Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Radiat Oncol ; 19(1): 16, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291439

RESUMO

BACKGROUND: Ionotropic glutamate receptors α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) modulate proliferation, invasion and radioresistance in glioblastoma (GB). Pharmacological targeting is difficult as many in vitro-effective agents are not suitable for in patient applications. We aimed to develop a method to test the well tolerated AMPAR- and NMDAR-antagonist xenon gas as a radiosensitizer in GB. METHODS: We designed a diffusion-based system to perform the colony formation assay (CFA), the radiobiological gold standard, under xenon exposure. Stable and reproducible gas atmosphere was validated with oxygen and carbon dioxide as tracer gases. After checking for AMPAR and NMDAR expression via immunofluorescence staining we performed the CFA with the glioblastoma cell lines U87 and U251 as well as the non-glioblastoma derived cell line HeLa. Xenon was applied after irradiation and additionally tested in combination with NMDAR antagonist memantine. RESULTS: The gas exposure system proved compatible with the CFA and resulted in a stable atmosphere of 50% xenon. Indications for the presence of glutamate receptor subunits were present in glioblastoma-derived and HeLa cells. Significantly reduced clonogenic survival by xenon was shown in U87 and U251 at irradiation doses of 4-8 Gy and 2, 6 and 8 Gy, respectively (p < 0.05). Clonogenic survival was further reduced by the addition of memantine, showing a significant effect at 2-8 Gy for both glioblastoma cell lines (p < 0.05). Xenon did not significantly reduce the surviving fraction of HeLa cells until a radiation dose of 8 Gy. CONCLUSION: The developed system allows for testing of gaseous agents with CFA. As a proof of concept, we have, for the first time, unveiled indications of radiosensitizing properties of xenon gas in glioblastoma.


Assuntos
Glioblastoma , Radiossensibilizantes , Humanos , Xenônio/farmacologia , Xenônio/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Memantina , Células HeLa , Receptores de N-Metil-D-Aspartato , Radiossensibilizantes/farmacologia
2.
J Pharmacol Exp Ther ; 386(3): 331-343, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391223

RESUMO

The effects of a general anesthetic xenon (Xe) on spontaneous, miniature, electrically evoked synaptic transmissions were examined using the "synapse bouton preparation," with which we can clearly evaluate pure synaptic responses and accurately quantify pre- and postsynaptic transmissions. Glycinergic and glutamatergic transmissions were investigated in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xe presynaptically inhibited spontaneous glycinergic transmission, the effect of which was resistant to tetrodotoxin, Cd2+, extracellular Ca2+, thapsigargin (a selective sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor), SQ22536 (an adenylate cyclase inhibitor), 8-Br-cAMP (membrane-permeable cAMP analog), ZD7288 (an hyperpolarization-activated cyclic nucleotide-gated channel blocker), chelerythrine (a PKC inhibitor), and KN-93 (a CaMKII inhibitor) while being sensitive to PKA inhibitors (H-89, KT5720, and Rp-cAMPS). Moreover, Xe inhibited evoked glycinergic transmission, which was canceled by KT5720. Like glycinergic transmission, spontaneous and evoked glutamatergic transmissions were also inhibited by Xe in a KT5720-sensitive manner. Our results suggest that Xe decreases glycinergic and glutamatergic spontaneous and evoked transmissions at the presynaptic level in a PKA-dependent manner. These presynaptic responses are independent of Ca2+ dynamics. We conclude that PKA can be the main molecular target of Xe in the inhibitory effects on both inhibitory and excitatory neurotransmitter release. SIGNIFICANCE STATEMENT: Spontaneous and evoked glycinergic and glutamatergic transmissions were investigated using the whole-cell patch clamp technique in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xenon (Xe) significantly inhibited glycinergic and glutamatergic transmission presynaptically. As a signaling mechanism, protein kinase A was responsible for the inhibitory effects of Xe on both glycine and glutamate release. These results may help understand how Xe modulates neurotransmitter release and exerts its excellent anesthetic properties.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Xenônio , Ratos , Animais , Ratos Wistar , Xenônio/farmacologia , Xenônio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurônios , Transmissão Sináptica , Terminações Pré-Sinápticas/metabolismo , Hipocampo/metabolismo , Medula Espinal , Neurotransmissores/metabolismo
3.
Biochemistry ; 62(11): 1659-1669, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37192381

RESUMO

Noble gases have well-established biological effects, yet their molecular mechanisms remain poorly understood. Here, we investigated, both experimentally and computationally, the molecular modes of xenon (Xe) action in bacteriophage T4 lysozyme (T4L). By combining indirect gassing methods with a colorimetric lysozyme activity assay, a reversible, Xe-specific (20 ± 3)% inhibition effect was observed. Accelerated molecular dynamic simulations revealed that Xe exerts allosteric inhibition on the protein by expanding a C-terminal hydrophobic cavity. Xe-induced cavity expansion results in global conformational changes, with long-range transduction distorting the active site where peptidoglycan binds. Interestingly, the peptide substrate binding site that enables lysozyme specificity does not change conformation. Two T4L mutants designed to reshape the C-terminal Xe cavity established a correlation between cavity expansion and enzyme inhibition. This work also highlights the use of Xe flooding simulations to identify new cryptic binding pockets. These results enrich our understanding of Xe-protein interactions at the molecular level and inspire further biochemical investigations with noble gases.


Assuntos
Muramidase , Xenônio , Xenônio/química , Xenônio/metabolismo , Muramidase/química , Gases Nobres/química , Gases Nobres/metabolismo , Sítios de Ligação , Proteínas
4.
Adv Healthc Mater ; 12(20): e2203359, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36977502

RESUMO

Inhalation of xenon gas improves acute kidney injury (AKI). However, xenon can only be delivered through inhalation, which causes non-specific distribution and low bioavailability of xenon, thus limiting its clinical application. In this study, xenon is loaded into platelet membrane-mimicking hybrid microbubbles (Xe-Pla-MBs). In ischemia-reperfusion-induced AKI, intravenously injected Xe-Pla-MBs adhere to the endothelial injury site in the kidney. Xe-Pla-MBs are then disrupted by ultrasound, and xenon is released to the injured site. This release of xenon reduced ischemia-reperfusion-induced renal fibrosis and improved renal function, which are associated with decreased protein expression of cellular senescence markers p53 and p16, as well as reduced beta-galactosidase in renal tubular epithelial cells. Together, platelet membrane-mimicking hybrid microbubble-delivered xenon to the injred site protects against ischemia-reperfusion-induced AKI, which likely reduces renal senescence. Thus, the delivery of xenon by platelet membrane-mimicking hybrid microbubbles is a potential therapeutic approach for AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Xenônio/farmacologia , Xenônio/metabolismo , Xenônio/uso terapêutico , Microbolhas , Rim/metabolismo , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Senescência Celular
5.
J Mol Graph Model ; 120: 108413, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36758327

RESUMO

The structure, energetic, and spectroscopy properties of the ionic system K2+(X2Σ+g) interacting with the noble gas atoms Argon, Krypton and Xenon are studied. The computations are done by an accurate ab initio approach based on the pseudo-potential technique, Gaussian basis sets, parameterized l-dependent polarization potentials and an analytic potential form for the K+Ar, K+Kr and K+Xe interactions. These interactions are added via the CCSD(T) potential taken from literature and fitted applying the analytical expression of Tang and Toennies. The application of the pseudo-potential approach reduces the number of active electrons of each complex to only one electron. The potential energy surfaces are analyzed on a large range of the Jacobi coordinates, R and θ. By the general interpolation outline based on the RKHS (Reproducing Kernel Hilbert Space) procedure, we have reproduced for each complex from our ab initio results the two-dimensional contour plots of an analytical potential. To evaluate the stability of each complex, we have determined from the potential energy surfaces the equilibrium distance (Re), the well depth (De), the quantum energy (D0), the zero-point-energy (ZPE) and the ZPE%. The results showed that the linear configurations, where the noble gas atom connected to the K2+(X2Σ+g) system, are the more stable.


Assuntos
Criptônio , Xenônio , Xenônio/química , Xenônio/metabolismo , Criptônio/química , Criptônio/metabolismo , Argônio/química , Argônio/metabolismo , Análise Espectral , Elétrons
6.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674434

RESUMO

It has been hypothesised that inhalational anaesthetics such as isoflurane (Iso) may trigger the pathogenesis of Alzheimer's disease (AD), while the gaseous anaesthetic xenon (Xe) exhibits many features of a putative neuroprotective agent. Loss of synapses is regarded as one key cause of dementia in AD. Multiple EGF-like domains 10 (MEGF10) is one of the phagocytic receptors which assists the elimination of synapses by astrocytes. Here, we investigated how ß-amyloid peptide 1-42 (Aß1-42), Iso and Xe interact with MEGF10-dependent synapse elimination. Murine cultured astrocytes as well as cortical and hippocampal ex vivo brain slices were treated with either Aß1-42, Iso or Xe and the combination of Aß1-42 with either Iso or Xe. We quantified MEGF10 expression in astrocytes and dendritic spine density (DSD) in slices. In brain slices of wild type and AAV-induced MEGF10 knock-down mice, antibodies against astrocytes (GFAP), pre- (synaptophysin) and postsynaptic (PSD95) components were used for co-localization analyses by means of immunofluorescence-imaging and 3D rendering techniques. Aß1-42 elevated pre- and postsynaptic components inside astrocytes and decreased DSD. The combined application with either Iso or Xe reversed these effects. In the presence of Aß1-42 both anaesthetics decreased MEGF10 expression. AAV-induced knock-down of MEGF10 reduced the pre- and postsynaptic marker inside astrocytes. The presented data suggest Iso and Xe are able to reverse the Aß1-42-induced enhancement of synaptic elimination in ex vivo hippocampal brain slices, presumably through MEGF10 downregulation.


Assuntos
Doença de Alzheimer , Anestésicos Inalatórios , Isoflurano , Camundongos , Animais , Isoflurano/farmacologia , Xenônio/farmacologia , Xenônio/metabolismo , Astrócitos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Anestésicos Inalatórios/farmacologia , Sinapses/metabolismo , Proteínas de Membrana/metabolismo
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(8): 1256-1262, 2022 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-36073227

RESUMO

OBJECTIVE: The purpose of this study was to determine whether xenon post-conditioning affects mTOR signaling as well as endoplasmic reticulum stress (ERS)-apoptosis pathway in rats with spinal cord ischemia/reperfusion injury. METHODS: Fifty male rats were randomized equally into sham-operated group (Sham group), I/R model group (I/R group), I/R model+ xenon post-conditioning group (Xe group), I/R model+rapamycin (a mTOR signaling pathway inhibitor) treatment group (I/R+ Rapa group), and I/R model + xenon post- conditioning with rapamycin treatment group (Xe + Rapa group).. In the latter 4 groups, SCIRI was induced by clamping the abdominal aorta for 85 min followed by reperfusion for 4 h. Rapamycin (or vehicle) was administered by daily intraperitoneal injection (4 mg/kg) for 3 days before SCIRI, and xenon post-conditioning by inhalation of 1∶1 mixture of xenon and oxygen for 1 h at 1 h after initiation of reperfusion; the rats without xenon post-conditioning were given inhalation of nitrogen and oxygen (1∶ 1). After the reperfusion, motor function and histopathologic changes in the rats were examined. Western blotting and real-time PCR were used to detect the protein and mRNA expressions of GRP78, ATF6, IRE1α, PERK, mTOR, p-mTOR, Bax, Bcl-2 and caspase-3 in the spinal cord. RESULTS: The rats showed significantly lowered hind limb motor function following SCIRI (P < 0.01) with a decreased count of normal neurons, increased mRNA and protein expressions of GRP78, ATF6, IRE1α, PERK, and caspase-3, and elevated p-mTOR/mTOR ratio and Bax/Bcl-2 ratio (P < 0.01). Xenon post-conditioning significantly decreased the mRNA and protein levels of GRP78, ATF6, IRE1α, PERK and caspase-3 (P < 0.05 or 0.01) and reduced p-mTOR/mTOR and Bax/Bcl-2 ratios (P < 0.01) in rats with SCIRI; the mRNA contents and protein levels of GRP78 and ATF6 were significantly decreased in I/R+Rapa group (P < 0.01). Compared with those in Xe group, the rats in I/R+Rapa group and Xe+Rapa had significantly lowered BBB and Tarlov scores of the hind legs (P < 0.01), and caspase-3 protein level and Bax/Bcl-2 ratio were significantly lowered in Xe+Rapa group (P < 0.05 or 0.01). CONCLUSION: By inhibiting ERS and neuronal apoptosis, xenon post- conditioning may have protective effects against SCIRI in rats. The mTOR signaling pathway is partially involved in this process.


Assuntos
Traumatismo por Reperfusão/complicações , Isquemia do Cordão Espinal/complicações , Serina-Treonina Quinases TOR/metabolismo , Xenônio/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Injeções Intraperitoneais , Masculino , Neurônios/metabolismo , Neurônios/patologia , Nitrogênio/administração & dosagem , Nitrogênio/metabolismo , Oxigênio/administração & dosagem , Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Isquemia do Cordão Espinal/metabolismo , Isquemia do Cordão Espinal/patologia , Xenônio/administração & dosagem , Xenônio/farmacologia , Xenônio/uso terapêutico , Proteína X Associada a bcl-2/metabolismo
8.
Obesity (Silver Spring) ; 30(9): 1831-1841, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35912825

RESUMO

OBJECTIVE: This study aimed to validate xenon-enhanced computed tomography (XECT) for the detection of brown adipose tissue (BAT) and to use XECT to assess differences in BAT distribution and perfusion between lean, obese, and diabetic nonhuman primates (NHPs). METHODS: Whole-body XECT imaging was performed in anesthetized rhesus and vervet monkeys during adrenergic stimulation of BAT thermogenesis. In XECT images, BAT was identified as fat tissue that, during xenon inhalation, underwent significant radiodensity enhancement compared with subcutaneous fat. To measure BAT blood flow, BAT radiodensity enhancement was measured over time on the six computed tomography scans acquired during xenon inhalation. Postmortem immunohistochemical staining was used to confirm imaging findings. RESULTS: XECT was able to correctly identify all BAT depots that were confirmed at necropsy, enabling construction of the first comprehensive anatomical map of BAT in NHPs. A significant decrease in BAT perfusion was found in diabetic animals compared with obese animals and healthy animals, as well as absence of axillary BAT and significant reduction of supraclavicular BAT in diabetic animals compared with obese and lean animals. CONCLUSIONS: The use of XECT in NHP models of obesity and diabetes allows the analysis of the impact of metabolic status on BAT mass and perfusion.


Assuntos
Tecido Adiposo Marrom , Diabetes Mellitus , Tecido Adiposo Marrom/metabolismo , Animais , Chlorocebus aethiops , Diabetes Mellitus/diagnóstico por imagem , Diabetes Mellitus/metabolismo , Obesidade/diagnóstico por imagem , Obesidade/metabolismo , Perfusão , Primatas , Tomografia Computadorizada por Raios X/métodos , Xenônio/metabolismo
9.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743082

RESUMO

Evidence indicates that inhalative anesthetics enhance the ß-site amyloid precursor protein (APP)-cleaving enzyme (BACE) activity, increase amyloid beta 1-42 (Aß1-42) aggregation, and modulate dendritic spine dynamics. However, the mechanisms of inhalative anesthetics on hippocampal dendritic spine plasticity and BACE-dependent APP processing remain unclear. In this study, hippocampal slices were incubated with equipotent isoflurane (iso), sevoflurane (sevo), or xenon (Xe) with/without pretreatment of the BACE inhibitor LY2886721 (LY). Thereafter, CA1 dendritic spine density, APP processing-related molecule expressions, nectin-3 levels, and long-term potentiation (LTP) were tested. The nectin-3 downregulation on LTP and dendritic spines were evaluated. Sevo treatment increased hippocampal mouse Aß1-42 (mAß1-42), abolished CA1-LTP, and decreased spine density and nectin-3 expressions in the CA1 region. Furthermore, CA1-nectin-3 knockdown blocked LTP and reduced spine density. Iso treatment decreased spine density and attenuated LTP. Although Xe blocked LTP, it did not affect spine density, mAß1-42, or nectin-3. Finally, antagonizing BACE activity partly restored sevo-induced deficits. Taken together, our study suggests that sevo partly elevates BACE activity and interferes with synaptic remodeling, whereas iso mildly modulates synaptic changes in the CA1 region of the hippocampus. On the other hand, Xe does not alternate dendritic spine remodeling.


Assuntos
Precursor de Proteína beta-Amiloide , Anestésicos , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Anestésicos/farmacologia , Animais , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Camundongos , Nectinas/metabolismo , Plasticidade Neuronal , Sevoflurano/farmacologia , Xenônio/metabolismo , Xenônio/farmacologia
10.
Arch Biochem Biophys ; 724: 109265, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35500669

RESUMO

Xenon can produce general anesthesia. Its main protein target is the N-methyl-D-aspartate receptor, a ionotropic channel playing a pivotal role in the function of the central nervous system. The molecular mechanisms allowing this noble gas to have such a specific effect remain obscure, probably as a consequence of the lack of structural data at the atomic level of detail. As a result of five independent molecular dynamics simulations, three different binding sites were found for xenon in the glycine binding domain of the N-methyl-D-aspartate receptor, the xenon binding constant being of the order of 2 108 s-1⋅M-1. On the other hand, the absolute binding free energy of xenon in these sites ranges between -3 and -14 kJ⋅mole-1. Noteworthy, it depends significantly upon the protein conformer chosen for performing the calculation, suggesting that larger values could be obtained, if other conformers were considered. These three sites are next to each other, one of them being next to the glycine site. This could noteworthy explain why the F758W and F758Y mutations can prevent competitive inhibition by xenon without affecting glycine binding.


Assuntos
Receptores de N-Metil-D-Aspartato , Xenônio , Sítios de Ligação , Glicina/química , Receptores de Aminoácido , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Xenônio/metabolismo , Xenônio/farmacologia
11.
Med Gas Res ; 12(1): 24-27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34472499

RESUMO

Xenon is confirmed to diffuse readily through membranes and has properties of transdermal enhancer. In this study, the ability of xenon to regulate the transdermal diffusion of niacinamide was investigated using a model of an artificial skin analogue of Strat-M™ membranes in Franz cells. Based on the data obtained, we found that in the simplified biophysical model of Strat-M™ membranes xenon exerts its enhancer effect based on the heterogeneous nucleation of xenon at the interfaces in the microporous structures of Strat-M™ membranes.


Assuntos
Absorção Cutânea , Pele , Membranas Artificiais , Niacinamida/metabolismo , Xenônio/metabolismo
12.
J Inorg Biochem ; 181: 65-73, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29407909

RESUMO

Dehaloperoxidase-hemoglobin is the first hemoglobin identified with biologically-relevant oxidative functions, which include peroxidase, peroxygenase and oxidase activities. Herein we report a study of the protein backbone dynamics of DHP using heteronuclear NMR relaxation methods and molecular dynamics (MD) simulations to address the role of protein dynamics in switching from one function to another. The results show that DHP's backbone helical regions and turns have average order parameters of S2 = 0.87 ±â€¯0.03 and S2 = 0.76 ±â€¯0.08, respectively. Furthermore, DHP is primarily a monomer in solution based on the overall tumbling correlation time τm is 9.49 ±â€¯1.65 ns calculated using the prolate diffusion tensor model in the program relax. A number of amino acid residues have significant Rex using the Lipari-Szabo model-free formalism. These include Lys3, Ile6, Leu13, Gln18, Arg32, Ser48, Met49, Thr56, Phe60, Arg69, Thr71 Cys73, Ala77, Asn81, Gly95, Arg109, Phe115, Leu127 and Met136, which may experience slow conformational motions on the microseconds-milliseconds time scale according to the model. Caution should be used when the model contains >4 fitting parameters. The program caver3.0 was used to identify tunnels inside DHP obtained from MD simulation snapshots that are consistent with the importance of the Xe binding site, which is located at the central intersection of the tunnels. These tunnels provide diffusion pathways for small ligands such as O2, H2O and H2O2 to enter the distal pocket independently of the trajectory of substrates and inhibitors, both of which are aromatic molecules.


Assuntos
Hemoglobinas/metabolismo , Modelos Moleculares , Peroxidases/metabolismo , Poliquetos/enzimologia , Algoritmos , Animais , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Hemoglobinas/química , Hemoglobinas/genética , Histidina/química , Histidina/genética , Histidina/metabolismo , Cinética , Ligantes , Simulação de Dinâmica Molecular , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Peroxidases/química , Peroxidases/genética , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Xenônio/química , Xenônio/metabolismo
13.
Psychogeriatrics ; 18(1): 3-12, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28745443

RESUMO

BACKGROUND: Quantitative cerebral blood flow (CBF) measurement is expected to help early detection of functional abnormalities caused by Alzheimer's disease (AD) and enable AD treatment to begin in its early stages. Recently, a technique of layer analysis was reported that allowed CBF to be analyzed from the outer to inner layers of the brain. The aim of this work was to develop methods for discriminating between patients with mild AD and healthy subjects based on CBF images of the lateral views created with the layer analysis technique in xenon-enhanced computed tomography. METHODS: Xenon-enhanced computed tomography using a wide-volume CT was performed on 17 patients with mild AD aged 75 or older and on 15 healthy age-matched volunteers. For each subject, we created CBF images of the right and left lateral views with a depth of 10-15 mm from the surface of the brain. Ten circular regions of interest (ROI) were placed on each image, and CBF was calculated for each ROI. We determined discriminant ROI that had CBF that could be used to differentiate between the AD and volunteer groups. AD patients' CBF range (mean - SD to mean + SD) and healthy volunteers' CBF range (mean - SD to mean + SD) were obtained for each ROI. Receiver-operator curves were created to identify patients with AD for each of the discriminant ROI and for the AD patients' and healthy volunteers' CBF ranges. RESULTS: We selected an ROI on both the right and left temporal lobes as the discriminant ROI. Areas under the receiver-operator curve were 93.3% using the ROI on the right temporal lobe, 95.3% using the ROI on the left temporal lobe, and 92.4% using the AD patients' and healthy volunteers' CBF ranges. CONCLUSIONS: We could effectively discriminate between patients with mild AD and healthy subjects using ROI placed on CBF images of the lateral views in xenon-enhanced computed tomography.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Xenônio/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Meios de Contraste , Feminino , Voluntários Saudáveis , Humanos , Aumento da Imagem , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Tomografia Computadorizada de Emissão de Fóton Único/métodos
14.
PLoS One ; 12(9): e0184045, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886086

RESUMO

Tripartite efflux pumps are among the main actors responsible for antibiotics resistance in Gram-negative bacteria. In the last two decades, structural studies gave crucial information about the assembly interfaces and the mechanistic motions. Thus rigidifying the assembly seems to be an interesting way to hamper the drug efflux. In this context, xenon is a suitable probe for checking whether small ligands could act as conformational lockers by targeting hydrophobic cavities. Here we focus on OprN, the outer membrane channel of the MexEF efflux pump from Pseudomonas aeruginosa. After exposing OprN crystals to xenon gas pressure, 14 binding sites were observed using X-ray crystallography. These binding sites were unambiguously characterized in hydrophobic cavities of OprN. The major site is observed in the sensitive iris-like region gating the channel at the periplasmic side, built by the three key-residues Leu 405, Asp 109, and Arg 412. This arrangement defines along the tunnel axis a strong hydrophobic/polar gradient able to enhance the passive efflux mechanism of OprN. The other xenon atoms reveal strategic hydrophobic regions of the channel scaffold to target, with the aim to freeze the dynamic movements responsible of the open/close conformational equilibrium in OprN.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Xenônio/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes , Xenônio/química
15.
J Comput Assist Tomogr ; 41(3): 477-483, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28505626

RESUMO

OBJECTIVE: The aim of this study was to develop a method for discriminating between patients with Alzheimer disease (AD) and healthy subjects using layer analysis of cerebral blood flow (CBF) and xenon solubility coefficient (λ) in xenon-enhanced computed tomography (CT). METHODS: Xenon-enhanced CT was performed on 27 patients with AD (81.7 [3.3] years old) and 15 healthy volunteers (78.6 [4.0] years old) using a wide volume CT. For each subject, we created the first- (surface) to sixth-layer images of CBF and λ for the 6 viewing directions (layer thickness, 5 mm). For the discriminant views, receiver operating characteristic curves for the ratio of CBF to λ were created to identify patients with AD. RESULTS: For the third- and fourth-layer left lateral views, which were designated as the discriminant views, areas under the receiver operating characteristic curve were 96.8% and 97.4%, respectively. CONCLUSIONS: With the use of the discriminant views obtained by xenon-enhanced CT, we could effectively discriminate between patients with AD and healthy subjects using both CBF and λ.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Circulação Cerebrovascular/fisiologia , Aumento da Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Xenônio/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Meios de Contraste , Feminino , Humanos , Masculino
16.
PLoS Comput Biol ; 13(3): e1005450, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28358830

RESUMO

In heme proteins, the efficient transport of ligands such as NO or O2 to the binding site is achieved via ligand migration networks. A quantitative assessment of ligand diffusion in these networks is thus essential for a better understanding of the function of these proteins. For this, Xe migration in truncated hemoglobin N (trHbN) of Mycobacterium Tuberculosis was studied using molecular dynamics simulations. Transitions between pockets of the migration network and intra-pocket relaxation occur on similar time scales (10 ps and 20 ps), consistent with low free energy barriers (1-2 kcal/mol). Depending on the pocket from where Xe enters a particular transition, the conformation of the side chains lining the transition region differs which highlights the coupling between ligand and protein degrees of freedom. Furthermore, comparison of transition probabilities shows that Xe migration in trHbN is a non-Markovian process. Memory effects arise due to protein rearrangements and coupled dynamics as Xe moves through it.


Assuntos
Hemoglobinas Anormais/química , Hemoglobinas Anormais/metabolismo , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/metabolismo , Xenônio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biologia Computacional , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/metabolismo , Ligação Proteica , Conformação Proteica
17.
Angew Chem Int Ed Engl ; 55(31): 8984-7, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27305488

RESUMO

Molecular imaging holds considerable promise for elucidating biological processes in normal physiology as well as disease states, but requires noninvasive methods for identifying analytes at sub-micromolar concentrations. Particularly useful are genetically encoded, single-protein reporters that harness the power of molecular biology to visualize specific molecular processes, but such reporters have been conspicuously lacking for in vivo magnetic resonance imaging (MRI). Herein, we report TEM-1 ß-lactamase (bla) as a single-protein reporter for hyperpolarized (HP) (129) Xe NMR, with significant saturation contrast at 0.1 µm. Xenon chemical exchange saturation transfer (CEST) interactions with the primary allosteric site in bla give rise to a unique saturation peak at 255 ppm, well removed (≈60 ppm downfield) from the (129) Xe-H2 O peak. Useful saturation contrast was also observed for bla expressed in bacterial cells and mammalian cells.


Assuntos
Imagem Molecular , Xenônio/metabolismo , beta-Lactamases/metabolismo , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Xenônio/química , Isótopos de Xenônio , beta-Lactamases/química
18.
NMR Biomed ; 29(3): 220-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26915791

RESUMO

Hyperpolarized (HP) (129) Xe MR offers unique advantages for brain functional imaging (fMRI) because of its extremely high sensitivity to different chemical environments and the total absence of background noise in biological tissues. However, its advancement and applications are currently plagued by issues of signal strength. Generally, xenon atoms found in the brain after inhalation are transferred from the lung via the bloodstream. The longitudinal relaxation time (T1 ) of HP (129) Xe is inversely proportional to the pulmonary oxygen concentration in the lung because oxygen molecules are paramagnetic. However, the T1 of (129) Xe is proportional to the pulmonary oxygen concentration in the blood, because the higher pulmonary oxygen concentration will result in a higher concentration of diamagnetic oxyhemoglobin. Accordingly, there should be an optimal pulmonary oxygen concentration for a given quantity of HP (129) Xe in the brain. In this study, the relationship between pulmonary oxygen concentration and HP (129) Xe signal in the brain was analyzed using a theoretical model and measured through in vivo experiments. The results from the theoretical model and experiments in rats are found to be in good agreement with each other. The optimal pulmonary oxygen concentration predicted by the theoretical model was 21%, and the in vivo experiments confirmed the presence of such an optimal ratio by reporting measurements between 25% and 35%. These findings are helpful for improving the (129) Xe signal in the brain and make the most of the limited spin polarization available for brain experiments. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Encéfalo/metabolismo , Imageamento por Ressonância Magnética , Oxigênio/metabolismo , Xenônio/metabolismo , Animais , Simulação por Computador , Pulmão/metabolismo , Ratos Sprague-Dawley , Isótopos de Xenônio
19.
PLoS One ; 11(2): e0149795, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26910105

RESUMO

GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and "locally-closed" (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Cianobactérias/química , Ativação do Canal Iônico , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/química , Xenônio/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Cianobactérias/metabolismo , Canais Iônicos/metabolismo , Ligantes , Ligação Proteica , Estrutura Quaternária de Proteína , Xenônio/metabolismo
20.
Magn Reson Med ; 74(6): 1726-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25483611

RESUMO

PURPOSE: Diffusion-weighted (DW) hyperpolarized (129) Xe morphometry magnetic resonance imaging (MRI) can be used to map regional differences in lung tissue micro-structure. We aimed to generate absolute xenon concentration ([Xe]) and alveolar oxygen partial pressure (pA O2 ) maps by extracting the unrestricted diffusion coefficient (D0 ) of xenon as a morphometric parameter. METHODS: In this proof-of-concept demonstration, morphometry was performed using multi b-value (0, 12, 20, 30 s/cm(2) ) DW hyperpolarized (129) Xe images obtained in four never-smokers and four COPD ex-smokers. Morphometric parameters and D0 maps were computed and the latter used to generate [Xe] and pA O2 maps. Xenon concentration phantoms estimating a range of values mimicking those observed in vivo were also investigated. RESULTS: Xenon D0 was significantly increased (P = 0.035) in COPD (0.14 ± 0.03 cm(2) /s) compared with never-smokers (0.12 ± 0.02 cm(2) /s). COPD ex-smokers also had significantly decreased [Xe] (COPD = 8 ± 7% versus never-smokers = 13 ± 8%, P = 0.012) and increased pA O2 (COPD = 18 ± 3% versus never-smokers = 15 ± 3%, P = 0.009) compared with never-smokers. Phantom measurements showed the expected dependence of D0 on [Xe] over the range of concentrations anticipated in vivo. CONCLUSION: DW hyperpolarized (129) Xe MRI morphometry can be used to simultaneously map [Xe] and pA O2 in addition to providing micro-structural biomarkers of emphysematous destruction in COPD. Phantom measurements of D0 ([Xe]) supported the hypotheses that differences in subjects may reflect differences in functional residual capacity.


Assuntos
Oxigênio/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Xenônio/metabolismo , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste/farmacocinética , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual , Isótopos de Xenônio/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...