accumulation in the brain accompanied by extensive lipid alterations. Methylxanthines (MTXs) are alkaloids frequently consumed by dietary intake known to interfere with the molecular mechanisms leading to AD. Besides the fact that MTX consumption is associated with changes in triglycerides and cholesterol in serum and liver, little is known about the effect of MTXs on other lipid classes, which raises the question of whether MTX can alter lipids in a way that may be relevant in AD. Here we have analyzed naturally occurring MTXs caffeine, theobromine, theophylline, and the synthetic MTXs pentoxifylline and propentofylline also used as drugs in different neuroblastoma cell lines. Our results show that lipid alterations are not limited to triglycerides and cholesterol in the liver and serum, but also include changes in sphingomyelins, ceramides, phosphatidylcholine, and plasmalogens in neuroblastoma cells. These changes comprise alterations known to be beneficial, but also adverse effects regarding AD were observed. Our results give an additional perspective of the complex link between MTX and AD, and suggest combining MTX with a lipid-altering diet compensating the adverse effects of MTX rather than using MTX alone to prevent or treat AD.


Assuntos
Doença de Alzheimer/metabolismo , Lipídeos/fisiologia , Neuroblastoma/metabolismo , Doenças Neurodegenerativas/metabolismo , Xantinas/farmacologia , Cafeína/farmacologia , Linhagem Celular Tumoral , Colesterol/metabolismo , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Pentoxifilina/farmacologia , Teobromina/farmacologia , Teofilina/farmacologia , Triglicerídeos/metabolismo
17.
Molecules ; 26(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34946510

RESUMO

Methylxanthines and polyphenols from cocoa byproducts should be considered for their application in the development of functional ingredients for food, cosmetic and pharmaceutical formulations. Different cocoa byproducts were analyzed for their chemical contents, and skincare properties were measured by antioxidant assays and anti-skin aging activity. Musty cocoa beans (MC) and second-quality cocoa beans (SQ) extracts showed the highest polyphenol contents and antioxidant capacities. In the collagenase and elastase inhibition study, the highest effect was observed for the SQ extract with 86 inhibition and 36% inhibition, respectively. Among cocoa byproducts, the contents of catechin and epicatechin were higher in the SQ extract, with 18.15 mg/100 g of sample and 229.8 mg/100 g of sample, respectively. Cocoa bean shells (BS) constitute the main byproduct due to their methylxanthine content (1085 mg of theobromine and 267 mg of caffeine/100 g of sample). Using BS, various influencing factors in the extraction process were investigated by response surface methodology (RSM), before scaling up separations. The extraction process developed under optimized conditions allows us to obtain almost 2 g/min and 0.2 g/min of total methylxanthines and epicatechin, respectively. In this way, this work contributes to the sustainability and valorization of the cocoa production chain.


Assuntos
Antioxidantes/isolamento & purificação , Cacau/química , Catequina/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Xantinas/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Catequina/química , Catequina/farmacologia , Colagenases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Recuperação de Fluorescência Após Fotodegradação , Elastase Pancreática/antagonistas & inibidores , Elastase Pancreática/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Xantinas/química , Xantinas/farmacologia
18.
Nutrients ; 13(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34836344

RESUMO

It has been previously demonstrated that KEKS food containing exogenous ketogenic supplement ketone salt (KS) and ketone ester (KE) decreased the lipopolysaccharide (LPS)-generated increase in SWD (spike-wave discharge) number in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, likely through ketosis. KEKS-supplemented food-generated ketosis may increase adenosine levels, and may thus modulate both neuroinflammatory processes and epileptic activity through adenosine receptors (such as A1Rs and A2ARs). To determine whether these adenosine receptors are able to modify the KEKS food-generated alleviating effect on LPS-evoked increases in SWD number, an antagonist of A1R DPCPX (1,3-dipropyl-8-cyclopentylxanthine; 0.2 mg/kg) with LPS (50 µg/kg) and an antagonist of A2AR SCH58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine; 0.5 mg/kg) with LPS were co-injected intraperitoneally (i.p.) on the ninth day of KEKS food administration, and their influence not only on the SWD number, but also on blood glucose, R-beta-hydroxybutyrate (R-ßHB) levels, and body weight were measured. We showed that inhibition of A1Rs abolished the alleviating effect of KEKS food on LPS-generated increases in the SWD number, whereas blocking A2ARs did not significantly modify the KEKS food-generated beneficial effect. Our results suggest that the neuromodulatory benefits of KEKS-supplemented food on absence epileptic activity are mediated primarily through A1R, not A2AR.


Assuntos
Suplementos Nutricionais , Epilepsia Tipo Ausência/prevenção & controle , Cetonas/administração & dosagem , Pirimidinas/farmacologia , Triazóis/farmacologia , Xantinas/farmacologia , Ácido 3-Hidroxibutírico/sangue , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Injeções Intraperitoneais , Cetose/sangue , Cetose/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Antagonistas de Receptores Purinérgicos P1 , Ratos , Ratos Wistar , Receptores Purinérgicos P1/efeitos dos fármacos
19.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830353

RESUMO

The osmodiuretic agent Mannitol exerts cardioprotection against ischemia and reperfusion (I/R) injury when applied as a pre- and/or postconditioning stimulus. Previously, we demonstrated that these properties are mediated via the activation of mitochondrial ATP-sensitive potassium (mKATP) channels. However, considering Mannitol remains in the extracellular compartment, the question arises as to which receptor and intracellular signaling cascades are involved in myocardial protection by the osmodiuretic substance. Protein kinase B (Akt) and G (PKG), as part of the reperfusion injury salvage kinase (RISK) and/or endothelial nitric oxide (eNOS)/PKG pathway, are two well-investigated intracellular targets conferring myocardial protection upstream of mitochondrial potassium channels. Adenosine receptor subtypes have been shown to trigger different cardioprotective pathways, for example, the reperfusion injury. Further, Mannitol induces an increased activation of the adenosine 1 receptor (A1R) in renal cells conferring its nephroprotective properties. Therefore, we investigated whether (1) Akt and PKG are possible signaling targets involved in Mannitol-induced conditioning upstream of the mKATP channel and/or whether (2) cardioprotection by Mannitol is mediated via activation of the A1R. All experiments were performed on male Wistar rats in vitro employing the Langendorff isolated heart perfusion technique with infarct size determination as the primary endpoint. To unravel possible protein kinase activation, Mannitol was applied in combination with the Akt (MK2206) or PKG (KT5823) inhibitor. In further groups, an A1R blocker (DPCPX) was given with or without Mannitol. Preconditioning with Mannitol (Man) significantly reduced the infarct size compared to the control group. Co-administration of the A1R blocker DPXPC fully abolished myocardial protection of Mannitol. Interestingly and in contrast to the initial hypothesis, neither administration of the Akt nor the PKG blocker had any impact on the cardioprotective properties of Mannitol-induced preconditioning. These results are quite unexpected and show that the protein kinases Akt and PKG-as possible targets of known protective signaling cascades-are not involved in Mannitol-induced preconditioning. However, the cardioprotective effects of Mannitol are mediated via the A1R.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/genética , Manitol/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Receptor A1 de Adenosina/genética , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Carbazóis/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Coração/efeitos dos fármacos , Coração/fisiopatologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Precondicionamento Isquêmico Miocárdico , Canais KATP/antagonistas & inibidores , Rim/efeitos dos fármacos , Rim/patologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase Tipo III/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Receptor A1 de Adenosina/efeitos dos fármacos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Xantinas/farmacologia
20.
Cells ; 10(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831035

RESUMO

Splicing defects caused by mutations in the consensus sequences at the borders of introns and exons are common in human diseases. Such defects frequently result in a complete loss of function of the protein in question. Therapy approaches based on antisense oligonucleotides for specific gene mutations have been developed in the past, but they are very expensive and require invasive, life-long administration. Thus, modulation of splicing by means of small molecules is of great interest for the therapy of genetic diseases resulting from splice-site mutations. Using minigene approaches and patient cells, we here show that methylxanthine derivatives and the food-derived flavonoid luteolin are able to enhance the correct splicing of the AGA mRNA with a splice-site mutation c.128-2A>G in aspartylglucosaminuria, and result in increased AGA enzyme activity in patient cells. Furthermore, we also show that one of the most common disease causing TPP1 gene variants in classic late infantile neuronal ceroid lipofuscinosis may also be amenable to splicing modulation using similar substances. Therefore, our data suggest that splice-modulation with small molecules may be a valid therapy option for lysosomal storage disorders.


Assuntos
Aspartilglucosaminúria/genética , Aspartilglucosaminúria/terapia , Luteolina/farmacologia , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/terapia , Splicing de RNA/genética , Xantinas/farmacologia , Sequência de Aminoácidos , Aspartilglucosilaminase/química , Aspartilglucosilaminase/genética , Aspartilglucosilaminase/metabolismo , Sequência de Bases , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HEK293 , Homozigoto , Humanos , Luciferases de Vaga-Lume/metabolismo , Mutação/genética , Sítios de Splice de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tripeptidil-Peptidase 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...