Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.877
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732175

RESUMO

Drought stress globally poses a significant threat to maize (Zea mays L.) productivity and the underlying molecular mechanisms of drought tolerance remain elusive. In this study, we characterized ZmbHLH47, a basic helix-loop-helix (bHLH) transcription factor, as a positive regulator of drought tolerance in maize. ZmbHLH47 expression was notably induced by both drought stress and abscisic acid (ABA). Transgenic plants overexpressing ZmbHLH47 displayed elevated drought tolerance and ABA responsiveness, while the zmbhlh47 mutant exhibited increased drought sensitivity and reduced ABA sensitivity. Mechanistically, it was revealed that ZmbHLH47 could directly bind to the promoter of ZmSnRK2.9 gene, a member of the subgroup III SnRK2 kinases, activating its expression. Furthermore, ZmSnRK2.9-overexpressing plants exhibited enhanced ABA sensitivity and drought tolerance, whereas the zmsnrk2.9 mutant displayed a decreased sensitivity to both. Notably, overexpressing ZmbHLH47 in the zmsnrk2.9 mutant closely resembled the zmsnrk2.9 mutant, indicating the importance of the ZmbHLH47-ZmSnRK2.9 module in ABA response and drought tolerance. These findings provided valuable insights and a potential genetic resource for enhancing the environmental adaptability of maize.


Assuntos
Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/fisiologia , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Resistência à Seca
2.
Sci Total Environ ; 929: 172416, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631627

RESUMO

Widespread use of copper-based agrochemical may cause copper excessive accumulation in agricultural soil to seriously threaten crop production. Recently, fullerenols are playing important roles in helping crops build resistance to abiotic stresses by giving ingenious and successful resolutions. However, there is a lack of knowledge on their beneficial effects in crops under stresses induced by heavy metals. Herein, the visual observation of Cu2+-mediated assembly of fullerenols via electrostatic and coordination actions was carried out in vitro, showing that water-soluble nanocomplexes and water-insoluble cross-linking nanohybrids were selectively fabricated by precisely adjusting feeding ratios of fullerenols and CuSO4. Furthermore, maize simultaneous exposure of fullerenols and CuSO4 solutions was tested to investigate the comparative effects of seed germination and seedling growth relative to exposure of CuSO4 alone. Under moderate Cu2+ stresses (40 and 80 µM), fullerenols significantly mitigated the detrimental effects of seedlings, including phenotype, root and shoot elongation, biomass accumulation, antioxidant capacity, and Cu2+ uptake and copper transporter-related gene expressions in roots. Under 160 µM of Cu2+ as a stressor, fullerenols also accelerated germination of Cu2+-stressed seeds eventually up to the level of the control. Summarily, fullerenols can enhance tolerance of Cu2+-stressed maize mainly due to direct detoxification through fullerenol-Cu2+ interactions restraining the Cu2+ intake into roots and reducing free Cu2+ content in vivo, as well as fullerenol-maize interactions to enhance resistance by maintaining balance of reactive oxygen species and optimizing the excretion and transport of Cu2+. This will unveil valuable insights into the beneficial roles of fullerenols and its mechanism mode in alleviating heavy metal stress on crop plants.


Assuntos
Cobre , Plântula , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Cobre/toxicidade , Plântula/efeitos dos fármacos , Poluentes do Solo , Fulerenos , Estresse Fisiológico , Germinação/efeitos dos fármacos
3.
Sci Rep ; 14(1): 9361, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654091

RESUMO

With the improvements in mechanization levels, it is difficult for the traditional intercropping planting patterns to meet the needs of mechanization. In the traditional maize‒soybean intercropping, maize has a shading effect on soybean, which leads to a decrease in soybean photosynthetic capacity and stem bend resistance, resulting in severe lodging, which greatly affects soybean yield. In this study, we investigated the effects of three intercropping ratios (four rows of maize and four rows of soybean; four rows of maize and six rows of soybean; six rows of maize and six rows of soybean) and two planting patterns (narrow-wide row planting pattern of 80-50 cm and uniform-ridges planting pattern of 65 cm) on soybean canopy photosynthesis, stem bending resistance, cellulose, hemicellulose, lignin and related enzyme activities. Compared with the uniform-ridge planting pattern, the narrow-wide row planting pattern significantly increased the LAI, PAR, light transmittance and compound yield by 6.06%, 2.49%, 5.68% and 5.95%, respectively. The stem bending resistance and cellulose, hemicellulose, lignin and PAL, TAL and CAD activities were also significantly increased. Compared with those under the uniform-ridge planting pattern, these values increased by 7.74%, 3.04%, 8.42%, 9.76%, 7.39%, 10.54% and 8.73% respectively. Under the three intercropping ratios, the stem bending resistance, cellulose, hemicellulose, lignin content and PAL, TAL, and CAD activities in the M4S6 treatment were significantly greater than those in the M4S4 and M6S6 treatments. Compared with the M4S4 treatment, these variables increased by 12.05%, 11.09%, 21.56%, 11.91%, 18.46%, 16.1%, and 16.84%, respectively, and compared with the M6S6 treatment, they increased by 2.06%, 2.53%, 2.78%, 2.98%, 8.81%, 4.59%, and 4.36%, respectively. The D-M4S6 treatment significantly improved the lodging resistance of soybean and weakened the negative impact of intercropping on soybean yield. Therefore, based on the planting pattern of narrow-wide row maize‒soybean intercropping planting pattern, four rows of maize and six rows of soybean were more effective at improving the lodging resistance of soybean in the semiarid region of western China.


Assuntos
Glycine max , Fotossíntese , Zea mays , Glycine max/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia , Celulose/metabolismo , Lignina/metabolismo , Agricultura/métodos , Polissacarídeos/metabolismo , Produção Agrícola/métodos
4.
BMC Plant Biol ; 24(1): 304, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644487

RESUMO

Biochar is a promising solution to alleviate the negative impacts of salinity stress on agricultural production. Biochar derived from food waste effect was investigated on three plant species, Medicago sativa, Amaranthus caudatus, and Zea mays, under saline environments. The results showed that biochar improved significantly the height by 30%, fresh weight of shoot by 35% and root by 45% of all three species compared to control (saline soil without biochar adding), as well as enhanced their photosynthetic pigments and enzyme activities in soil. This positive effect varied significantly between the 3 plants highlighting the importance of the plant-biochar interactions. Thus, the application of biochar is a promising solution to enhance the growth, root morphology, and physiological characteristics of plants under salt-induced stress.


Assuntos
Amaranthus , Carvão Vegetal , Medicago sativa , Solo , Zea mays , Amaranthus/efeitos dos fármacos , Amaranthus/crescimento & desenvolvimento , Amaranthus/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Medicago sativa/efeitos dos fármacos , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/fisiologia , Solo/química , Salinidade , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos
5.
Sci Total Environ ; 927: 172205, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599397

RESUMO

Adaptation measures are essential for reducing the impact of future climate risks on agricultural production systems. The present study focuses on implementing an adaptation strategy to mitigate the impact of future climate change on rainfed maize production in the Eastern Kansas River Basin (EKSRB), an important rainfed maize-producing region in the US Great Plains, which faces potential challenges of future climate risks due to a significant east-to-west aridity gradient. We used a calibrated CERES-Maize crop model to evaluate the impacts of baseline climate conditions (1985-2014), late-term future climate scenarios (under the SSP245 emission pathway and CMIP6 models), and a novel root proliferation adaptation strategy on regional maize yield and rainfall productivity. Changes in the plant root system by increasing the root density could lead to yield benefits, especially under drought conditions. Therefore, we modified the governing equation of soil root growth in the CERES-Maize model to reflect the genetic influence of a maize cultivar to improve root density by proliferation. Under baseline conditions, maize yield values ranged from 6522 to 12,849 kgha-1, with a regional average value of 9270 kgha-1. Projections for the late-term scenario indicate a substantial decline in maize yield (36 % to 50 %) and rainfall productivity (25 % to 42 %). Introducing a hypothetical maize cultivar by employing root proliferation as an adaptation strategy resulted in a 27 % increase in regional maize yield, and a 28 % increase in rainfall productivity compared to the reference cultivar without adaptation. We observed an indication of spatial dependency of maize yield and rainfall productivity on the regional precipitation gradient, with counties towards the east having an implicit advantage over those in the west. These findings offer valuable insights for the US Great Plains maize growers and breeders, guiding strategic decisions to adapt rainfed maize production to the region's impending challenges posed by climate change.


Assuntos
Mudança Climática , Produtos Agrícolas , Raízes de Plantas , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Produção Agrícola/métodos , Chuva
6.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673880

RESUMO

Drought is one of the major abiotic stresses with a severe negative impact on maize production globally. Understanding the genetic architecture of drought tolerance in maize is a crucial step towards the breeding of drought-tolerant varieties and a targeted exploitation of genetic resources. In this study, 511 quantitative trait loci (QTL) related to grain yield components, flowering time, and plant morphology under drought conditions, as well as drought tolerance index were collected from 27 published studies and then projected on the IBM2 2008 Neighbors reference map for meta-analysis. In total, 83 meta-QTL (MQTL) associated with drought tolerance in maize were identified, of which 20 were determined as core MQTL. The average confidence interval of MQTL was strongly reduced compared to that of the previously published QTL. Nearly half of the MQTL were confirmed by co-localized marker-trait associations from genome-wide association studies. Based on the alignment of rice proteins related to drought tolerance, 63 orthologous genes were identified near the maize MQTL. Furthermore, 583 candidate genes were identified within the 20 core MQTL regions and maize-rice homologous genes. Based on KEGG analysis of candidate genes, plant hormone signaling pathways were found to be significantly enriched. The signaling pathways can have direct or indirect effects on drought tolerance and also interact with other pathways. In conclusion, this study provides novel insights into the genetic and molecular mechanisms of drought tolerance in maize towards a more targeted improvement of this important trait in breeding.


Assuntos
Secas , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/fisiologia , Estresse Fisiológico/genética , Mapeamento Cromossômico , Fenótipo , Genes de Plantas , Resistência à Seca
7.
Plant Cell Rep ; 43(5): 126, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652181

RESUMO

KEY MESSAGE: Innovatively, we consider stomatal detection as rotated object detection and provide an end-to-end, batch, rotated, real-time stomatal density and aperture size intelligent detection and identification system, RotatedeStomataNet. Stomata acts as a pathway for air and water vapor in the course of respiration, transpiration, and other gas metabolism, so the stomata phenotype is important for plant growth and development. Intelligent detection of high-throughput stoma is a key issue. Nevertheless, currently available methods usually suffer from detection errors or cumbersome operations when facing densely and unevenly arranged stomata. The proposed RotatedStomataNet innovatively regards stomata detection as rotated object detection, enabling an end-to-end, real-time, and intelligent phenotype analysis of stomata and apertures. The system is constructed based on the Arabidopsis and maize stomatal data sets acquired destructively, and the maize stomatal data set acquired in a non-destructive way, enabling the one-stop automatic collection of phenotypic, such as the location, density, length, and width of stomata and apertures without step-by-step operations. The accuracy of this system to acquire stomata and apertures has been well demonstrated in monocotyledon and dicotyledon, such as Arabidopsis, soybean, wheat, and maize. The experimental results that the prediction results of the method are consistent with those of manual labeling. The test sets, the system code, and their usage are also given ( https://github.com/AITAhenu/RotatedStomataNet ).


Assuntos
Arabidopsis , Fenótipo , Estômatos de Plantas , Zea mays , Estômatos de Plantas/fisiologia , Zea mays/genética , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/fisiologia
8.
Biochem Biophys Res Commun ; 714: 149956, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663095

RESUMO

BACKGROUND: Maize is a major cereal crop world widely, however, the yield of maize is frequently limited by dehydration and even death of plants, which resulted from osmotic stress such as drought and salinity. Dissection of molecular mechanisms controlling stress tolerance will enable plant scientists and breeders to increase crops yield by manipulating key regulatory components. METHODS: The candidate OSR1 gene was identified by map-based cloning. The expression level of OSR1 was verified by qRT-PCR and digital PCR in WT and osr1 mutant. Electrophoretic mobility shift assay, transactivation activity assay, subcellular localization, transcriptome analysis and physiological characters measurements were conducted to analyze the function of OSR1 in osmotic stress resistance in maize. RESULTS: The osr1 mutant was significantly less sensitive to osmotic stress than the WT plants and displayed stronger water-holding capacity, and the OSR1 homologous mutant in Arabidopsis showed a phenotype similar with maize osr1 mutant. Differentially expressed genes (DEGs) were identified between WT and osr1 under osmotic stress by transcriptome analysis, the expression levels of many genes, such as LEA, auxin-related factors, PPR family members, and TPR family members, changed notably, which may primarily involve in osmotic stress or promote root development. CONCLUSIONS: OSR1 may serve as a negative regulatory factor in response to osmotic stress in maize. The present study sheds new light on the molecular mechanisms of osmotic stress in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Proteínas de Plantas , Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação , Estresse Fisiológico/genética , Perfilação da Expressão Gênica
9.
Plant Cell Environ ; 47(6): 2228-2239, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38483021

RESUMO

The selection of oviposition sites by female moths is crucial in shaping their progeny performance and survival, and consequently in determining insect fitness. Selecting suitable plants that promote the performance of the progeny is referred to as the Preference-Performance hypothesis (or 'mother-knows-best'). While root infestation generally reduces the performance of leaf herbivores, little is known about its impact on female oviposition. We investigated whether maize root infestation by the Western corn rootworm (WCR) affects the oviposition preference and larval performance of the European corn borer (ECB). ECB females used leaf volatiles to select healthy plants over WCR-infested plants. Undecane, a compound absent from the volatile bouquet of healthy plants, was the sole compound to be upregulated upon root infestation and acted as a repellent for first oviposition. ECB larvae yet performed better on plants infested below-ground than on healthy plants, suggesting an example of 'bad motherhood'. The increased ECB performance on WCR-infested plants was mirrored by an increased leaf consumption, and no changes in the plant primary or secondary metabolism were detected. Understanding plant-mediated interactions between above- and below-ground herbivores may help to predict oviposition decisions, and ultimately, to manage pest outbreaks in the field.


Assuntos
Larva , Mariposas , Oviposição , Folhas de Planta , Raízes de Plantas , Compostos Orgânicos Voláteis , Zea mays , Animais , Oviposição/efeitos dos fármacos , Zea mays/fisiologia , Zea mays/parasitologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Mariposas/fisiologia , Feminino , Larva/fisiologia , Raízes de Plantas/parasitologia , Raízes de Plantas/fisiologia , Folhas de Planta/fisiologia , Herbivoria
10.
Nat Plants ; 10(4): 567-571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499777

RESUMO

Maize mutants of the centromeric histone H3 (CENP-A/CENH3) gene can form haploids that inherit only chromosomes of the pollinating parent but the cytoplasm from the female parent. We developed CENH3 haploid inducers carrying a dominant anthocyanin colour marker for efficient haploid identification and harbouring cytoplasmic male sterile cytoplasm, a type of cytoplasm that results in male sterility useful for efficient hybrid seed production. The resulting cytoplasmic male sterility cyto-swapping method provides a faster and cheaper way to convert commercial lines to cytoplasmic male sterile compared to conventional trait introgression.


Assuntos
Haploidia , Zea mays , Zea mays/genética , Zea mays/fisiologia , Infertilidade das Plantas/genética , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Centrômero/genética , Histonas/metabolismo , Histonas/genética , Melhoramento Vegetal/métodos
11.
J Econ Entomol ; 117(2): 537-544, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38366888

RESUMO

Larvae of the southern corn rootworm (SCR) Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae) are primary pests of peanut in the Virginia-Carolina region of the United States, and are relatively sporadic pests in southern states such as Georgia, Alabama, and Florida. Peanuts have strict quality standards which, when they are not met, can diminish crop value by more than 65%. Management of direct pests like SCR is therefore crucial to maintaining the economic viability of the crop. The soil-dwelling nature of SCR larvae complicates management due to difficulties associated with monitoring and predicting infestations. Nonchemical management options are limited in this system; preventative insecticide applications are the most reliable management strategy for at-risk fields. Chlorpyrifos was the standard product for larval SCR management in peanut until its registration was revoked in 2022, leaving no effective chemical management option for larvae. We tested a novel insecticide, isocycloseram, for its ability to reduce pod scarring, pod penetration, and non-SCR pod damage in field studies conducted in Suffolk, Virginia in 2020-2022. Overall injury was low in 2020 and 2022, and in 2022 there was not a significant effect of treatment. In 2021, 2 simulated chemigation applications of isocycloseram in July significantly reduced pod scarring and overall pod injury relative to chlorpyrifos and the untreated control. Our results suggest that isocycloseram may become an effective option for managing SCR in peanut, although more work is needed to understand the mechanisms by which it is effective as a soil-applied insecticide.


Assuntos
Clorpirifos , Besouros , Inseticidas , Animais , Besouros/fisiologia , Inseticidas/farmacologia , Arachis , Cicatriz , Larva/fisiologia , Solo , Zea mays/fisiologia , Plantas Geneticamente Modificadas , Endotoxinas/farmacologia
12.
Plant Cell Environ ; 47(5): 1747-1768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38317308

RESUMO

The plant cell wall is a plastic structure of variable composition that constitutes the first line of defence against environmental challenges. Lodging and drought are two stressful conditions that severely impact maize yield. In a previous work, we characterised the cell walls of two maize inbreds, EA2024 (susceptible) and B73 (resistant) to stalk lodging. Here, we show that drought induces distinct phenotypical, physiological, cell wall, and transcriptional changes in the two inbreds, with B73 exhibiting lower tolerance to this stress than EA2024. In control conditions, EA2024 stalks had higher levels of cellulose, uronic acids and p-coumarate than B73. However, upon drought EA2024 displayed increased levels of arabinose-enriched polymers, such as pectin-arabinans and arabinogalactan proteins, and a decreased lignin content. By contrast, B73 displayed a deeper rearrangement of cell walls upon drought, including modifications in lignin composition (increased S subunits and S/G ratio; decreased H subunits) and an increase of uronic acids. Drought induced more substantial changes in gene expression in B73 compared to EA2024, particularly in cell wall-related genes, that were modulated in an inbred-specific manner. Transcription factor enrichment assays unveiled inbred-specific regulatory networks coordinating cell wall genes expression. Altogether, these findings reveal that B73 and EA2024 inbreds, with opposite stalk-lodging phenotypes, undertake different cell wall modification strategies in response to drought. We propose that the specific cell wall composition conferring lodging resistance to B73, compromises its cell wall plasticity, and renders this inbred more susceptible to drought.


Assuntos
Lignina , Zea mays , Lignina/metabolismo , Zea mays/fisiologia , Secas , Parede Celular/metabolismo , Ácidos Urônicos/metabolismo
13.
Sci Total Environ ; 918: 170709, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325451

RESUMO

Temperature is a vital environmental factor affecting grain filling and maize yield. The response of maize yield to temperature at different stages of grain filling, however, remains uncharacterized. This study used "Zhengdan 958" as the test material to analyze the high-temperature threshold and yield sensitivity of grain-filling in different periods without water stress by using the data from staging sowing experiments at agro-meteorological experimental stations in Hebi and Suzhou in the Huang-Huai-Hai Plain from 2019 to 2022. The results demonstrated that: (1) the maximum temperature threshold was different in various periods of maize grain-filling in the Huang-Huai-Hai Plain, showing the early grain-filling period (EP) > the active grain-filling period (AP) > the late grain-filling period (LP). With the largest differences in temperature thresholds found in AP, the maximum temperature threshold of AP can better reflect the characteristics of grain filling rather than the whole filling period. (2) The heat of the grain-filling period can explain more than 80 % of the yield variation and affect the yield by influencing the number of days required to reach the maximum grain-filling rate (Vmaxd) and the duration of the active grain-filling period (DAP). (3) The growing degree days (GDD) is the most significant controlling factor affecting yield; however, the effect of heat degree days (HDD) cannot be ignored. The HDD and cumulative thresholds of HDD in the EP and AP of grain-filling can better reflect the effect of heat on yield. The accumulation thresholds of HDD at Hebi and Suzhou were 28.1 °C·d and 15.2 °C·d in the EP period, and 31.0 °C·d and 14.9 °C·d in the AP period, respectively. The results provide a basis for the precise identification of heat disasters during grain-filling and the scientific adjustment of sowing dates.


Assuntos
Grão Comestível , Zea mays , Temperatura , Zea mays/fisiologia , Temperatura Alta
16.
Plant Cell Environ ; 47(3): 885-899, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164019

RESUMO

Drought is a major abiotic stress that limits maize production worldwide. Therefore, it is of great importance to improve drought tolerance in crop plants for sustainable agriculture. In this study, we examined the roles of Cys2 /His2 zinc-finger-proteins (C2H2-ZFPs) in maize's drought tolerance as C2H2-ZFPs have been implicated for plant stress tolerance. By subjecting 150 Ac/Ds mutant lines to drought stress, we successfully identified a Ds-insertion mutant, zmc2h2-149, which shows increased tolerance to drought stress. Overexpression of ZmC2H2-149 in maize led to a decrease in both drought tolerance and crop yield. DAP-Seq, RNA-Seq, Y1H and LUC assays additionally showed that ZmC2H2-149 directly suppresses the expression of a positive drought tolerance regulator, ZmHSD1 (hydroxysteroid dehydrogenase 1). Consistently, the zmhsd1 mutants exhibited decreased drought tolerance and grain yield under water deficit conditions compared to their respective wild-type plants. Our findings thus demonstrated that ZmC2H2-149 can regulate ZmHSD1 for drought stress tolerance in maize, offering valuable theoretical and genetic resources for maize breeding programmes that aim for improving drought tolerance.


Assuntos
Resistência à Seca , Zea mays , Zea mays/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
17.
BMC Plant Biol ; 24(1): 80, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291371

RESUMO

BACKGROUND: Higher planting densities typically cause a decline in grain weight, limiting the potential for high maize yield. Additionally, variations in grain filling occur at different positions within the maize ear. Abscisic acid (ABA) is important for grain filling and regulates grain weight. However, the effects of exogenous ABA on the filling process of maize grains at different ear positions under high planting density are poorly understood. In this study, two summer maize hybrids (DengHai605 (DH605) and ZhengDan958 (ZD958)) commonly grown in China were used to examine the effects of ABA application during the flowering stage on grain filling properties, starch accumulation, starch biosynthesis associated enzyme activities, and hormone levels of maize grain (including inferior grain (IG) and superior grain (SG)) under high planting density. RESULTS: Our results showed that exogenous ABA significantly increased maize yield, primarily owing to a higher grain weight resulting from an accelerated grain filling rate relative to the control. There was no significant difference in yield between DH605 and ZD958 in the control and ABA treatments. Moreover, applying ABA promoted starch accumulation by raising the activities of sucrose synthase, ADP-glucose pyrophosphorylase, granule-bound starch synthases, soluble starch synthase, and starch branching enzyme in grains. It also increased the levels of zeatin riboside, indole-3-acetic acid, and ABA and decreased the level of gibberellin in grains, resulting in more efficient grain filling. Notably, IG exhibited a less efficient filling process compared to SG, probably due to lower starch biosynthesis associated enzyme activities and an imbalance in hormone contents. Nevertheless, IG displayed greater sensitivity to exogenous ABA than SG, suggesting that appropriate cultural measures to improve IG filling may be a viable strategy to further increase maize yield. CONCLUSIONS: According to our results, spraying exogenous ABA could effectively improve grain filling properties, accelerate starch accumulation by increasing relevant enzyme activities, and regulate hormone levels in grains, resulting in higher grain weight and yield of maize under high planting density. Our findings offer more evidence for using exogenous hormones to improve maize yield under high planting density.


Assuntos
Ácido Abscísico , Sintase do Amido , Zea mays/fisiologia , Amido , Grão Comestível , Hormônios
18.
J Exp Bot ; 75(1): 258-273, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721809

RESUMO

Intercropping improves resource utilization. Under wide-narrow-row maize (Zea mays) intercropping, maize plants are subjected to weak unilateral illumination and exhibit high photosynthetic performance. However, the mechanism regulating photosynthesis under unilateral weak light remains unknown. We investigated the relationship between photosynthesis and sugar metabolism in maize under unilateral weak light. Our results showed that the net photosynthetic rate (Pn) of unshaded leaves increased as the level of shade on the other side increased. On the contrary, the concentration of sucrose and starch and the number of starch granules in the unshaded leaves decreased with increased shading due to the transfer of abundant C into the grains. However, sink loss with ear removal reduced the Pn of unshaded leaves. Intense unilateral shade (40% to 20% normal light), but not mild unilateral shade (60% normal light), reduced grain yield (37.6% to 54.4%, respectively). We further found that in unshaded leaves, Agpsl, Bmy, and Mexl-like expression significantly influenced sucrose and starch metabolism, while Sweet13a and Sut1 expression was crucial for sugar export. In shaded leaves, expression of Sps1, Agpsl, and Sweet13c was crucial for sugar metabolism and export. This study confirmed that unshaded leaves transported photosynthates to the ear, leading to a decrease in sugar concentration. The improvement of photosynthetic performance was associated with altered sugar transport. We propose a narrow-row spacing of 40 cm, which provides appropriate unilateral shade and limits yield reduction.


Assuntos
Fotossíntese , Zea mays , Fotossíntese/fisiologia , Zea mays/fisiologia , Folhas de Planta/fisiologia , Amido , Sacarose
19.
Plant Physiol Biochem ; 206: 108200, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029620

RESUMO

Short cells are specialised epidermal cells of grasses and they include cork and silica cells. The time of occurrence, distribution, and number of short cells differ among plants or tissues of the same plant. The present study aimed to assess the occurrence, structure, and function of short cells in the epidermis of maize (Zea mays L.) leaves from cultivar "Zhengdan 958″ under field and potted experimental conditions. Results showed that short cells occurred synchronously in multiple maize leaves. Few short cells occurred at the base of the fifth leaf; most were found at the middle and base of the sixth leaf, and throughout the seventh leaf. The accumulation of K+ and H2O2 in cork cells changed periodically with stomatal opening and closure, which was consistent with the accumulation of K+ and H2O2 in subsidiary cells; whereas no accumulation was observed in silica cells. Moreover, photosynthetic parameters and stomatal aperture were significantly higher in leaves containing short cells than in those without them in the same parts of different leaves or in different leaves at the same leaf position. Accumulation of K+ and H2O2 in cork cells increased with increasing water stress. In conclusion, short cells not only improved leaf mechanical support and photosynthetic performance, and maize drought resistance, but they also participated in stomatal regulation.


Assuntos
Peróxido de Hidrogênio , Zea mays , Zea mays/fisiologia , Folhas de Planta/fisiologia , Células Epidérmicas , Epiderme , Dióxido de Silício
20.
Plant Physiol ; 194(4): 2288-2300, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38128552

RESUMO

The water status of the living tissue in leaves between the xylem and stomata (outside xylem zone (OXZ) plays a critical role in plant function and global mass and energy balance but has remained largely inaccessible. We resolve the local water relations of OXZ tissue using a nanogel reporter of water potential (ψ), AquaDust, that enables an in situ, nondestructive measurement of both ψ of xylem and highly localized ψ at the terminus of transpiration in the OXZ. Working in maize (Zea mays L.), these localized measurements reveal gradients in the OXZ that are several folds larger than those based on conventional methods and values of ψ in the mesophyll apoplast well below the macroscopic turgor loss potential. We find a strong loss of hydraulic conductance in both the bundle sheath and the mesophyll with decreasing xylem potential but not with evaporative demand. Our measurements suggest the OXZ plays an active role in regulating the transpiration path, and our methods provide the means to study this phenomenon.


Assuntos
Água , Zea mays , Água/fisiologia , Zea mays/fisiologia , Transpiração Vegetal/fisiologia , Folhas de Planta/fisiologia , Xilema/fisiologia , Estômatos de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...