Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.297
Filtrar
1.
PLoS Pathog ; 20(8): e1012469, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39186805

RESUMO

Regulated cell death in response to microbial infection plays an important role in immune defense and is triggered by pathogen disruption of essential cellular pathways. Gram-negative bacterial pathogens in the Yersinia genus disrupt NF-κB signaling via translocated effectors injected by a type III secretion system, thereby preventing induction of cytokine production and antimicrobial defense. In murine models of infection, Yersinia blockade of NF-κB signaling triggers cell-extrinsic apoptosis through Receptor Interacting Serine-Threonine Protein Kinase 1 (RIPK1) and caspase-8, which is required for bacterial clearance and host survival. Unexpectedly, we find that human macrophages undergo apoptosis independently of RIPK1 in response to Yersinia or chemical blockade of IKKß. Instead, IKK blockade led to decreased cFLIP expression, and overexpression of cFLIP contributed to protection from IKK blockade-induced apoptosis in human macrophages. We found that IKK blockade also induces RIPK1 kinase activity-independent apoptosis in human T cells and human pancreatic cells. Altogether, our data indicate that, in contrast to murine cells, blockade of IKK activity in human cells triggers a distinct apoptosis pathway that is independent of RIPK1 kinase activity. These findings have implications for the contribution of RIPK1 to cell death in human cells and the efficacy of RIPK1 inhibition in human diseases.


Assuntos
Apoptose , Quinase I-kappa B , Macrófagos , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais , Humanos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose/fisiologia , Macrófagos/metabolismo , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Animais , Camundongos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Yersinia
2.
Cell Rep ; 43(8): 114641, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39154339

RESUMO

Caspase-8-dependent pyroptosis has been shown to mediate host protection from Yersinia infection. For this mode of cell death, the kinase activity of receptor-interacting protein kinase 1 (RIPK1) is required, but the autophosphorylation sites required to drive caspase-8 activation have not been determined. Here, we show that non-canonical autophosphorylation of RIPK1 at threonine 169 (T169) is necessary for caspase-8-mediated pyroptosis. Mice with alanine in the T169 position are highly susceptible to Yersinia dissemination. Mechanistically, the delayed formation of a complex containing RIPK1, ZBP1, Fas-associated protein with death domain (FADD), and caspase-8 abrogates caspase-8 maturation in T169A mice and leads to the eventual activation of RIPK3-dependent necroptosis in vivo; however, this is insufficient to protect the host, suggesting that timely pyroptosis during early response is specifically required to control infection. These results position RIPK1 T169 phosphorylation as a driver of pyroptotic cell death critical for host defense.


Assuntos
Piroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Yersiniose , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fosforilação , Yersiniose/metabolismo , Yersiniose/microbiologia , Camundongos , Caspase 8/metabolismo , Camundongos Endogâmicos C57BL , Yersinia/metabolismo , Humanos
3.
Sci Adv ; 10(30): eadl3629, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058785

RESUMO

Pathogen infection of host cells triggers an inflammatory cell death termed pyroptosis via activation of inflammatory caspases. However, blockade of immune signaling kinases by the Yersinia virulence factor YopJ triggers cell death involving both apoptotic caspase-8 and pyroptotic caspase-1. While caspase-1 is normally activated within inflammasomes, Yersinia-induced caspase-1 activation is independent of known inflammasome components. We report that caspase-8 is an essential initiator, while caspase-1 is an essential amplifier of its own activation through two feed-forward loops involving caspase-1 auto-processing and caspase-1-dependent activation of gasdermin D and NLPR3. Notably, while Yersinia-induced caspase-1 activation and cell death are inflammasome-independent, IL-1ß release requires NLPR3 inflammasome activation. Mechanistically, caspase-8 is rapidly activated within multiple foci throughout the cell, followed by assembly of a canonical inflammasome speck, indicating that caspase-8 and canonical inflammasome complex assemblies are kinetically and spatially distinct. Our findings reveal that functionally interconnected but distinct death complexes mediate pyroptosis and IL-1ß release in response to pathogen blockade of immune signaling.


Assuntos
Caspase 1 , Caspase 8 , Inflamassomos , Interleucina-1beta , Proteínas de Ligação a Fosfato , Piroptose , Transdução de Sinais , Yersinia , Interleucina-1beta/metabolismo , Caspase 8/metabolismo , Animais , Caspase 1/metabolismo , Inflamassomos/metabolismo , Yersinia/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Camundongos , Humanos , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Yersiniose/imunologia , Yersiniose/microbiologia , Yersiniose/metabolismo , Gasderminas
4.
Med Microbiol Immunol ; 213(1): 15, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008129

RESUMO

Chlamydiae are a large group of obligate endosymbionts of eukaryotes that includes the Chlamydiaceae family, comprising several animal pathogens. Among Chlamydiaceae, Chlamydia trachomatis causes widespread ocular and urogenital infections in humans. Like many bacterial pathogens, all Chlamydiae manipulate host cells by injecting them with type III secretion effector proteins. We previously characterized the C. trachomatis effector CteG, which localizes at the host cell Golgi and plasma membrane during distinct phases of the chlamydial infectious cycle. Here, we show that CteG is a Chlamydiaceae-specific effector with over 60 homologs phylogenetically categorized into two distinct clades (CteG I and CteG II) and exhibiting several inparalogs and outparalogs. Notably, cteG I homologs are syntenic to C. trachomatis cteG, whereas cteG II homologs are syntenic among themselves but not with C. trachomatis cteG. This indicates a complex evolution of cteG homologs, which is unique among C. trachomatis effectors, marked by numerous events of gene duplication and loss. Despite relatively modest sequence conservation, nearly all tested CteG I and CteG II proteins were identified as type III secretion substrates using Yersinia as a heterologous bacterial host. Moreover, most of the type III secreted CteG I and CteG II homologs were delivered by C. trachomatis into host cells, where they localized at the Golgi region and cell periphery. Overall, this provided insights into the evolution of bacterial effectors and revealed a Chlamydiaceae family of type III secreted proteins that underwent substantial divergence during evolution while conserving the capacity to localize at specific host cell compartments.


Assuntos
Proteínas de Bactérias , Chlamydia trachomatis , Filogenia , Sistemas de Secreção Tipo III , Humanos , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/genética , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Células HeLa , Yersinia/genética , Yersinia/metabolismo , Transporte Proteico , Interações Hospedeiro-Patógeno , Evolução Molecular , Chlamydiaceae/genética , Chlamydiaceae/metabolismo , Chlamydiaceae/classificação
5.
Antonie Van Leeuwenhoek ; 117(1): 86, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829455

RESUMO

Yersinia is an important genus comprising foodborne, zoonotic and pathogenic bacteria. On the other hand, species of the so-called group Yersinia enterocolitica-like are understudied and mostly characterized as non-pathogenic, despite of some reports of human infections. The present study aimed to provide genomic insights of Yersinia frederiksenii (YF), Yersinia intermedia (YI) and Yersinia kristensenii (YK) isolated worldwide. A total of 22 YF, 20 YI and 14 YK genomes were searched for antimicrobial resistance genes, plasmids, prophages, and virulence factors. Their phylogenomic relatedness was analyzed by Gegenees and core-genome multi-locus sequence typing. Beta-lactam resistance gene blaTEM-116 and five plasmids replicons (pYE854, ColRNAI, ColE10, Col(pHAD28) and IncN3) were detected in less than five genomes. A total of 59 prophages, 106 virulence markers of the Yersinia genus, associated to adherence, antiphagocytosis, exoenzymes, invasion, iron uptake, proteases, secretion systems and the O-antigen, and virulence factors associated to other 20 bacterial genera were detected. Phylogenomic analysis revealed high inter-species distinction and four highly diverse YF clusters. In conclusion, the results obtained through the analyses of YF, YI and YK genomes suggest the virulence potential of these strains due to the broad diversity and high frequency of prophages and virulence factors found. Phylogenetic analyses were able to correctly distinguish these closely related species and show the presence of different genetic subgroups. These data contributed for a better understanding of YF, YI and YK virulence-associated features and global genetic diversity, and reinforced the need for better characterization of these Y. enterocolitica-like species considered non-pathogenic.


Assuntos
Genoma Bacteriano , Filogenia , Fatores de Virulência , Yersinia , Yersinia/genética , Yersinia/classificação , Yersinia/patogenicidade , Yersinia/isolamento & purificação , Fatores de Virulência/genética , Brasil , Yersiniose/microbiologia , Yersiniose/veterinária , Humanos , Genômica , Prófagos/genética , Plasmídeos/genética , Tipagem de Sequências Multilocus , Virulência/genética
6.
J Biol Chem ; 300(6): 107331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703997

RESUMO

Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.


Assuntos
Proteínas de Bactérias , Tirosina , Yersinia , Glicosilação , Humanos , Yersinia/metabolismo , Yersinia/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Tirosina/metabolismo , Tirosina/química , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Proteína rhoA de Ligação ao GTP/metabolismo , Yersinia enterocolitica/metabolismo , Yersinia enterocolitica/genética , Animais , Células HeLa , Camundongos , Cristalografia por Raios X , Yersiniose/metabolismo , Yersiniose/microbiologia
7.
Sci Rep ; 14(1): 5630, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453993

RESUMO

With the Neolithic transition, human lifestyle shifted from hunting and gathering to farming. This change altered subsistence patterns, cultural expression, and population structures as shown by the archaeological/zooarchaeological record, as well as by stable isotope and ancient DNA data. Here, we used metagenomic data to analyse if the transitions also impacted the microbiome composition in 25 Mesolithic and Neolithic hunter-gatherers and 13 Neolithic farmers from several Scandinavian Stone Age cultural contexts. Salmonella enterica, a bacterium that may have been the cause of death for the infected individuals, was found in two Neolithic samples from Battle Axe culture contexts. Several species of the bacterial genus Yersinia were found in Neolithic individuals from Funnel Beaker culture contexts as well as from later Neolithic context. Transmission of e.g. Y. enterocolitica may have been facilitated by the denser populations in agricultural contexts.


Assuntos
DNA Mitocondrial , Microbiota , Yersinia , Humanos , Agricultura , DNA Mitocondrial/genética , Europa (Continente) , História Antiga , Yersinia/classificação , Yersinia/isolamento & purificação
8.
IUCrJ ; 11(Pt 3): 299-308, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38512773

RESUMO

Bacterial ABC toxin complexes (Tcs) comprise three core proteins: TcA, TcB and TcC. The TcA protein forms a pentameric assembly that attaches to the surface of target cells and penetrates the cell membrane. The TcB and TcC proteins assemble as a heterodimeric TcB-TcC subcomplex that makes a hollow shell. This TcB-TcC subcomplex self-cleaves and encapsulates within the shell a cytotoxic `cargo' encoded by the C-terminal region of the TcC protein. Here, we describe the structure of a previously uncharacterized TcC protein from Yersinia entomophaga, encoded by a gene at a distant genomic location from the genes encoding the rest of the toxin complex, in complex with the TcB protein. When encapsulated within the TcB-TcC shell, the C-terminal toxin adopts an unfolded and disordered state, with limited areas of local order stabilized by the chaperone-like inner surface of the shell. We also determined the structure of the toxin cargo alone and show that when not encapsulated within the shell, it adopts an ADP-ribosyltransferase fold most similar to the catalytic domain of the SpvB toxin from Salmonella typhimurium. Our structural analysis points to a likely mechanism whereby the toxin acts directly on actin, modifying it in a way that prevents normal polymerization.


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Yersinia , Yersinia/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Modelos Moleculares , Cristalografia por Raios X
9.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38363547

RESUMO

Tumor necrosis factor (TNF) is a pleiotropic inflammatory cytokine that mediates antimicrobial defense and granuloma formation in response to infection by numerous pathogens. We previously reported that Yersinia pseudotuberculosis colonizes the intestinal mucosa and induces the recruitment of neutrophils and inflammatory monocytes into organized immune structures termed pyogranulomas (PG) that control Yersinia infection. Inflammatory monocytes are essential for the control and clearance of Yersinia within intestinal PG, but how monocytes mediate Yersinia restriction is poorly understood. Here, we demonstrate that TNF signaling in monocytes is required for bacterial containment following enteric Yersinia infection. We further show that monocyte-intrinsic TNFR1 signaling drives the production of monocyte-derived interleukin-1 (IL-1), which signals through IL-1 receptors on non-hematopoietic cells to enable PG-mediated control of intestinal Yersinia infection. Altogether, our work reveals a monocyte-intrinsic TNF-IL-1 collaborative inflammatory circuit that restricts intestinal Yersinia infection.


Assuntos
Yersiniose , Yersinia pseudotuberculosis , Humanos , Interleucina-1 , Yersinia , Fator de Necrose Tumoral alfa , Monócitos
10.
Nat Microbiol ; 9(2): 405-420, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316932

RESUMO

Tc toxins are virulence factors of bacterial pathogens. Although their structure and intoxication mechanism are well understood, it remains elusive where this large macromolecular complex is assembled and how it is released. Here we show by an integrative multiscale imaging approach that Yersinia entomophaga Tc (YenTc) toxin components are expressed only in a subpopulation of cells that are 'primed' with several other potential virulence factors, including filaments of the protease M66/StcE. A phage-like lysis cassette is required for YenTc release; however, before resulting in complete cell lysis, the lysis cassette generates intermediate 'ghost' cells, which may serve as assembly compartments and become packed with assembled YenTc holotoxins. We hypothesize that this stepwise mechanism evolved to minimize the number of cells that need to be killed. The occurrence of similar lysis cassettes in diverse organisms indicates a conserved mechanism for Tc toxin release that may apply to other extracellular macromolecular machines.


Assuntos
Fatores de Virulência , Yersinia , Yersinia/química , Endopeptidases
11.
Virulence ; 15(1): 2316439, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38389313

RESUMO

The genus Yersinia includes human, animal, insect, and plant pathogens as well as many symbionts and harmless bacteria. Within this genus are Yersinia enterocolitica and the Yersinia pseudotuberculosis complex, with four human pathogenic species that are highly related at the genomic level including the causative agent of plague, Yersinia pestis. Extensive laboratory, field work, and clinical research have been conducted to understand the underlying pathogenesis and zoonotic transmission of these pathogens. There are presently more than 500 whole genome sequences from which an evolutionary footprint can be developed that details shared and unique virulence properties. Whereas the virulence of Y. pestis now seems in apparent homoeostasis within its flea transmission cycle, substantial evolutionary changes that affect transmission and disease severity continue to ndergo apparent selective pressure within the other Yersiniae that cause intestinal diseases. In this review, we will summarize the present understanding of the virulence and pathogenesis of Yersinia, highlighting shared mechanisms of virulence and the differences that determine the infection niche and disease severity.


Assuntos
Peste , Yersiniose , Yersinia pestis , Animais , Humanos , Yersinia/genética , Virulência/genética , Yersinia pestis/genética , Peste/microbiologia , Yersiniose/microbiologia
12.
Nat Microbiol ; 9(2): 390-404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238469

RESUMO

Disease-causing bacteria secrete numerous toxins to invade and subjugate their hosts. Unlike many smaller toxins, the secretion machinery of most large toxins remains enigmatic. By combining genomic editing, proteomic profiling and cryo-electron tomography of the insect pathogen Yersinia entomophaga, we demonstrate that a specialized subset of these cells produces a complex toxin cocktail, including the nearly ribosome-sized Tc toxin YenTc, which is subsequently exported by controlled cell lysis using a transcriptionally coupled, pH-dependent type 10 secretion system (T10SS). Our results dissect the Tc toxin export process by a T10SS, identifying that T10SSs operate via a previously unknown lytic mode of action and establishing them as crucial players in the size-insensitive release of cytoplasmically folded toxins. With T10SSs directly embedded in Tc toxin operons of major pathogens, we anticipate that our findings may model an important aspect of pathogenesis in bacteria with substantial impact on agriculture and healthcare.


Assuntos
Proteômica , Yersinia , Yersinia/genética , Yersinia/metabolismo
13.
J Vet Med Sci ; 86(3): 322-324, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38267043

RESUMO

This study aimed to investigate the prevalence of antibodies against pathogenic Yersinia such as Y. enterocolitica and Y. pseudotuberculosis in domestic pigs. A total of 650 serum samples from pigs in nine regions of the Chiba Prefecture in Japan, were tested using plasmid-encoded Yersinia outer membrane protein (Yops) antigen ELISA. The cutoff value was calculated using 20 pathogenic Yersinia-free pig serum samples. According to the cutoff value, 246 (37.8%) pigs from seven regions were considered seropositive for pathogenic Yersinia during the study period. These results indicate that pathogenic Yersinia is widespread in pigs in Chiba, which may become the source of human yersiniosis in this region.


Assuntos
Yersinia enterocolitica , Yersinia pseudotuberculosis , Suínos , Animais , Humanos , Yersinia , Sus scrofa , Japão/epidemiologia
14.
Small ; 20(15): e2307066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009518

RESUMO

A new Yersinia pseudotuberculosis mutant strain, YptbS46, carrying the lpxE insertion and pmrF-J deletion is constructed and shown to exclusively produce monophosphoryl lipid A (MPLA) having adjuvant properties. Outer membrane vesicles (OMVs) isolated from YptbS46 harboring an lcrV expression plasmid, pSMV13, are designated OMV46-LcrV, which contained MPLA and high amounts of LcrV (Low Calcium response V) and displayed low activation of Toll-like receptor 4 (TLR4). Intramuscular prime-boost immunization with 30 µg of of OMV46-LcrV exhibited substantially reduced reactogenicity than the parent OMV44-LcrV and conferred complete protection to mice against a high-dose of respiratory Y. pestis challenge. OMV46-LcrV immunization induced robust adaptive responses in both lung mucosal and systemic compartments and orchestrated innate immunity in the lung, which are correlated with rapid bacterial clearance and unremarkable lung damage during Y. pestis challenge. Additionally, OMV46-LcrV immunization conferred long-term protection. Moreover, immunization with reduced doses of OMV46-LcrV exhibited further lower reactogenicity and still provided great protection against pneumonic plague. The studies strongly demonstrate the feasibility of OMV46-LcrV as a new type of plague vaccine candidate.


Assuntos
Lipídeo A/análogos & derivados , Vacina contra a Peste , Peste , Yersinia pestis , Camundongos , Animais , Yersinia , Peste/prevenção & controle , Antígenos de Bactérias
15.
Mol Phylogenet Evol ; 188: 107903, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37574177

RESUMO

Yersinia spp. vary significantly in their ability to cause diseases that threaten public health. Their pathogenicity is frequently associated with increasing antimicrobial resistance (AMR) and various virulence factors. The aim of the study was to investigate the AMR genes, virulence factors, and genetic diversity of Yersinia strains isolated from meats and fish in Wenzhou in 2020 by using whole-genome sequencing (WGS). A total of 50 isolates were collected. The phylogenetic relationships among the Yersinia species were also analyzed using multilocus sequence typing (MLST), core genome multi-locus sequence typing (cgMLST), and single nucleotide polymorphism (SNP) analysis. According to the results, all the strains could be classified into five species, with most isolated from beef, followed by poultry, pork, and fish. AMR genes were identified in 23 strains. And the qnrD1 genes were all located in the Col3M plasmid. Virulence genes, such as yaxA, ystB, pla, and yplA, were also found in the 15 Y. enterocolitica strains. And this study also found the presence of icm/dot type IVB-related genes in one Yersinia massiliensis isolate. MLST analysis identified 43 sequence types (STs), 19 of which were newly detected in Yersinia. Moreover, cgMLST analysis revealed that no dense genotype clusters were formed (cgMLST 5341, 5344, 5346-5350, 5353-5390). Instead, the strains appeared to be dispersed over large distances, except when multiple isolates shared the same ST. Isolates Y4 and Y26 were closely related to strains originating from South Korea and Denmark. This study showed considerable diversity in Yersinia spp. isolated from local areas (Wenzhou City). The data generated in our study may enrich the molecular traceability database of Yersinia and provide a basis for the development of more effective antipathogen control strategies.


Assuntos
Antibacterianos , Fatores de Virulência , Animais , Bovinos , Fatores de Virulência/genética , Tipagem de Sequências Multilocus/métodos , Filogenia , Farmacorresistência Bacteriana/genética , Yersinia/genética , Variação Genética , Genoma Bacteriano
16.
mBio ; 14(5): e0131023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37615436

RESUMO

IMPORTANCE: Yersinia are responsible for significant disease burden in humans, ranging from recurrent disease outbreaks (yersiniosis) to pandemics (Yersinia pestis plague). Together with rising antibiotic resistance rates, there is a critical need to better understand Yersinia pathogenesis and host immune mechanisms, as this information will aid in developing improved immunomodulatory therapeutics. Inflammasome responses in human cells are less studied relative to murine models of infection, though recent studies have uncovered key differences in inflammasome responses between mice and humans. Here, we dissect human intestinal epithelial cell and macrophage inflammasome responses to Yersinia pseudotuberculosis. Our findings provide insight into species- and cell type-specific differences in inflammasome responses to Yersinia.


Assuntos
Peste , Yersinia pestis , Yersinia pseudotuberculosis , Humanos , Animais , Camundongos , Yersinia , Inflamassomos
17.
Virulence ; 14(1): 2249790, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37621095

RESUMO

Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.


Assuntos
Yersinia pseudotuberculosis , Animais , Yersinia pseudotuberculosis/genética , Sistemas de Secreção Tipo III/genética , Imunidade Inata , Macrófagos , Yersinia
18.
Microbiol Spectr ; 11(4): e0020323, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37466430

RESUMO

Yersinia pestis is the etiological agent of plague. Marmota himalayana of the Qinghai-Tibetan plateau is the primary host of flea-borne Y. pestis. This study is the report of isolation of Mu-like bacteriophages of Y. pestis from M. himalayana. The isolation and characterization of four Mu-like phages of Y. pestis were reported, which were named as vB_YpM_3, vB_YpM_5, vB_YpM_6, and vB_YpM_23 according to their morphology. Comparative genome analysis revealed that vB_YpM_3, vB_YpM_5, vB_YpM_6, and vB_YpM_23 are phylogenetically closest to Escherichia coli phages Mu, D108 and Shigella flexneri phage SfMu. The role of LPS core structure of Y. pestis in the phages' receptor was pinpointed. All the phages exhibit "temperature dependent infection," which is independent of the growth temperature of the host bacteria and dependent of the temperature of phage infection. The phages lyse the host bacteria at 37°C, but enter the lysogenic cycle and become prophages in the chromosome of the host bacteria at 26°C. IMPORTANCE Mu-like bacteriophages of Y. pestis were isolated from M. himalayana of the Qinghai-Tibetan plateau in China. These bacteriophages have a unique temperature dependent life cycle, follow a lytic cycle at the temperature of warm-blooded mammals (37°Ð¡), and enter the lysogenic cycle at the temperature of its flea-vector (26°Ð¡). A switch from the lysogenic to the lytic cycle occurred when lysogenic bacteria were incubated from lower temperature to higher temperature (initially incubating at 26°C and shifting to 37°C). It is speculated that the temperature dependent lifestyle of bacteriophages may affect the population dynamics and pathogenicity of Y. pestis.


Assuntos
Bacteriófagos , Peste , Sifonápteros , Yersinia pestis , Animais , Yersinia , Bacteriófagos/genética , Temperatura , Peste/microbiologia , Yersinia pestis/genética , Sifonápteros/microbiologia , Receptores de Bacteriófagos , Mamíferos
19.
J Microbiol Methods ; 211: 106779, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406739

RESUMO

This study aimed to develop multiplex real-time PCR methods using SYBR Green and TaqMan probes for rapid and sensitive diagnosis, differentiating three pathogenic Yersinia groups such as highly pathogenic Y. enterocolitica, low pathogenic Y. enterocolitica, and Y. pseudotuberculosis. Specific primer and probe combinations for differentiating three pathogenic Yersinia groups were designed from three chromosomally encoded genes (ail, fyuA, and inv). Twenty-six stains of pathogenic Yersinia species including 6 strains of low pathogenic Y. enterocolitica serotypes, 7 strains of highly pathogenic Y. enterocolitica serotypes, and 13 strains of pathogenic Y. pseudotuberculosis were used for specificity testing. Specific patterns of real-time amplification signals distinguished three pathogenic Yersinia groups. A detection limit of approximately 101 colony forming units (CFU) /reaction of genomic DNA was determined based on plate counts. Furthermore, the multiplex real-time PCR methods also detected Y. enterocolitica O:8 from the DNA extracted from spiked rabbit blood samples and potentially infected wild rodent fecal samples. These results demonstrated that the multiplex real-time PCR methods developed in this study are useful for rapid detection and differentiation of three pathogenic Yersinia groups. Therefore, these methods provide a new monitoring and detection capability to understand the epidemiology of pathogenic Yersinia and to diagnose three pathogenic Yersinia groups.


Assuntos
Yersinia enterocolitica , Infecções por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Animais , Coelhos , Yersinia pseudotuberculosis/genética , Yersinia enterocolitica/genética , Reação em Cadeia da Polimerase em Tempo Real , Yersinia/genética
20.
Appl Environ Microbiol ; 89(7): e0024023, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37338394

RESUMO

Metal ions are essential nutrients for all life forms, and restriction of metal ion availability is an effective host defense against bacterial infection. Meanwhile, bacterial pathogens have developed equally effective means to secure their metal ion supply. The enteric pathogen Yersinia pseudotuberculosis was found to uptake zinc using the T6SS4 effector YezP, which is essential for Zn2+ acquisition and bacterial survival under oxidative stress. However, the mechanism of this zinc uptake pathway has not been fully elucidated. Here, we identified the hemin uptake receptor HmuR for YezP, which can mediate import of Zn2+ into the periplasm by the YezP-Zn2+ complex and demonstrated that YezP functions extracellularly. This study also confirmed that the ZnuCB transporter is the inner membrane transporter for Zn2+ from the periplasm to cytoplasm. Overall, our results reveal the complete T6SS/YezP/HmuR/ZnuABC pathway, wherein multiple systems are coupled to support zinc uptake by Y. pseudotuberculosis under oxidative stress. IMPORTANCE Identifying the transporters involved in import of metal ions under normal physiological growth conditions in bacterial pathogens will clarify its pathogenic mechanism. Y. pseudotuberculosis YPIII, a common foodborne pathogen that infects animals and humans, uptake zinc via the T6SS4 effector YezP. However, the outer and inner transports involved in Zn2+ acquisition remain unknown. The important outcomes of this study are the identification of the hemin uptake receptor HmuR and inner membrane transporter ZnuCB that import Zn2+ into the cytoplasm via the YezP-Zn2+ complex, and elucidation of the complete Zn2+ acquisition pathway consisting of T6SS, HmuRSTUV, and ZnuABC, thereby providing a comprehensive view of T6SS-mediated ion transport and its functions.


Assuntos
Hemina , Infecções por Yersinia pseudotuberculosis , Humanos , Animais , Hemina/metabolismo , Yersinia/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Zinco/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA