Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(10): e0240101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33007036

RESUMO

Bacterial phytopathogen Xylella fastidiosa specifically colonizes the plant vascular tissue through a complex process of cell adhesion, biofilm formation, and dispersive movement. Adaptation to the chemical environment of the xylem is essential for bacterial growth and progression of infection. Grapevine xylem sap contains a range of plant secondary metabolites such as phenolics, which fluctuate in response to pathogen infection and plant physiological state. Phenolic compounds are often involved in host-pathogen interactions and influence infection dynamics through signaling activity, antimicrobial properties, and alteration of bacterial phenotypes. The effect of biologically relevant concentrations of phenolic compounds coumaric acid, gallic acid, epicatechin, and resveratrol on growth of X. fastidiosa was assessed in vitro. None of these compounds inhibited bacterial growth, but epicatechin and gallic acid reduced cell-surface adhesion. Cell-cell aggregation decreased with resveratrol treatment, but the other phenolic compounds tested had minimal effect on aggregation. Expression of attachment (xadA) and aggregation (fimA) related genes were altered by presence of the phenolic compounds, consistent with observed phenotypes. All four of the phenolic compounds bound to purified X. fastidiosa lipopolysaccharide (LPS), a major cell-surface component. Information regarding the impact of chemical environment on pathogen colonization in plants is important for understanding the infection process and factors associated with host susceptibility.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Membrana Celular/metabolismo , Lipopolissacarídeos/metabolismo , Fenóis/farmacologia , Vitis/química , Xylella/citologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Aderência Bacteriana/genética , Catequina/farmacologia , Membrana Celular/efeitos dos fármacos , Meios de Cultura/química , Fímbrias Bacterianas/efeitos dos fármacos , Fímbrias Bacterianas/genética , Ácido Gálico/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Resveratrol/farmacologia , Xylella/efeitos dos fármacos , Xylella/genética , Xylella/crescimento & desenvolvimento
2.
Nanotechnology ; 30(21): 214003, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30699399

RESUMO

Due to their high aspect ratio and increased surface-to-foot-print area, arrays of vertical semiconductor nanowires are used in numerous biological applications, such as cell transfection and biosensing. Here we focus on two specific valuable biosensing approaches that, so far, have received relatively limited attention in terms of their potential capabilities: cellular mechanosensing and lightguiding-induced enhanced fluorescence detection. Although proposed a decade ago, these two applications for using vertical nanowire arrays have only very recently achieved significant breakthroughs, both in terms of understanding their fundamental phenomena, and in the ease of their implementation. We review the status of the field in these areas and describe significant findings and potential future directions.


Assuntos
Técnicas Biossensoriais , Mecanotransdução Celular/fisiologia , Nanofios/química , Semicondutores , Biomarcadores/urina , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Interleucina-8/urina , Luz , Células MCF-7 , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo , Nanofios/ultraestrutura , Espectrometria de Fluorescência/métodos , Fator de Necrose Tumoral alfa/urina , Xylella/citologia , Xylella/fisiologia , Óxido de Zinco/química
3.
Sci Rep ; 6: 31098, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27492542

RESUMO

Pierce's disease (PD) is a deadly disease of grapevines caused by the Gram-negative bacterium Xylella fastidiosa. Though disease symptoms were formerly attributed to bacteria blocking the plant xylem, this hypothesis is at best overly simplistic. Recently, we used a proteomic approach to characterize the secretome of X. fastidiosa, both in vitro and in planta, and identified LesA as one of the pathogenicity factors of X. fastidiosa in grapevines that leads to leaf scorching and chlorosis. Herein, we characterize another such factor encoded by PD0956, designated as an antivirulence secreted protease "PrtA" that displays a central role in controlling in vitro cell proliferation, length, motility, biofilm formation, and in planta virulence. The mutant in X. fastidiosa exhibited reduced cell length, hypermotility (and subsequent lack of biofilm formation) and hypervirulence in grapevines. These findings are supported by transcriptomic and proteomic analyses with corresponding plant infection data. Of particular interest, is the hypervirulent response in grapevines observed when X. fastidiosa is disrupted for production of PrtA, and that PD-model tobacco plants transformed to express PrtA exhibited decreased symptoms after infection by X. fastidiosa.


Assuntos
Biofilmes/crescimento & desenvolvimento , Metaloendopeptidases/metabolismo , Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/fisiologia , Xylella/patogenicidade , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Locomoção , Metaloendopeptidases/genética , Proteômica , Nicotiana/microbiologia , Virulência , Xylella/citologia , Xylella/genética
4.
J Basic Microbiol ; 55(12): 1357-66, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26218710

RESUMO

Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC), colonizes plant xylem, reducing sap flow, and inducing internerval chlorosis, leaf size reduction, necrosis, and harder and smaller fruits. This bacterium may be transmitted from plant to plant by sharpshooter insects, including Bucephalogonia xanthopis. The citrus endophytic bacterium Methylobacterium mesophilicum SR1.6/6 colonizes citrus xylem and previous studies showed that this strain is also transferred from plant to plant by B. xanthopis (Insecta), suggesting that this endophytic bacterium may interact with X. fastidiosa in planta and inside the insect vector during co-transmission by the same insect vector. To better understand the X. fastidiosa behavior in the presence of M. mesophilicum, we evaluated the X. fastidiosa transcriptional profile during in vitro interaction with M. mesophilicum SR1.6/6. The results showed that during co-cultivation, X. fastidiosa down-regulated genes related to growth and up-regulated genes related to energy production, stress, transport, and motility, suggesting the existence of a specific adaptive response to the presence of M. mesophilicum in the culture medium.


Assuntos
Regulação Bacteriana da Expressão Gênica , Methylobacterium/genética , Xylella/genética , Animais , Biofilmes/crescimento & desenvolvimento , Citrus/microbiologia , Insetos Vetores/microbiologia , Insetos/microbiologia , Methylobacterium/citologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Xylella/citologia
5.
J Biomed Biotechnol ; 2010: 781365, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20625415

RESUMO

Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates.


Assuntos
Meios de Cultura/farmacologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Xylella/crescimento & desenvolvimento , Xylella/genética , Xilema/metabolismo , Xilema/microbiologia , Aerobiose/efeitos dos fármacos , Aerobiose/genética , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/genética , Genes Bacterianos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Xylella/citologia , Xylella/efeitos dos fármacos , Xilema/efeitos dos fármacos
6.
Appl Environ Microbiol ; 76(18): 6134-40, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20656858

RESUMO

Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.


Assuntos
Quitina/metabolismo , Quitinases/genética , Insetos/microbiologia , Xylella/metabolismo , Xilema/microbiologia , Animais , Biofilmes/crescimento & desenvolvimento , Adesão Celular/fisiologia , Quitina/genética , Clonagem Molecular , Escherichia coli , Regulação Bacteriana da Expressão Gênica/fisiologia , Xylella/citologia , Xylella/crescimento & desenvolvimento
7.
J Bacteriol ; 192(1): 179-90, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19897657

RESUMO

We report the plaque propagation and genomic analysis of Xfas53, a temperate phage of Xylella fastidiosa. Xfas53 was isolated from supernatants of X. fastidiosa strain 53 and forms plaques on the sequenced strain Temecula. Xfas53 forms short-tailed virions, morphologically similar to podophage P22. The 36.7-kb genome is predicted to encode 45 proteins. The Xfas53 terminase and structural genes are related at a protein and gene order level to P22. The left arm of the Xfas53 genome has over 90% nucleotide identity to multiple prophage elements of the sequenced X. fastidiosa strains. This arm encodes proteins involved in DNA metabolism, integration, and lysogenic control. In contrast to Xfas53, each of these prophages encodes head and DNA packaging proteins related to the siphophage lambda and tail morphogenesis proteins related to those of myophage P2. Therefore, it appears that Xfas53 was formed by recombination between a widespread family of X. fastidiosa P2-related prophage elements and a podophage distantly related to phage P22. The lysis cassette of Xfas53 is predicted to encode a pinholin, a signal anchor and release (SAR) endolysin, and Rz and Rz1 equivalents. The holin gene encodes a pinholin and appears to be subject to an unprecedented degree of negative regulation at both the level of expression, with rho-independent transcriptional termination and RNA structure-dependent translational repression, and the level of holin function, with two upstream translational starts predicted to encode antiholin products. A notable feature of Xfas53 and related prophages is the presence of 220- to 390-nucleotide degenerate tandem direct repeats encoding putative DNA binding proteins. Additionally, each phage encodes at least two BroN domain-containing proteins possibly involved in lysogenic control. Xfas53 exhibits unusually slow adsorption kinetics, possibly an adaptation to the confined niche of its slow-growing host.


Assuntos
Bacteriófagos/genética , Genoma Viral/genética , Prófagos/genética , Xylella/virologia , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/ultraestrutura , DNA Viral/genética , Microscopia Eletrônica de Transmissão , Modelos Genéticos , Prófagos/crescimento & desenvolvimento , Prófagos/ultraestrutura , Replicação Viral/genética , Replicação Viral/fisiologia , Xylella/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...