Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
BMC Plant Biol ; 24(1): 337, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664617

RESUMO

BACKGROUND: Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen. RESULTS: The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula. CONCLUSIONS: This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.


Assuntos
Endófitos , Genótipo , Olea , Doenças das Plantas , Xylella , Olea/microbiologia , Xylella/fisiologia , Xylella/genética , Endófitos/fisiologia , Endófitos/genética , Doenças das Plantas/microbiologia , Microbiota , Bactérias/genética , Bactérias/classificação , Fungos/fisiologia , Fungos/genética
2.
BMC Res Notes ; 17(1): 119, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678272

RESUMO

Drought and Pierce's disease are common throughout many grapevine-growing regions such as Mexico and the United States. Yet, how ongoing water deficits affect infections of Xylella fastidiosa, the causal agent of Pierce's disease, is poorly understood. Symptoms were observed to be significantly more severe in water-stressed plants one month after X. fastidiosa inoculation, and, in one experiment, titers were significantly lower in water-stressed than well-watered grapevines. Host chemistry examinations revealed overall amino acid and phenolic levels did not statistically differ due to water deficits, but sugar levels were significantly greater in water stressed than well-watered plants. Results highlight the need to especially manage Pierce's disease spread in grapevines experiencing drought.


Assuntos
Doenças das Plantas , Vitis , Xylella , Xylella/patogenicidade , Xylella/fisiologia , Vitis/microbiologia , Doenças das Plantas/microbiologia , Água , Secas , Progressão da Doença , Aminoácidos/metabolismo , Fenóis/metabolismo
3.
J Invertebr Pathol ; 204: 108078, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438078

RESUMO

The spittlebug Philaenus spumarius (Hemiptera: Aphrophoridae) is the predominant vector of Xylella fastidiosa (Xanthomonadales: Xanthomonadaceae) in Apulia, Italy and the rest of Europe. Current control strategies of the insect vector rely on mechanical management of nymphal stages and insecticide application against adult populations. Entomopathogenic fungi (EPF) are biological control agents naturally attacking spittlebugs and may effectively reduce population levels of host species. Different experimental trials in controlled conditions have been performed to i) identify naturally occurring EPF on P, spumarius in Northwestern Italy, and ii) evaluate the potential for biocontrol of the isolated strains on both nymphal and adult stages of the spittlebug. Four EPF species were isolated from dead P. spumarius collected in semi-field conditions: Beauveria bassiana, Conidiobolus coronatus, Fusarium equiseti and Lecanicillium aphanocladii. All the fungal isolates showed entomopathogenic potential against nymphal stages of P. spumarius (≈ 45 % mortality), except for F. equiseti, in preliminary trials. No induced mortality was observed on adult stage. Lecanicillium aphanocladii was the most promising fungus and its pathogenicity against spittlebug nymphs was further tested in different formulations (conidia vs blastospores) and with natural adjuvants. Blastospore formulation was the most effective in killing nymphal instars and reducing the emergence rate of P, spumarius adults, reaching mortality levels (90%) similar to those of the commercial product Naturalis®, while no or adverse effect of natural adjuvants was recorded. The encouraging results of this study pave way for testing EPF isolates against P, spumarius in field conditions and find new environmentally friendly control strategies against insect vectors of X. fastidiosa.


Assuntos
Hemípteros , Ninfa , Controle Biológico de Vetores , Animais , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Controle Biológico de Vetores/métodos , Hemípteros/microbiologia , Beauveria/patogenicidade , Beauveria/fisiologia , Insetos Vetores/microbiologia , Fusarium , Itália , Xylella/fisiologia , Hypocreales/fisiologia , Hypocreales/patogenicidade
4.
Ann Bot ; 133(4): 521-532, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334466

RESUMO

BACKGROUND AND AIMS: Xylella fastidiosa (Xf) is the xylem-dwelling bacterium associated with Pierce's disease (PD), which causes mortality in agriculturally important species, such as grapevine (Vitis vinifera). The development of PD symptoms in grapevines depends on the ability of Xf to produce cell-wall-degrading enzymes to break up intervessel pit membranes and systematically spread through the xylem vessel network. Our objective here was to investigate whether PD resistance could be mechanistically linked to xylem vessel network local connectivity. METHODS: We used high-resolution X-ray micro-computed tomography (microCT) imaging to identify and describe the type, area and spatial distribution of intervessel connections for six different grapevine genotypes from three genetic backgrounds, with varying resistance to PD (four PD resistant and two PD susceptible). KEY RESULTS: Our results suggest that PD resistance is unlikely to derive from local xylem network connectivity. The intervessel pit area (Ai) varied from 0.07 ±â€…0.01 mm2 mm-3 in Lenoir to 0.17 ±â€…0.03 mm2 mm-3 in Blanc do Bois, both PD resistant. Intervessel contact fraction (Cp) was not statically significant, but the two PD-susceptible genotypes, Syrah (0.056 ±â€…0.015) and Chardonnay (0.041 ±â€…0.013), were among the most highly connected vessel networks. Neither Ai nor Cp explained differences in PD resistance among the six genotypes. Bayesian re-analysis of our data shows moderate evidence against the effects of the traits analysed: Ai (BF01 = 4.88), mean vessel density (4.86), relay diameter (4.30), relay density (3.31) and solitary vessel proportion (3.19). CONCLUSIONS: Our results show that radial and tangential xylem network connectivity is highly conserved within the six different Vitis genotypes we sampled. The way that Xf traverses the vessel network may limit the importance of local network properties to its spread and may confer greater importance on host biochemical responses.


Assuntos
Doenças das Plantas , Vitis , Xylella , Xilema , Vitis/microbiologia , Vitis/fisiologia , Xilema/fisiologia , Xilema/microbiologia , Xylella/fisiologia , Doenças das Plantas/microbiologia , Microtomografia por Raio-X , Resistência à Doença , Genótipo
5.
Sci Rep ; 13(1): 5695, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029149

RESUMO

Xylella fastidiosa subsp. pauca (Xfp), has attacked the olive trees in Southern Italy with severe impacts on the olive agro-ecosystem. To reduce both the Xfp cell concentration and the disease symptom, a bio-fertilizer restoration technique has been used. Our study applied multi-resolution satellite data to evaluate the effectiveness of such technique at both field and tree scale. For field scale, a time series of High Resolution (HR) Sentinel-2 images, acquired in the months of July and August from 2015 to 2020, was employed. First, four spectral indices from treated and untreated fields were compared. Then, their trends were correlated to meteo-events. For tree-scale, Very High Resolution (VHR) Pléiades images were selected at the closest dates of the Sentinel-2 data to investigate the response to treatments of each different cultivar. All indices from HR and VHR images were higher in treated fields than in those untreated. The analysis of VHR indices revealed that Oliarola Salentina can respond better to treatments than Leccino and Cellina cultivars. All findings were in agreement with in-field PCR results. Hence, HR data could be used to evaluate plant conditions at field level after treatments, while VHR imagery could be used to optimize treatment doses per cultivar.


Assuntos
Olea , Xylella , Fertilizantes , Ecossistema , Xylella/fisiologia , Doenças das Plantas/prevenção & controle
6.
Plant Dis ; 106(10): 2625-2630, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36075086

RESUMO

Almond leaf scorch is a disease caused by Xylella fastidiosa, which is increasingly widespread globally in the main almond cultivation areas. Previously confined to America, in the last decade this disease has been reported in Iran and southern Europe. In this comparative study, the resistance to X. fastidiosa subsp. multiplex of 13 almond cultivars (Mamaei, Non-Pareil, Sefied, Rabie, Ferragnes, Shahrood21, Thompson, Merced, Marcona, Frudeul, Kapariel, Princess, and Tuono) grafted onto seedlings of Talkhe was evaluated in controlled conditions. Plants were artificially inoculated and maintained in greenhouse conditions. Approximately 3 months after inoculation, three times at 3-week intervals, disease incidence, disease severity, and disease index were determined based on scaling, and bacterial populations were estimated. The effect of winter survival of bacteria in outdoor potted seedlings was also investigated in all almond cultivars. Findings showed a great degree of variability in response to X. fastidiosa among cultivars considering symptom development and severity, as well as bacterial titer. Thompson and Rabie cultivars scored the best results from both a symptomatological and infectious point of view, indicating resistance against the pathogen compared with other tolerant cultivars (e.g., Ferragnes, Tuono, and Kapariel), thanks to the development of mild symptoms. Mamaei, Non-Pareil, and Sefied scored worst, suggesting a susceptible behavior when infected by X. fastidiosa. Given that the pathogen was not detected by culturing and PCR during the following summer, bacterial population in potted seedlings was reduced significantly by overwintering in outdoor conditions regardless of cultivar susceptibility. This suggests that cold treatment can be used as a preventive treatment to manage nursery almond seedlings.


Assuntos
Prunus dulcis , Raiva , Xylella , Doenças das Plantas/microbiologia , Xylella/fisiologia
7.
Microbiology (Reading) ; 167(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34596503

RESUMO

Xylella fastidiosa is a vector-borne plant vascular pathogen that has caused devastating disease outbreaks in diverse agricultural crops worldwide. A major global quarantine pathogen, X. fastidiosa can infect hundreds of plant species and can be transmitted by many different xylem sap-feeding insects. Several decades of research have revealed a complex lifestyle dependent on adaptation to the xylem and insect environments and interactions with host plant tissues.


Assuntos
Produtos Agrícolas/microbiologia , Endófitos/patogenicidade , Doenças das Plantas/microbiologia , Xylella/patogenicidade , Animais , Endófitos/classificação , Endófitos/fisiologia , Genoma Bacteriano , Insetos Vetores/microbiologia , Filogenia , Xylella/classificação , Xylella/fisiologia , Xilema/microbiologia
8.
Nat Commun ; 12(1): 6088, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667165

RESUMO

Plant pathogens pose increasing threats to global food security, causing yield losses that exceed 30% in food-deficit regions. Xylella fastidiosa (Xf) represents the major transboundary plant pest and one of the world's most damaging pathogens in terms of socioeconomic impact. Spectral screening methods are critical to detect non-visual symptoms of early infection and prevent spread. However, the subtle pathogen-induced physiological alterations that are spectrally detectable are entangled with the dynamics of abiotic stresses. Here, using airborne spectroscopy and thermal scanning of areas covering more than one million trees of different species, infections and water stress levels, we reveal the existence of divergent pathogen- and host-specific spectral pathways that can disentangle biotic-induced symptoms. We demonstrate that uncoupling this biotic-abiotic spectral dynamics diminishes the uncertainty in the Xf detection to below 6% across different hosts. Assessing these deviating pathways against another harmful vascular pathogen that produces analogous symptoms, Verticillium dahliae, the divergent routes remained pathogen- and host-specific, revealing detection accuracies exceeding 92% across pathosystems. These urgently needed hyperspectral methods advance early detection of devastating pathogens to reduce the billions in crop losses worldwide.


Assuntos
Ascomicetos/fisiologia , Olea/microbiologia , Doenças das Plantas/microbiologia , Prunus dulcis/microbiologia , Xylella/fisiologia , Desidratação , Especificidade de Hospedeiro , Olea/química , Prunus dulcis/química , Análise Espectral , Estresse Fisiológico
9.
Sci Rep ; 11(1): 17608, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475464

RESUMO

The recent emergence of Xylella fastidiosa in Europe is a major threat to agriculture, including olive, almond and grape. Philaenus spumarius is the predominant vector of X. fastidiosa in Europe. Understanding vector movement is critical for developing effective control measures against bacterial spread. In this study, our goal was to set up a flight-mill protocol to assess P. spumarius flight potential and to analyse how different variables may affect its flight behaviour. We found that P. spumarius was able to fly ≈ 500 m in 30 min with a maximum single flight of 5.5 km in 5.4 h. Based on the observations, the flight potential of the females was higher in spring and autumn than in summer, and that of the males was highest in autumn. Moreover, we found that P. spumarius had a higher flight potential during the morning and the night than during the afternoon. Our results revealed that P. spumarius is likely to disperse much further than the established sizes of the infected and buffer zones designated by the EU. This knowledge on the flight potential of P. spumarius will be critical for improving management actions against P. spumarius and the spread of X. fastidiosa in Europe.


Assuntos
Hemípteros/fisiologia , Insetos Vetores/fisiologia , Doenças das Plantas/microbiologia , Xylella/fisiologia , Distribuição Animal , Animais , Europa (Continente) , Feminino , Voo Animal , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Masculino
10.
Plant Physiol ; 186(4): 1919-1931, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33905519

RESUMO

Xylella fastidiosa (Xf) is the xylem-dwelling bacterial agent associated with Pierce's disease (PD), which leads to significant declines in productivity in agriculturally important species like grapevine (Vitis vinifera). Xf spreads through the xylem network by digesting the pit membranes (PMs) between adjacent vessels, thereby potentially changing the hydraulic properties of the stem. However, the effects of Xf on water transport vary depending on the plant host and the infection stage, presenting diverse outcomes. Here, we investigated the effects of polygalacturonase, an enzyme known to be secreted by Xf when it produces biofilm on the PM surface, on stem hydraulic conductivity, and PM integrity. Experiments were performed on six grapevine genotypes with varying levels of PD resistance, with the expectation that PM resistance to degradation by polygalacturonase may play a role in PD resistance. Our objective was to study a single component of this pathosystem in isolation to better understand the mechanisms behind reported changes in hydraulics, thereby excluding the biological response of the plant to the presence of Xf in the vascular system. PM damage only occurred in stems perfused with polygalacturonase. Although the damaged PM area was small (2%-9% of the total pit aperture area), membrane digestion led to significant changes in the median air-seeding thresholds, and most importantly, shifted frequency distribution. Finally, enzyme perfusion also resulted in a universal reduction in stem hydraulic conductivity, suggesting the development of tyloses may not be the only contributing factor to reduced hydraulic conductivity in infected grapevine.


Assuntos
Proteínas de Insetos/metabolismo , Doenças das Plantas , Poligalacturonase/metabolismo , Vitis/fisiologia , Xylella/fisiologia , Xilema/fisiologia , Resistência à Doença , Membranas/fisiologia , Caules de Planta/fisiologia , Xylella/enzimologia
11.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33483307

RESUMO

Within the landscape of globally distributed pathogens, populations differentiate via both adaptive and nonadaptive forces. Individual populations are likely to show unique trends of genetic diversity, host-pathogen interaction, and ecological adaptation. In plant pathogens, allopatric divergence may occur particularly rapidly within simplified agricultural monoculture landscapes. As such, the study of plant pathogen populations in monocultures can highlight the distinct evolutionary mechanisms that lead to local genetic differentiation. Xylella fastidiosa is a plant pathogen known to infect and damage multiple monocultures worldwide. One subspecies, Xylella fastidiosa subsp. fastidiosa, was first introduced to the United States ∼150 years ago, where it was found to infect and cause disease in grapevines (Pierce's disease of grapevines, or PD). Here, we studied PD-causing subsp. fastidiosa populations, with an emphasis on those found in the United States. Our study shows that following their establishment in the United States, PD-causing strains likely split into populations on the East and West Coasts. This diversification has occurred via both changes in gene content (gene gain/loss events) and variations in nucleotide sequence (mutation and recombination). In addition, we reinforce the notion that PD-causing populations within the United States acted as the source for subsequent subsp. fastidiosa outbreaks in Europe and Asia.IMPORTANCE Compared to natural environments, the reduced diversity of monoculture agricultural landscapes can lead bacterial plant pathogens to quickly adapt to local biological and ecological conditions. Because of this, accidental introductions of microbial pathogens into naive regions represents a significant economic and environmental threat. Xylella fastidiosa is a plant pathogen with an expanding host and geographic range due to multiple intra- and intercontinental introductions. X. fastidiosa subsp. fastidiosa infects and causes disease in grapevines (Pierce's disease of grapevines [PD]). This study focused on PD-causing X. fastidiosa populations, particularly those found in the United States but also invasions into Taiwan and Spain. The analysis shows that PD-causing X. fastidiosa has diversified via multiple cooccurring evolutionary forces acting at an intra- and interpopulation level. This analysis enables a better understanding of the mechanisms leading to the local adaptation of X. fastidiosa and how a plant pathogen diverges allopatrically after multiple and sequential introduction events.


Assuntos
Evolução Biológica , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/fisiologia , Estados Unidos
12.
Mol Plant Pathol ; 22(2): 175-188, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33216451

RESUMO

Pierce's disease (PD) in grapevine (Vitis vinifera) is caused by the bacterial pathogen Xylella fastidiosa. X. fastidiosa is limited to the xylem tissue and following infection induces extensive plant-derived xylem blockages, primarily in the form of tyloses. Tylose-mediated vessel occlusions are a hallmark of PD, particularly in susceptible V. vinifera. We temporally monitored tylose development over the course of the disease to link symptom severity to the level of tylose occlusion and the presence/absence of the bacterial pathogen at fine-scale resolution. The majority of vessels containing tyloses were devoid of bacterial cells, indicating that direct, localized perception of X. fastidiosa was not a primary cause of tylose formation. In addition, we used X-ray computed microtomography and machine-learning to determine that X. fastidiosa induces significant starch depletion in xylem ray parenchyma cells. This suggests that a signalling mechanism emanating from the vessels colonized by bacteria enables a systemic response to X. fastidiosa infection. To understand the transcriptional changes underlying these phenotypes, we integrated global transcriptomics into the phenotypes we tracked over the disease spectrum. Differential gene expression analysis revealed that considerable transcriptomic reprogramming occurred during early PD before symptom appearance. Specifically, we determined that many genes associated with tylose formation (ethylene signalling and cell wall biogenesis) and drought stress were up-regulated during both Phase I and Phase II of PD. On the contrary, several genes related to photosynthesis and carbon fixation were down-regulated during both phases. These responses correlate with significant starch depletion observed in ray cells and tylose synthesis in vessels.


Assuntos
Celulose/análogos & derivados , Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/fisiologia , Xilema/metabolismo , Celulose/biossíntese , Regulação da Expressão Gênica de Plantas , Amido/metabolismo , Transcrição Gênica , Transcriptoma , Regulação para Cima , Vitis/metabolismo , Xilema/microbiologia
13.
Planta ; 252(6): 103, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185761

RESUMO

MAIN CONCLUSION: Nicotiana tabacum overexpressing CrSAMT from Citrus reticulata increased production of MeSA, which works as an airborne signal in neighboring wild-type plants, inducing PR1 and increasing resistance to the pathogen Xylella fastidiosa. Xylella fastidiosa is one of the major threats to plant health worldwide, affecting yield in many crops. Despite many efforts, the development of highly productive resistant varieties has been challenging. In studying host plant resistance, the S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase gene (SAMT) from Citrus reticulata, a X. fastidiosa resistant species, was upregulated in response to pathogen infection. SAMT is involved with the catalysis and production of methyl salicylate (MeSA), an airborne signal responsible for triggering systemic acquired resistance. Here we used tobacco as a model system and generated transgenic plants overexpressing C. reticulata SAMT (CrSAMT). We performed an in silico structural characterization of CrSAMT and investigated its biotechnological potential in modulating the immune system in transgenic plants. The increase of MeSA production in transgenic lines was confirmed by gas chromatography (GC-MS). The transgenic lines showed upregulation of PR1, and their incubation with neighboring wild-type plants activated PR1 expression, indicating that MeSA worked as an airborne signal. In addition, transgenic plants showed significantly fewer symptoms when challenged with X. fastidiosa. Altogether, these data suggest that CrSAMT plays a role in host defense response and can be used in biotechnology approaches to confer resistance against X. fastidiosa.


Assuntos
Citrus , Expressão Gênica , Metiltransferases , Salicilatos , Xylella , Citrus/genética , Citrus/microbiologia , Metiltransferases/genética , Metiltransferases/metabolismo , Doenças das Plantas , Proteínas Recombinantes/genética , Salicilatos/química , Nicotiana/genética , Volatilização , Xylella/fisiologia
14.
J Insect Sci ; 20(4)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32677683

RESUMO

When an exotic invasive species is a vector-borne plant pathogen, vector feeding behavior must be studied to identify potential host plant range and performance of specialized pathogen transmission behaviors. The most rigorous tool for assessing vector feeding behavior is electropenetrography (EPG). Xylella fastidiosa Wells et al. is a gram-negative bacterium native to the Americas, where it is the causal agent of lethal scorch-type diseases such as Pierce's disease (PD) of grapevines. In 2002, a PD strain of X. fastidiosa invaded Asia for the first time, as confirmed from grape vineyards in Taiwan. Kolla paulula (Wallker), a native Asian species of sharpshooter leafhopper, was found to be the primary vector in Taiwanese vineyards. This study used an AC-DC electropenetrograph to record stylet probing behaviors of K. paulula on healthy grapevines. The main objective was to create an EPG waveform library for K. paulula. Waveform description, characterization of R versus emf components (electrical origins), and proposed biological meanings of K. paulula waveforms are reported. In addition, comparison of K. paulula waveforms with those from the most efficient, native vector of X. fastidiosa in California vineyards, Graphocephala atropunctata, is also reported. Overall, both species of sharpshooters had similar-appearing waveforms. Five new findings were identified, especially that the previously described but rare waveform subtype, B1p, was extensively produced in K. paulula recordings. Sharpshooter waveforms from species worldwide share a high degree of similarity. Thus, EPG methods can be rapidly applied to potential vectors where X. fastidiosa is newly introduced.


Assuntos
Hemípteros/fisiologia , Doenças das Plantas/microbiologia , Xylella/fisiologia , Animais , California , Eletrofisiologia/métodos , Comportamento Alimentar , Hemípteros/microbiologia , Especificidade da Espécie , Taiwan
15.
J Insect Sci ; 20(4)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32677684

RESUMO

Electropenetrography (EPG) is one of the most rigorous methods to study stylet probing behaviors of piercing-sucking insects whose mouthparts move invisibly inside hosts. EPG is particularly useful for identifying vector behaviors that control transmission (acquisition, retention, and inoculation) of plant pathogens, comparing those behaviors among vector species, and aiding in development of novel vector and disease management tactics. Xylella fastidiosa (Wells et al.) is a gram-negative, invasive bacterium native to the Americas, where it is the causal agent of lethal scorch-type diseases such as Pierce's disease of grapevines. Xylella fastidiosa is transmitted by sharpshooter leafhoppers (Hemiptera: Cicadellidae: Cicadellinae) and spittlebugs (Hemiptera: Aphrophoridae). Despite over 75 yr of study, details of the inoculation mechanism of X. fastidiosa were unknown until the advent of EPG research with sharpshooters. Herein, the following topics are presented: 1) review of key EPG principles and waveforms published to date, emphasizing sharpshooters and spittlebugs; 2) summary of present understanding of biological meanings of sharpshooter waveforms; 3) review of mechanisms of transmission for X. fastidiosa illuminated by EPG; and 4) recommendations of the most useful waveform categories for EPG use in future, quantitative comparisons of sharpshooter stylet probing on various treatments such as infected versus uninfected plants, resistant varieties, or insecticide treatments. In addition, new work on the functional anatomy of the precibarial valve is discussed in the context of X. fastidiosa transmission and EPG waveforms. Also, the first block diagram of secondary, signal-processing circuits for the AC-DC EPG is published, and is discussed in relation to EPG signals appearances and meanings.


Assuntos
Hemípteros/fisiologia , Doenças das Plantas/microbiologia , Xylella/fisiologia , Animais , Eletrofisiologia/métodos , Comportamento Alimentar , Hemípteros/microbiologia
16.
PLoS One ; 15(5): e0233013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413086

RESUMO

Global trade and climate change are re-shaping the distribution map of pandemic pathogens. One major emerging concern is Xylella fastidiosa, a tropical bacterium recently introduced into Europe from America. In last decades, X. fastidiosa was detected in several European countries. X. fastidiosa is an insect vector-transmitted bacterial plant pathogen associated with severe diseases in a wide range of hosts. X. fastidiosa through a tight coordination of the adherent biofilm and the planktonic states, invades the host systemically. The planktonic phase is correlated to low cell density and vessel colonization. Increase in cell density triggers a quorum sensing system based on mixture of cis 2-enoic fatty acids-diffusible signalling factors (DSF) that promote stickiness and biofilm. The lipidome profile of Olea europaea L. (cv. Ogliarola salentina) samples, collected in groves located in infected zones and uninfected zones was performed. The untargeted analysis of the lipid profiles of Olive Quick Decline Syndrome (OQDS) positive (+) and negative (-) plants showed a clustering of OQDS+ plants apart from OQDS-. The targeted lipids profile of plants OQDS+ and OQDS- identified a shortlist of 10 lipids that increase their amount in OQDS+ and X. fastidiosa positive olive trees. These lipid entities, provided to X. fastidiosa subsp. pauca pure culture, impact on the dual phase, e.g. planktonic ↔ biofilm. This study provides novel insights on OQDS lipid hallmarks and on molecules that might modulate biofilm phase in X. fastidiosa subsp. pauca.


Assuntos
Metabolismo dos Lipídeos , Olea/metabolismo , Olea/microbiologia , Doenças das Plantas/microbiologia , Xylella/fisiologia , Xylella/patogenicidade , Adesividade , Animais , Biofilmes/crescimento & desenvolvimento , Interações entre Hospedeiro e Microrganismos/fisiologia , Insetos Vetores/microbiologia , Itália , Lipidômica , Percepção de Quorum/fisiologia
17.
J Insect Physiol ; 120: 103995, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837986

RESUMO

Xylem sap sucking insects are adapted to ingest fluids under tension. Although much has been learned about such feeding strategy, this adaptation still poses several unresolved questions, including how these insects ingest against strong xylem sap tension. Xylem sap-feeding insects are vectors of the plant pathogenic xylem-limited bacterium Xylella fastidiosa. This bacterium colonizes the cuticular lining of the foregut of vectors in a persistent manner. We used micro-computed tomography and scanning electron microscopy to investigate the foregut morphometry of two X. fastidiosa vector species: Philaenus spumarius and Graphocephala atropunctata (Hemiptera: Aphrophoridae and Cicadellidae, respectively). On the basis of morphometric data, we built a hydrodynamic model of the foregut of these two insect species, focusing on the precibarium, a region previously shown to be colonized by X. fastidiosa and correlated with pathogen acquisition from and inoculation to plants. Our data show that space in the P. spumarius functional foregut could potentially harbor twice as many cells as similar space in G. atropunctata, although the opposite trend has been observed with biological samples. Average flow velocity of ingested fluid depended on the percentage of the cibarium volume exploited for suction: if the entire volume were used, velocities were in the range of meters per second. In contrast, velocities on the order of those found in the literature (about 10 cm/s) were attained if only 5% of the cibarium volume were exploited. Simulated bacterial colonization of the foregut was analyzed in relation to hydrodynamics and pressure needed for insects to ingest. Our model is designed to represent the diameter reduction of the food canal in both insect species when infected with X. fastidiosa. Results indicated that full bacterial colonization significantly increased the mean sap-sucking flow velocity. In particular, the colonization increased the maximum section-averaged velocity in the G. atropunctata more than two times and the net pressure needed to mantain the flow in the precibarium when colonized is relevant (about 0.151 MPa) if compared to a standard xylem sap tension (1 MPa). Bacterial colonization also influenced the sucking process of the G. atropunctata, by hindering the formation of a recirculation zone (or eddy), that characterizd the flow in the distal part of the precibarium when bacteria were absent. On the other hand, considering the pressure the insect must generate to feed, X. fastidiosa colonization probably influences fitness of the G. atropunctata more than that of P. spumarius.


Assuntos
Hemípteros/fisiologia , Insetos Vetores/fisiologia , Xylella/fisiologia , Animais , Trato Gastrointestinal/fisiologia , Microscopia Eletrônica de Varredura , Especificidade da Espécie , Microtomografia por Raio-X
18.
Plant Dis ; 104(1): 239-245, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31710571

RESUMO

Citrus variegated chlorosis (CVC) disease, caused by the xylem-limited and insect-transmitted bacterium Xylella fastidiosa, has caused severe losses in orange production in Brazil. Disease control requires insecticide applications, tree removal, and pruning of symptomatic branches. Pruning success has been erratic, especially in areas of high disease incidence. In this work, in planta X. fastidiosa distribution and the effectiveness of severe pruning procedures for curing diseased adult trees were investigated. Most sampled upper parts of the trees contained X. fastidiosa, but at higher frequencies in symptomatic branches. Removal of all main branches (decapitation) was not effective and revealed a 20 to 30% incidence of latent infections. Trunk decapitation resulted in a higher number of healthy scions but killed 10 to 30% of the remaining trunks. Removal of all scion and grafting the newly sprouted shoots of 'Rangpur' lime (Citrus limonia Osbeck) or 'Cleopatra' (Citrus reshni Hort. ex Tan.) rootstocks with healthy buds allowed production of fast-growing and productive new scions that remained free from CVC for at least 2 years in four locations. With this method, highly affected trees do not need to be fully removed and the costs involved in this practice and in young tree acquisition and plantings are circumvented; therefore, it is a feasible option for less technically inclined small growers in Brazil.


Assuntos
Citrus sinensis , Citrus , Doenças das Plantas , Xylella , Brasil , Citrus/microbiologia , Doenças das Plantas/prevenção & controle , Xylella/fisiologia
19.
Plant Dis ; 104(1): 154-160, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31697223

RESUMO

Bacterial leaf scorch disease caused by Xylella fastidiosa occurs in southern highbush blueberry varieties in the southeastern United States. Susceptibility to X. fastidiosa varies by blueberry cultivar, and these interactions are often strain-specific. Xylella fastidiosa subsp. fastidiosa is the causal agent of Pierce's disease in grapevines, and it has been problematic in the San Joaquin Valley of California since the introduction of the glassy-winged sharpshooter (Homalodisca vitripennis). The glassy-winged sharpshooter is known to feed on blueberry, a crop that is expanding in the San Joaquin Valley. Currently, little is known about the potential for the spread of X. fastidiosa between grape and blueberry in this region. The ability of a Pierce's disease strain of X. fastidiosa from the San Joaquin Valley to cause disease in southern highbush blueberry and the potential for the glassy-winged sharpshooter to transmit X. fastidiosa between blueberry and grapevine were investigated. Experimental inoculations showed that the X. fastidiosa subsp. fastidiosa strain Bakersfield-1 can cause disease in blueberry cv. Emerald, and that the glassy-winged sharpshooter can acquire X. fastidiosa from artificially inoculated blueberry plants under laboratory conditions. Understanding the possibility for X. fastidiosa strains from the San Joaquin Valley to infect multiple crops grown in proximity is important for area-wide pest and disease management.


Assuntos
Mirtilos Azuis (Planta) , Hemípteros , Xylella , Animais , Mirtilos Azuis (Planta)/microbiologia , California , Hemípteros/microbiologia , Sudeste dos Estados Unidos , Xylella/fisiologia
20.
Sci Rep ; 9(1): 9602, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270378

RESUMO

In olive trees, Xylella fastidiosa colonizes xylem vessels and compromises water transport causing the olive quick decline syndrome (OQDS). The loss of hydraulic conductivity could be attributed to vessel occlusions induced both by the bacteria biofilm and by plant responses (tyloses, gums, etc.) that could trigger embolism. The ability of the infected plants to detect embolism and to respond, by activating mechanisms to restore the hydraulic conductivity, can influence the severity of the disease symptomatology. In order to investigate these mechanisms in the X. fastidiosa-resistant olive cultivar Leccino and in the susceptible Cellina di Nardò, sections of healthy olive stems were analysed by laser scanning microscope to calculate the cavitation vulnerability index. Findings indicated that the cultivar Leccino seems to be constitutively less susceptible to cavitation than the susceptible one. Among the vascular refilling mechanisms, starch hydrolysis is a well-known strategy to refill xylem vessels that suffered cavitation and it is characterized by a dense accumulation of starch grains in the xylem parenchima; SEM-EDX analysis of stem cross-sections of infected plants revealed an aggregation of starch grains in the Leccino xylem vessels. These observations could indicate that this cultivar, as well as being anatomically less susceptible to cavitation, it also could be able to activate more efficient refilling mechanisms, restoring vessel's hydraulic conductivity. In order to verify this hypothesis, we analysed the expression levels of some genes belonging to families involved in embolism sensing and refilling mechanisms: aquaporins, sucrose transporters, carbohydrate metabolism and enzymes related to starch breakdown, alpha and beta-amylase. The obtained genes expression patterns suggested that the infected plants of the cultivar Leccino strongly modulates the genes involved in embolism sensing and refilling.


Assuntos
Olea/metabolismo , Xylella/fisiologia , Xilema/fisiologia , Aquaporinas/metabolismo , Suscetibilidade a Doenças , Microscopia Eletrônica de Varredura , Olea/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Amido/metabolismo , Xilema/anatomia & histologia , beta-Amilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...