Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299193

RESUMO

The present study aimed to develop a technology for the production of dietary supplements based on yeast biomass and α-ketoglutaric acid (KGA), produced by a new transformant of Yarrowia lipolytica with improved KGA biosynthesis ability, as well to verify the usefulness of the obtained products for food and feed purposes. Transformants of Y. lipolytica were constructed to overexpress genes encoding glycerol kinase, methylcitrate synthase and mitochondrial organic acid transporter. The strains were compared in terms of growth ability in glycerol- and oil-based media as well as their suitability for KGA biosynthesis in mixed glycerol-oil medium. The impact of different C:N:P ratios on KGA production by selected strain was also evaluated. Application of the strain that overexpressed all three genes in the culture with a C:N:P ratio of 87:5:1 allowed us to obtain 53.1 g/L of KGA with productivity of 0.35 g/Lh and yield of 0.53 g/g. Finally, the possibility of obtaining three different products with desired nutritional and health-beneficial characteristics was demonstrated: (1) calcium α-ketoglutarate (CaKGA) with purity of 89.9% obtained by precipitation of KGA with CaCO3, (2) yeast biomass with very good nutritional properties, (3) fixed biomass-CaKGA preparation containing 87.2 µg/g of kynurenic acid, which increases the health-promoting value of the product.


Assuntos
Citrato (si)-Sintase/metabolismo , Suplementos Nutricionais , Glicerol Quinase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Engenharia Metabólica/métodos , Yarrowia/fisiologia , Biomassa , Meios de Cultura , Ácidos Cetoglutáricos/isolamento & purificação
2.
mSphere ; 6(3)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011684

RESUMO

Environmental pH influences cell growth and differentiation. In the dimorphic yeast Yarrowia lipolytica, neutral-alkaline pH strongly induces the yeast-to-filament transition. However, the regulatory mechanism that governs alkaline pH-induced filamentation has been unclear. Here, we show that the pH-responsive transcription factor Y. lipolytica Rim101 (YlRim101) is a major regulator of alkaline-induced filamentation, since the deletion of YlRIM101 severely impaired filamentation at alkaline pH, whereas the constitutively active YlRIM1011-330 mutant mildly induced filamentation at acidic pH. YlRim101 controls the expression of the majority of alkaline-regulated cell wall protein genes. One of these, the cell surface glycosidase gene YlPHR1, plays a critical role in growth, cell wall function, and filamentation at alkaline pH. This finding suggests that YlRim101 promotes filamentation at alkaline pH via controlling the expression of these genes. We also show that, in addition to YlRim101, the Msn2/Msn4-like transcription factor Mhy1 is highly upregulated at alkaline pH and is essential for filamentation. However, unlike YlRim101, which specifically regulates alkaline-induced filamentation, Mhy1 regulates both alkaline- and glucose-induced filamentation, since the deletion of MHY1 abolished them both, whereas the overexpression of MHY1 induced strong filamentation irrespective of the pH or the presence of glucose. Finally, we show that YlRim101 and Mhy1 positively coregulate seven cell wall protein genes at alkaline pH, including YlPHR1 and five cell surface adhesin-like genes, three of which appear to promote filamentation. Together, these results reveal a conserved role of YlRim101 and a novel role of Mhy1 in the regulation of alkaline-induced filamentation in Y. lipolyticaIMPORTANCE The regulatory mechanism that governs pH-regulated filamentation is not clear in dimorphic fungi except in Candida albicans Here, we investigated the regulation of alkaline pH-induced filamentation in Yarrowia lipolytica, a dimorphic yeast distantly related to C. albicans Our results show that the transcription factor YlRim101 and the Msn2/Msn4-like transcription factor Mhy1 are the major regulators that promote filamentation at alkaline pH. They control the expression of a number of cell wall protein genes important for cell wall organization and filamentation. Our results suggest that the Rim101/PacC homologs play a conserved role in pH-regulated filamentation in dimorphic fungi.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Yarrowia/crescimento & desenvolvimento , Yarrowia/genética , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hifas/genética , Yarrowia/fisiologia
3.
Biotechnol Lett ; 43(3): 601-612, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33104936

RESUMO

OBJECTIVE: The aim of the study was to evaluate the possibility of using Y. lipolytica biomass as a whole-cell catalyst in the synthesis of lipophilic antioxidants, with the example of esterification of five phenolic acids with 1-butanol. RESULTS: Freeze-dried Y. lipolytica biomass was successfully applied as a biocatalyst in the synthesis of esters of phenylpropanoic acid derivatives with 75-98% conversion. However, in the case of phenylacetic acid derivatives, results below 10% were obtained. The biological activity of phenolic acid esters was strongly associated with their chemical structures. Butyl 3-(4-hydroxyphenyl)propanoate showed an IC50 value of 19 mg/ml (95 mM) and TEAC value of 0.427. Among the compounds tested, butyl esters of 3-(4-hydroxyphenyl)propanoic and 4-hydroxyphenylacetic acids exhibited the highest antifungal activity. CONCLUSIONS: Lipophilization of phenolic acids achieved by enzymatic esterification creates prospects for using these compounds as food additives with antioxidant properties in lipid-rich food matrices.


Assuntos
Antioxidantes , Biomassa , Hidroxibenzoatos , Yarrowia , 1-Butanol/química , 1-Butanol/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Esterificação , Liofilização , Interações Hidrofóbicas e Hidrofílicas , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Yarrowia/metabolismo , Yarrowia/fisiologia
4.
Curr Microbiol ; 77(10): 2821-2830, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32591923

RESUMO

The present study investigates the therapeutic properties of probiotic yeasts viz. Yarrowia lipolytica VIT-MN01, Kluyveromyces lactis VIT-MN02, Lipomyces starkeyi VIT-MN03, Saccharomycopsis fibuligera VIT-MN04 and Brettanomyces custersianus VIT-MN05. The antimutagenic activity of probiotic yeasts against the mutagens viz. Benzo[a]pyrene (B[a]P), and Sodium azide (SA) was tested. S. fibuligera VIT-MN04 showed highest antimutagenicity (75%). Binding ability on the mutagen acridine orange (AO) was tested and L. starkeyi VIT-MN03 was able to bind AO effectively (88%). The probiotic yeasts were treated with the genotoxins viz. 4-Nitroquinoline 1-Oxide (NQO) and Methylnitronitrosoguanidine (MNNG). The prominent changes in UV shift confirmed the reduction in genotoxic activity of S. fibuligera VIT-MN04 and L. starkeyi VIT-MN03, respectively. Significant viability of probiotic yeasts was noted after being exposed to mutagens and genotoxins. The adhesion capacity and anticancer activity were also assessed using Caco-2 and IEC-6 cell lines. Adhesion ability was found to be more in IEC-6 cells and remarkable antiproliferative activity was noted in Caco-2 cells compared to normal cells. Further, antagonistic activity of probiotic yeasts was investigated against S. typhimurium which was found to be more in S. fibuligera VIT-MN04 and L. starkeyi VIT-MN03. The inhibition of α-glucosidase and α-amylase activity confirmed the antidiabetic activity of probiotic yeasts. Antioxidant activity was also tested using standard assays. Therefore, based on the results, it can be concluded that probiotic yeasts can serve as potential therapeutic agents for the prevention and treatment of colon cancer, type 2 diabetes and gastrointestinal infections.


Assuntos
Probióticos , Leveduras , Brettanomyces/fisiologia , Células CACO-2 , Linhagem Celular , Neoplasias do Colo/microbiologia , Neoplasias do Colo/terapia , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/terapia , Humanos , Kluyveromyces/fisiologia , Lipomyces/fisiologia , Probióticos/uso terapêutico , Saccharomycopsis/fisiologia , Yarrowia/fisiologia , Leveduras/isolamento & purificação , Leveduras/fisiologia
5.
PLoS One ; 15(4): e0231161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32243483

RESUMO

There is a need for development of sustainable production processes for production of fats/oils and lipid derived chemicals. The dimorphic oleaginous yeast Yarrowia lipolytica is a promising organism for conversion of biomass hydrolysate to lipids, but in many such processes hyphae formation will be problematic. We have therefore constructed and compared the performance of strains carrying deletions in several published gene targets suggested to abolish hyphae formation (MHY1, HOY1 and CLA4). The MHY1-deletion was the only of the tested strains which did not exhibit hyphae formation under any of the conditions tested. The MHY1-deletion also had a weak positive effect on lipid accumulation without affecting the total fatty acid composition, irrespective of the nitrogen source used. MHY1 has been suggested to constitute a functional homolog of the stress responsive transcription factors MSN2/4 in Saccharomyces cerevisiae, the deletion of which are highly stress sensitive. However, the deletion of MHY1 displayed only minor difference on survival of a range of acute or long term stress and starvation conditions. We conclude that the deletion of MHY1 in Y.lipolytica is a reliable way of abolishing hyphae formation with few detectable negative side effects regarding growth, stress tolerance and lipid accumulation and composition.


Assuntos
Proteínas Fúngicas/metabolismo , Deleção de Genes , Hifas/crescimento & desenvolvimento , Estresse Fisiológico , Yarrowia/fisiologia , Adaptação Fisiológica , Hifas/citologia , Metabolismo dos Lipídeos , Mutação/genética , Estresse Oxidativo , Temperatura
6.
FEMS Yeast Res ; 20(2)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105315

RESUMO

Yarrowia lipolytica is a non-conventional, heterothallic, oleaginous yeast with wide range of industrial applications. Increasing ploidy can improve advantageous traits for industrial applications including genetic stability, stress resistance, and productivity, but the construction of knockout mutant strains from polyploid cells requires significant effort due to the increased copy numbers of target genes. The goal of this study was to evaluate the effectiveness of a mating-type switching strategy by single-step transformation without a genetic manipulation vestige, and to optimize the conventional method for increasing ploidy (mating) in Y. lipolytica. In this study, mating-type genes in haploid Y. lipolytica cells were scarlessly converted into the opposite type genes by site-specific homologous recombination, and the resulting MATB-type cells were mated at low temperature (22°C) with addition of sodium citrate with each MATA-type haploid cell to yield a MATA/MATB-type diploid strain with genetic information from both parental strains. The results of this study can be used to increase ploidy and for whole genome engineering of a yeast strain with unparalleled versatility for industrial application.


Assuntos
Genes Fúngicos Tipo Acasalamento , Hibridização Genética , Ploidias , Yarrowia/genética , Engenharia Genética , Genoma Fúngico , Haploidia , Recombinação Homóloga , Fenótipo , Yarrowia/fisiologia
7.
Curr Genet ; 66(1): 245-261, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31321487

RESUMO

Msn2/Msn4-family zinc finger transcription factors play important roles in stress response in yeast. However, some members of this family show significant functional divergence in different species. Here, we report that in the dimorphic yeast Yarrowia lipolytica, the Msn2/Msn4-like protein Mhy1 is a key regulator of yeast-to-hypha dimorphic transition but not stress response. Both MHY1 deletion and overexpression affect filamentation. In contrast, YlMsn4, the other Msn2/Msn4-like protein, regulates tolerance to acid-induced stress. We show that MHY1 has an unusually long (about 3800 bp) promoter featuring an upstream located enhancer and a double stress response element (STRE) motif, the latter of which mediates Mhy1's regulation on its own transcription. Transcriptome profiling conducted in wild-type strain, mhy1Δ mutant and MHY1-overexpressing mutant revealed about 100 genes that are highly differentially expressed (≥ 5-fold) in each of the 2 mutants compared to the wild-type strain. The largest group of genes downregulated in mhy1Δ mutant encodes cell wall proteins or enzymes involved in cell wall organization, suggesting that Mhy1 may regulate dimorphic transition by controlling these cell wall genes. We confirmed that the genes YALI0C23452, YALI0C15268 and YALI0B09955 are directly regulated by Mhy1. We also characterized the Mhy1 consensus binding site as 5'-WNAGGGG-3' (W = A or T; N = A, T, G or C). These results provide new insight in the functions of Msn2/Msn4-family transcription factors in fungi and the mechanism by which Mhy1 regulates dimorphic transition.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Yarrowia/citologia , Yarrowia/fisiologia , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Mutação , Fenótipo , Ligação Proteica , Elementos de Resposta
8.
Sci Total Environ ; 702: 134911, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733546

RESUMO

Development of cost effective and highly efficient process for bio-based succinic acid (SA) production is a main concern for industry. The metabolically engineered Y. lipolytica strain PGC01003 was successfully used for SA production with high titre. However, this strain possesses as main drawback with a low growth rate when glycerol is used as a feedstock. Herein, gene GUT1, encoding glycerol kinase, was overexpressed in strain PGC01003 with the aim to improve glycerol uptake capacity. In the resulting strain RIY420, glycerol uptake was 13.5% higher than for the parental strain. GUT1 gene overexpression also positively influences SA production. In batch bioreactor, SA titre, yield and productivity were 32%, 39% and 143% higher, respectively, than for the parental strain PGC01003. Using a glycerol feeding strategy, SA titre, yield and productivity were further improved by 11%, 5% and 10%, respectively. Moreover, the process duration to yield the highest concentration of SA in the culture supernatant was reduced by 9%. This demonstrated the contribution of metabolically engineered strain RIY420 to lower SA process cost and increase the efficiency of bio-based SA production.


Assuntos
Glicerol/metabolismo , Ácido Succínico/metabolismo , Yarrowia/fisiologia , Transporte Biológico , Reatores Biológicos , Engenharia Metabólica , Saccharomyces cerevisiae
9.
FEMS Yeast Res ; 19(7)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605534

RESUMO

Despite the increasing relevance, ranging from academic research to industrial applications, only a limited number of non-conventional, oleaginous Yarrowia lipolytica strains are characterized in detail. Therefore, we analyzed three strains in regard to their metabolic and physiological properties, especially with respect to important characteristics of a production strain. By investigating different cultivation conditions and media compositions, similarities and differences between the distinct strain backgrounds could be derived. Especially sugar alcohol production, as well as an agglomeration of cells were found to be connected with growth at high temperatures. In addition, sugar alcohol production was independent of high substrate concentrations under these conditions. To investigate the genotypic basis of particular traits, including growth characteristics and metabolite concentrations, genomic analysis were performed. We found sequence variations for one third of the annotated proteins but no obvious link to all phenotypic features.


Assuntos
Temperatura , Yarrowia/fisiologia , Genômica , Genótipo , Anotação de Sequência Molecular , Análise de Sequência de DNA , Álcoois Açúcares/metabolismo , Sequenciamento Completo do Genoma , Yarrowia/classificação
10.
J Microbiol Biotechnol ; 29(7): 1071-1077, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31337188

RESUMO

Natural gamma-decalactone (GDL) produced by biotransformation is an essential food additive with a peach-like aroma. However, the difficulty of effectively controlling the concentration of the substrate ricinoleic acid (RA) in water limits the biotransformation productivity, which is a bottleneck for industrialization. In this study, expanded vermiculite (E-V) was utilized as a carrier of RA to increase its distribution in the medium. E-V and three commonly used organic compounds were compared with respect to their effects on the biotransformation process, and the mechanism was revealed. Scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis indicated that RA was physically adsorbed onto the surface of and inside E-V instead of undergoing a chemical reaction, which increased the opportunity for interactions between microorganisms and the substrate. The highest concentration of GDL obtained in the medium with E-V was 6.2 g/l, which was 50% higher than that in the reference sample. In addition, the presence of E-V had no negative effect on the viability of the microorganisms. This study provides a new method for producing natural GDL through biotransformation on an industrial scale.


Assuntos
Silicatos de Alumínio/química , Biotransformação , Lactonas/metabolismo , Ácidos Ricinoleicos/química , Ácidos Ricinoleicos/metabolismo , Adsorção , Microbiologia Industrial , Viabilidade Microbiana , Yarrowia/metabolismo , Yarrowia/fisiologia
11.
J Biotechnol ; 290: 10-15, 2019 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-30496777

RESUMO

Yarrowia lipolytica has been used to produce both citric acid and lipid-based bioproducts at high titers. In this study, we found that pH differentially affects citric acid and lipid production in Y. lipolytica W29, with citric acid production enhanced at more neutral pH's and lipid production enhanced at more acid pH's. To determine the mechanism governing this pH-dependent switch between citric acid and lipid production, we profiled gene expression at different pH's and found that the relative expression of multiple transporters is increased at neutral pH. These results suggest that this pH-dependent switch is mediated at the level of citric acid transport rather than changes in the expression of the enzymes involved in citric acid and lipid metabolism. In further support of this mechanism, thermodynamic calculations suggest that citric acid secretion is more energetically favorable at neutral pH's, assuming the fully protonated acid is the substrate for secretion. Collectively, these results provide new insights regarding citric acid and lipid production in Y. lipolytica and may offer new strategies for metabolic engineering and process design.


Assuntos
Biotecnologia/métodos , Ácido Cítrico/metabolismo , Glucose/metabolismo , Lipídeos/biossíntese , Yarrowia/metabolismo , Ácido Cítrico/análise , Meios de Cultura/química , Meios de Cultura/metabolismo , Concentração de Íons de Hidrogênio , Lipídeos/análise , Nitrogênio/metabolismo , Yarrowia/fisiologia
12.
J Microbiol Biotechnol ; 29(1): 141-150, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30394047

RESUMO

The spatial landmark protein Bud8 plays a crucial role in bipolar budding in the budding yeast Saccharomyces cerevisiae. The unconventional yeast Yarrowia lipolytica can also bud in a bipolar pattern, but is evolutionarily distant from S. cerevisiae. It encodes the protein YALI0F12738p, which shares the highest amino acid sequence homology with S. cerevisiae Bud8, sharing a conserved transmembrane domain at the C-terminus. Therefore, we named it YlBud8. Deletion of YlBud8 in Y. lipolytica causes cellular separation defects, resulting in budded cells remaining linked with one another as cell chains or multiple buds from a single cell, which suggests that YlBud8 may play an important role in cell separation, which is distinct from the function of Bud8 in S. cerevisiae. We also show that the YlBud8-GFP fusion protein is located at the cell membrane and enriched in the bud cortex, which would be consistent with a role in the regulation of cell separation. The coiled-coil domain at the N-terminus of YlBud8 is important to the correct localization and function of YlBud8, as truncated proteins that do not contain the coiled-coil domain cannot rescue the defects observed in Ylbud8Δ. This finding suggests that a new signaling pathway controlled by YlBud8 via regulation of cell separation may exist in Y. lipolytica.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Yarrowia/fisiologia , Sequência de Aminoácidos , Fracionamento Celular , Membrana Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Domínios Proteicos , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Yarrowia/genética , Yarrowia/metabolismo
13.
Sci Rep ; 8(1): 14735, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283045

RESUMO

Erythritol production is a unique response to hyperosmotic stress that is observed in a small group of yeasts, including Yarrowia lipolytica. This study investigated whether this unusual mechanism is regulated by the HOG pathway, well described in Saccharomyces cerevisiae. The gene YALI0E25135g was identified as the Y. lipolytica homologue of HOG1 and was found to be phosphorylated in response to hyperosmotic shock. Deletion of the gene caused a significant decrease in resistance to hyperosmotic stress and negatively affected erythritol production. Interestingly, the deletion strain yl-hog1Δ displayed significant morphological defects, with the cells growing in a filamentous form. Moreover, yl-hog1Δ cells were also resistant to the cell wall damaging agents Congo red and calcofluor white. Collectively, these results indicate that yl-Hog1 is crucial for the cellular response to hyperosmotic stress, plays a role in the induction of erythritol production, and potentially prevents cross-talk with different MAPK signalling pathways in the cell.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/genética , Pressão Osmótica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Yarrowia/genética , Eritritol/genética , Eritritol/metabolismo , Glicerol/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Fosforilação/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Yarrowia/fisiologia
14.
Appl Microbiol Biotechnol ; 102(14): 5925-5938, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29808327

RESUMO

Oleaginous yeast Yarrowia lipolytica is an important industrial host for the production of enzymes, oils, fragrances, surfactants, cosmetics, and pharmaceuticals. More recently, improved synthetic biology tools have allowed more extensive engineering of this yeast species, which lead to the production of non-native metabolites. In this review, we summarize the recent advances of genome editing tools for Y. lipolytica, including the application of CRISPR/Cas9 system and discuss case studies, where Y. lipolytica was engineered to produce various non-native chemicals: short-chain fatty alcohols and alkanes as biofuels, polyunsaturated fatty acids for nutritional and pharmaceutical applications, polyhydroxyalkanoates and dicarboxylic acids as precursors for biodegradable plastics, carotenoid-type pigments for food and feed, and campesterol as a precursor for steroid drugs.


Assuntos
Microbiologia Industrial/tendências , Biologia Sintética/tendências , Yarrowia/fisiologia , Edição de Genes , Engenharia Metabólica
15.
Appl Microbiol Biotechnol ; 102(9): 3831-3848, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29523935

RESUMO

The yeast Yarrowia lipolytica is an industrially important microorganism with distinctive physiological and metabolic characteristics. A variety of external factors (e.g., pH, temperature, and nutrient availability) influences the behavior of the yeast and may act as stress conditions which the cells must withstand and adapt. In this mini review, the impacts of environmental factors on the morphology and metabolite production by Y. lipolytica are summarized. In this regard, detailed insights into the effectors involved in the dimorphic transition of Y. lipolytica, the cultivation conditions employed, as well as the methods applied for the morphological characterization are highlighted. Concerning the metabolism products, a special focus is addressed on lipid and citric acid metabolites which have attracted significant attention in recent years. The dependence of lipid and citric acid productivity on key process parameters, such as media composition and physico-chemical variables, is thoroughly discussed. This review attempts to provide a recent update on the topic and will serve as a meaningful resource for researchers working in the field.


Assuntos
Meio Ambiente , Microbiologia Industrial , Yarrowia/fisiologia , Ácido Cítrico/metabolismo , Metabolismo dos Lipídeos , Estresse Fisiológico/fisiologia , Yarrowia/citologia , Yarrowia/metabolismo
16.
Extremophiles ; 22(4): 617-628, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29594464

RESUMO

Heavy metal tolerance of two marine strains of Yarrowia lipolytica was tested on solid yeast extract peptone dextrose agar plates. Based on minimum inhibitory concentration esteems, it is inferred that the two strains of Y. lipolytica were tolerant to heavy metals such as Pb(II), Cr(III), Zn(II), Cu(II), As(V), and Ni(II) ions. The impact of various heavy metal concentrations on the growth kinetics of Y. lipolytica was likewise assessed. With increased heavy metal concentration, the specific growth rate was reduced with delayed doubling time. Furthermore, biofilm development of both yeasts on the glass surfaces and in microtitre plates was assessed in presence of different heavy metals. In microtitre plates, a short lag phase of biofilm formation was noticed without the addition of heavy metals in yeast nitrogen base liquid media. A lag phase was extended over increasing metal concentrations of media. Heavy metals like Cr(VI), Cd(II), and As(V) are contrastingly influenced on biofilms' formation of microtitre plates. Other heavy metals did not much influence on biofilms development. Thus, biofilm formation is a strategy of Y. lipolytica under stress of heavy metals has significance in bioremediation process for recovery of heavy metals from contaminated environment.


Assuntos
Biofilmes , Metais Pesados/toxicidade , Yarrowia/efeitos dos fármacos , Adaptação Fisiológica , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/fisiologia , Yarrowia/fisiologia
17.
Fish Shellfish Immunol ; 72: 282-290, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29127027

RESUMO

Superoxide dismutase (SOD) ubiquitously found in both prokaryotes and eukaryotes functions as the first and essential enzyme in the antioxidant system. In the present study, a manganese SOD (designated as CfmtMnSOD) was cloned from Zhikong scallop Chlamys farreri. The complete cDNA sequence of CfmtMnSOD contained a 681 bp open reading frame (ORF), encoding a peptide of 226 amino acids. A SOD_Fe_N domain and a SOD_Fe_C domain were found in the deduced amino acid sequence of CfmtMnSOD. The mRNA transcripts of CfmtMnSOD were constitutively expressed in all the tested tissues, including gill, gonad, hepatopancreas, hemocytes, mantle and muscle, with the highest expression level in hemocytes. After the stimulation of Vibrio splendidus, Staphylococcus aureus and Yarrowia lipolytica, the mRNA transcripts of CfmtMnSOD in hemocytes all significantly increased. The purified rCfmtMnSOD protein exhibited Mn2+ dependent specific and low stable enzymatic activities. After Vibrio challenge, the cumulative mortality of CfmtMnSOD-suppressed scallops was significantly higher than those of control groups and the semi-lethal time for CfmtMnSOD-suppressed scallops was rather shorter than those of control groups either. Moreover, the final mortality rate of CfmtMnSOD-suppressed group was significant higher than those of control groups, even without Vibrio challenge. All these results indicated that CfmtMnSOD was efficient antioxidant enzyme involved in the innate immunity, and also essential for the survival of C. farreri.


Assuntos
Expressão Gênica/imunologia , Imunidade Inata/genética , Pectinidae/genética , Pectinidae/imunologia , Superóxido Dismutase/genética , Superóxido Dismutase/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Pectinidae/enzimologia , Filogenia , Alinhamento de Sequência , Staphylococcus aureus/fisiologia , Superóxido Dismutase/química , Vibrio/fisiologia , Yarrowia/fisiologia
18.
Mol Plant Microbe Interact ; 30(4): 301-311, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28398122

RESUMO

A better understanding of the mode of action of postharvest biocontrol agents on fruit surfaces is critical for the advancement of successful implementation of postharvest biocontrol products. This is due to the increasing importance of biological control of postharvest diseases over chemical and other control methods. However, most of the mechanisms involved in biological control remain unknown and need to be explored. Yarrowia lipolytica significantly inhibited blue mold decay of apples caused by Penicillium expansum. The findings also demonstrated that Y. lipolytica stimulated the activities of polyphenoloxidase, peroxidase, chitinase, l-phenylalanine ammonia lyase involved in enhancing defense responses in apple fruit tissue. Proteomic and transcriptomic analysis revealed a total of 35 proteins identified as up- and down-regulated in response to the Y. lipolytica inducement. These proteins were related to defense, biotic stimulus, and stress responses, such as pathogenesis-related proteins and dehydrin. The analysis of the transcriptome results proved that the induced resistance was mediated by a crosstalk between salicylic acid (SA) and ethylene/jasmonate (ET/JA) pathways. Y. lipolytica treatment activated the expression of isochorismate synthase gene in the SA pathway, which up-regulates the expression of PR4 in apple. The expression of 1-aminocyclopropane-1-carboxylate oxidase gene and ET-responsive transcription factors 2 and 4, which are involved in the ET pathway, were also activated. In addition, cytochrome oxidase I, which plays an important role in JA signaling for resistance acquisition, was also activated. However, not all of the genes had a positive effect on the SA and ET/JA signal pathways. As transcriptional repressors in JA signaling, TIFY3B and TIFY11B were triggered by the yeast, but the gene expression levels were relatively low. Taken together, Y. lipolytica induced the SA and ET/JA signal mediating the defense pathways by stimulating defense response genes, such as peroxidase, thaumatin-like protein, and chitinase 4-like, which are involved in defense response in apple. [Formula: see text]


Assuntos
Malus/metabolismo , Malus/microbiologia , Proteoma/metabolismo , Transcriptoma/genética , Yarrowia/fisiologia , Ciclopentanos/metabolismo , Eletroforese em Gel Bidimensional , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Malus/enzimologia , Malus/genética , Modelos Biológicos , Oxilipinas/metabolismo , Penicillium/fisiologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
19.
Bioengineered ; 8(5): 624-629, 2017 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28282268

RESUMO

Lignocellulose is a polysaccharide and an abundant biomass resource that widely exists in grains, beans, rice, and their by-products. Over 10 million tons of lignocellulose resources and processing products are produced every year in China. Three recombinant Y. lipolytica strains with cellulase (ß-glucosidase, endoglucanase and cellobiohydrolase) were constructed. The enzymatic activities of these enzymes were 14.181 U/mL, 16.307 U/mL, and 17.391 U/mL, respectively. The whole cell cellulases were used for a stover bio-transformation. The celluloses in the stover were partly degraded by the cellulases, and the degradation products were transformed into single cell protein (SCP) by the Y. lipolytica cells. After 15 d of fermentation with the whole cell cellulases, the protein content of the maize stover and the rice straw reached 16.23% and 14.75%, which increased by 168.26% and 161.52% compared with the control, respectively. This study provides a new stage for the efficient utilization of stover in the feed industry.


Assuntos
Celulases/genética , Lignina/metabolismo , Engenharia Metabólica/métodos , Oryza/microbiologia , Recombinação Genética/genética , Yarrowia/fisiologia , Biotransformação/genética , Melhoramento Genético/métodos , Componentes Aéreos da Planta/microbiologia
20.
Biotechnol Bioeng ; 114(7): 1521-1530, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28295166

RESUMO

Microbially derived lipids have recently attracted renewed interests due to their broad applications in production of green diesels, cosmetic additives, and oleochemicals. Metabolic engineering efforts have targeted a large portfolio of biosynthetic pathways to efficiently convert sugar to lipids in oleaginous yeast. In the engineered overproducing strains, endogenous cell metabolism typically generates harmful electrophilic molecules that compromise cell fitness and productivity. Lipids, particularly unsaturated fatty acids, are highly susceptible to oxygen radical attack and the resulting oxidative species are detrimental to cell metabolism and limit lipid productivity. In this study, we investigated cellular oxidative stress defense pathways in Yarrowia lipolytica to further improve the lipid titer, yield, and productivity. Specifically, we determined that coupling glutathione disulfide reductase and glucose-6-phosphate dehydrogenase along with aldehyde dehydrogenase are efficient solutions to combat reactive oxygen and aldehyde stress in Y. lipolytica. With the reported engineering strategies, we were able to synchronize cell growth and lipid production, improve cell fitness and morphology, and achieved industrially-relevant level of lipid titer (72.7 g/L), oil content (81.4%) and productivity (0.97 g/L/h) in controlled bench-top bioreactors. The strategies reported here represent viable steps in the development of sustainable biorefinery platforms that potentially upgrade low value carbons to high value oleochemicals and biofuels. Biotechnol. Bioeng. 2017;114: 1521-1530. © 2017 Wiley Periodicals, Inc.


Assuntos
Aldeídos/metabolismo , Melhoramento Genético/métodos , Lipídeos/biossíntese , Redes e Vias Metabólicas/fisiologia , Estresse Oxidativo/fisiologia , Yarrowia/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Metabolismo dos Lipídeos/fisiologia , Lipídeos/genética , Yarrowia/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...