Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 101(5): 322-333, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35273080

RESUMO

Ceramide is a bioactive sphingolipid that mediates ionizing radiation- and chemotherapy-induced apoptosis. Neocarzinostatin (NCS) is a genotoxic anti-cancer drug that induces apoptosis in response to DNA double-strand breaks (DSBs) through ataxia telangiectasia mutated (ATM) activation. However, the involvement of ceramide in NCS-evoked nuclear events such as DSB-activated ATM has not been clarified. Here, we found that nuclear ceramide increased by NCS-mediated apoptosis through the enhanced assembly of ATM and the meiotic recombination 11/double-strand break repair/Nijmengen breakage syndrome 1 (MRN) complex proteins in human lymphoblastoid L-39 cells. NCS induced an increase of ceramide production through activation of neutral sphingomyelinase (nSMase) and suppression of sphingomyelin synthase (SMS) upstream of DSB-mediated ATM activation. In ATM-deficient lymphoblastoid AT-59 cells compared with L-39 cells, NCS treatment showed a decrease of apoptosis even though ceramide increase and DSBs were observed. Expression of wild-type ATM, but not the kinase-dead mutant ATM, in AT-59 cells increased NCS-induced apoptosis despite similar ceramide accumulation. Interestingly, NCS increased ceramide content in the nucleus through nSMase activation and SMS suppression and promoted colocalization of ceramide with phosphorylated ATM and foci of MRN complex. Inhibition of ceramide generation by the overexpression of SMS suppressed NCS-induced apoptosis through the inhibition of ATM activation and assembly of the MRN complex. In addition, inhibition of ceramide increased by the nSMase inhibitor GW4869 prevented NCS-mediated activation of the ATM. Therefore, our findings suggest the involvement of the nuclear ceramide with ATM activation in NCS-mediated apoptosis. SIGNIFICANCE STATEMENT: This study demonstrates that regulation of ceramide with neutral sphingomyelinase and sphingomyelin synthase in the nucleus in double-strand break-mimetic agent neocarzinostatin (NCS)-induced apoptosis. This study also showed that ceramide increase in the nucleus plays a role in NCS-induced apoptosis through activation of the ataxia telangiectasia mutated/meiotic recombination 11/double-strand break repair/Nijmengen breakage syndrome 1 complex in human lymphoblastoid cells.


Assuntos
Ataxia Telangiectasia , Zinostatina , Apoptose/genética , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ceramidas/farmacologia , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Serina-Treonina Quinases , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Zinostatina/farmacologia
2.
Nat Commun ; 12(1): 3686, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140498

RESUMO

Tumour hypoxia is associated with poor patient prognosis and therapy resistance. A unique transcriptional response is initiated by hypoxia which includes the rapid activation of numerous transcription factors in a background of reduced global transcription. Here, we show that the biological response to hypoxia includes the accumulation of R-loops and the induction of the RNA/DNA helicase SETX. In the absence of hypoxia-induced SETX, R-loop levels increase, DNA damage accumulates, and DNA replication rates decrease. Therefore, suggesting that, SETX plays a role in protecting cells from DNA damage induced during transcription in hypoxia. Importantly, we propose that the mechanism of SETX induction in hypoxia is reliant on the PERK/ATF4 arm of the unfolded protein response. These data not only highlight the unique cellular response to hypoxia, which includes both a replication stress-dependent DNA damage response and an unfolded protein response but uncover a novel link between these two distinct pathways.


Assuntos
Hipóxia Celular , Dano ao DNA/genética , DNA Helicases/metabolismo , Regulação da Expressão Gênica/genética , Enzimas Multifuncionais/metabolismo , Estruturas R-Loop/genética , RNA Helicases/metabolismo , Resposta a Proteínas não Dobradas/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Imunoprecipitação da Cromatina , DNA Helicases/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Enzimas Multifuncionais/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Oxigênio/farmacologia , Estruturas R-Loop/efeitos dos fármacos , RNA Helicases/genética , RNA-Seq , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima , Zinostatina/farmacologia , eIF-2 Quinase/metabolismo
3.
Cell Rep ; 33(2): 108240, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053351

RESUMO

DNA double strand breaks induce oscillatory expression of the transcription factor p53 that is dependent on ataxia telangiectasia mutated (ATM) activity and the rate of double strand break resolution. Although p53 dynamics are known to play a role in the regulation of cell fate determination, the consequences of the variability in dynamics associated with differences in repair rates and utilized repair pathways are unknown. Using single-cell time-lapse microscopy, we found that disruption of specific repair pathways has distinct impacts on p53 dynamics. The small-molecule rucaparib, an inhibitor of the alternative end-joining-associated protein poly (ADP-ribose) polymerase (PARP), increased p53 pulse duration, altering the temporal expression of multiple p53 target genes. As a result, combination treatments of the radiomimetic drug neocarzinostatin with rucaparib drove prolonged growth arrest beyond that of DNA damage alone. This study highlights how pharmacological manipulation of DNA repair pathways may be used to alter p53 dynamics to enhance therapeutic regimens.


Assuntos
Pontos de Checagem do Ciclo Celular , Quebras de DNA de Cadeia Dupla , Indóis/farmacologia , Análise de Célula Única , Proteína Supressora de Tumor p53/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Proteína Quinase Ativada por DNA , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Células MCF-7 , Zinostatina/farmacologia
4.
Cells ; 9(9)2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961751

RESUMO

Cells recovering from the G2/M DNA damage checkpoint rely more on Aurora A-PLK1 signaling than cells progressing through an unperturbed G2 phase, but the reason for this discrepancy is not known. Here, we devised a method based on a FRET reporter for PLK1 activity to sort cells in distinct populations within G2 phase. We employed mass spectroscopy to characterize changes in protein levels through an unperturbed G2 phase and validated that ATAD2 levels decrease in a proteasome-dependent manner. Comparing unperturbed cells with cells recovering from DNA damage, we note that at similar PLK1 activities, recovering cells contain higher levels of Cyclin B1 and increased phosphorylation of CDK1 targets. The increased Cyclin B1 levels are due to continuous Cyclin B1 production during a DNA damage response and are sustained until mitosis. Whereas partial inhibition of PLK1 suppresses mitotic entry more efficiently when cells recover from a checkpoint, partial inhibition of CDK1 suppresses mitotic entry more efficiently in unperturbed cells. Our findings provide a resource for proteome changes during G2 phase, show that the mitotic entry network is rewired during a DNA damage response, and suggest that the bottleneck for mitotic entry shifts from CDK1 to PLK1 after DNA damage.


Assuntos
Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Fibroblastos/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Mitose/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Ciclina B1/genética , Ciclina B1/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Zinostatina/farmacologia , Quinase 1 Polo-Like
5.
J Cell Biol ; 218(4): 1282-1297, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30745421

RESUMO

In response to DNA damage, the transcription factor p53 accumulates in a series of pulses. While p53 dynamics play a critical role in regulating stress responses, how p53 pulsing affects target protein expression is not well understood. Recently, we showed that p53 pulses generate diversity in target mRNA expression dynamics; however, given that mRNA and protein expression are not necessarily well correlated, it remains to be determined how p53 pulses impact target protein expression. Using computational and experimental approaches, we show that target protein decay rates filter p53 pulses: Distinct target protein expression dynamics are generated depending on the relationship between p53 pulse frequency and target mRNA and protein stability. Furthermore, by mutating the targets MDM2 and PUMA to alter their stabilities, we show that downstream pathways are sensitive to target protein decay rates. This study delineates the mechanisms by which p53 dynamics play a crucial role in orchestrating the timing of events in the DNA damage response network.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cinética , Células MCF-7 , Modelos Biológicos , Mutação , Estabilidade Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Zinostatina/farmacologia
6.
Nucleic Acids Res ; 46(17): 8926-8939, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30113698

RESUMO

The Artemis nuclease and tyrosyl-DNA phosphodiesterase (TDP1) are each capable of resolving protruding 3'-phosphoglycolate (PG) termini of DNA double-strand breaks (DSBs). Consequently, both a knockout of Artemis and a knockout/knockdown of TDP1 rendered cells sensitive to the radiomimetic agent neocarzinostatin (NCS), which induces 3'-PG-terminated DSBs. Unexpectedly, however, a knockdown or knockout of TDP1 in Artemis-null cells did not confer any greater sensitivity than either deficiency alone, indicating a strict epistasis between TDP1 and Artemis. Moreover, a deficiency in Artemis, but not TDP1, resulted in a fraction of unrepaired DSBs, which were assessed as 53BP1 foci. Conversely, a deficiency in TDP1, but not Artemis, resulted in a dramatic increase in dicentric chromosomes following NCS treatment. An inhibitor of DNA-dependent protein kinase, a key regulator of the classical nonhomologous end joining (C-NHEJ) pathway sensitized cells to NCS, but eliminated the sensitizing effects of both TDP1 and Artemis deficiencies. These results suggest that TDP1 and Artemis perform different functions in the repair of terminally blocked DSBs by the C-NHEJ pathway, and that whereas an Artemis deficiency prevents end joining of some DSBs, a TDP1 deficiency tends to promote DSB mis-joining.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA/genética , Endonucleases/genética , Epistasia Genética , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases/genética , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/farmacologia , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Endonucleases/antagonistas & inibidores , Endonucleases/deficiência , Células HCT116 , Células HEK293 , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/deficiência , Inibidores da Síntese de Ácido Nucleico/farmacologia , Diester Fosfórico Hidrolases/deficiência , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Zinostatina/farmacologia
7.
Sci Rep ; 8(1): 4153, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515139

RESUMO

Monocyte-derived macrophages (MDMs) are an important target for HIV-1 despite SAMHD1, a myeloid restriction factor for which HIV-1 lacks a counteracting accessory protein. The antiviral activity of SAMHD1 is modulated by phosphorylation of T592 by cyclin-dependent kinases (CDK). We show that treatment of MDMs with neocarzinostatin, a compound that introduces double strand breaks (DBS) in genomic DNA, results in the decrease of phosphorylated SAMHD1, activating its antiviral activity and blocking HIV-1 infection. The effect was specific for DSB as DNA damage induced by UV light irradiation did not affect SAMHD1 phosphorylation and did not block infection. The block to infection was at reverse transcription and was counteracted by Vpx, demonstrating that it was caused by SAMHD1. Neocarzinostatin treatment also activated an innate immune response that induced interferon-stimulated genes but this was not involved in the block to HIV-1 infection, as it was not relieved by an interferon-blocking antibody. In response to Neocarzinostatin-induced DNA damage, the level of the CDK inhibitor p21cip1 increased which could account for the decrease of phosphorylated SAMHD1. The results show that the susceptibility of MDMs to HIV-1 infection can be affected by stimuli that alter the phosphorylation state of SAMHD1, one of which is the DNA damage response.


Assuntos
Dano ao DNA , Infecções por HIV/imunologia , HIV-1/crescimento & desenvolvimento , Imunidade Inata , Macrófagos/imunologia , Proteína 1 com Domínio SAM e Domínio HD/imunologia , Feminino , Células HEK293 , Infecções por HIV/patologia , Humanos , Macrófagos/patologia , Macrófagos/virologia , Masculino , Fosforilação , Proteína 1 com Domínio SAM e Domínio HD/genética , Raios Ultravioleta/efeitos adversos , Zinostatina/farmacologia
8.
Anal Biochem ; 536: 78-89, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827125

RESUMO

We have developed a new method for estimating the localization of DNA damage such as apurinic/apyrimidinic sites (APs) on DNA using fluorescence anisotropy. This method is aimed at characterizing clustered DNA damage produced by DNA-damaging agents such as ionizing radiation and genotoxic chemicals. A fluorescent probe with an aminooxy group (AlexaFluor488) was used to label APs. We prepared a pUC19 plasmid with APs by heating under acidic conditions as a model for damaged DNA, and subsequently labeled the APs. We found that the observed fluorescence anisotropy (robs) decreases as averaged AP density (λAP: number of APs per base pair) increases due to homo-FRET, and that the APs were randomly distributed. We applied this method to three DNA-damaging agents, 60Co γ-rays, methyl methanesulfonate (MMS), and neocarzinostatin (NCS). We found that robs-λAP relationships differed significantly between MMS and NCS. At low AP density (λAP < 0.001), the APs induced by MMS seemed to not be closely distributed, whereas those induced by NCS were remarkably clustered. In contrast, the AP clustering induced by 60Co γ-rays was similar to, but potentially more likely to occur than, random distribution. This simple method can be used to estimate mutagenicity of ionizing radiation and genotoxic chemicals.


Assuntos
Dano ao DNA , DNA/efeitos dos fármacos , Polarização de Fluorescência/métodos , Radioisótopos de Cobalto/farmacologia , DNA/química , Corantes Fluorescentes/química , Raios gama , Mesilatos/farmacologia , Mutagênicos , Zinostatina/farmacologia
9.
Anticancer Res ; 37(7): 3615-3629, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28668853

RESUMO

BACKGROUND/AIM: The aim of this study was to investigate the role of Neocarzinostatin (NCS) conjugated with epithelial cell adhesion molecule (EpCAM) aptamer in EpCAM-positive cancer cells. NCS is an antitumor antibiotic protein chromophore that has the ability to cleave double stranded DNA and can be used as a potential drug for the treatment of EpCAM-positive cancers. EpCAM aptamer is an oligonucleotide ligand that binds specifically to EpCAM, a protein overexpressed in tumor cells. MATERIALS AND METHODS: NCS was conjugated with EpCAM aptamer using Sulfo-Succinimidyl 6-(3-(2-pyridyldithio) - propionamide hexanoate) LC-(SPDP) cross-linker to deliver it to EpCAM-positive tumor cells. The conjugates were characterized using polyacrylamide gel electrophoresis (PAGE) and high-performance liquid chromatography (HPLC). Flow cytometry was used to study the binding efficiency of the aptamer and the conjugates in cancer cells. The effect of the conjugate on cancer cells was studied using propidium iodide (PI) to analyze the cell cycle phase changes. The apoptosis assay was performed using the IC50 concentration of NCS. Microarrays were performed to study the gene level changes in cancer cells upon treatment with NCS and the conjugate. RESULTS: Flow cytometry revealed significant binding of aptamer and conjugate in the MCF-7 and WERI-Rb1 cell lines. Briefly, 62% in MCF and 30% in WERI-Rb1 cells with conjugate treated cells (p<0.005). The cell-cycle analysis indicated G2 phase arrest in MCF-7 cells and S phase arrest in WERI-Rb1 cells (p<0.005). Microarray analysis showed differentially expressed genes involved in cell cycle, DNA damage, and apoptosis. The BrDU assay and the apoptosis assay showed that the expression of BrDU was reduced in conjugate-treated cells and the PARP levels were increased confirming the double stranded DNA breaks (p<0.005). In MCF-7 and WERI-Rb1 cells, most of the cells underwent necrosis (p<0.005). CONCLUSION: The EpCAM aptamer conjugated NCS showed specificity to EpCAM-positive cells. The effect of the conjugates on cancer cells were impressive as the conjugate arrested the cell cycle and promoted apoptosis and necrosis. The high levels of PARP expression confirmed the DNA breaks upon conjugate treatment. Our study demonstrates that the NCS conjugated with EpCAM can be targeted to cancer cells sparing normal cells.


Assuntos
Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias/tratamento farmacológico , Zinostatina/farmacologia , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Células MCF-7 , Neoplasias/metabolismo , Oligonucleotídeos/metabolismo
10.
Sci Signal ; 10(476)2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28442631

RESUMO

Cellular systems show a wide range of signaling dynamics. Many of these dynamics are highly stereotyped, such as oscillations at a fixed frequency. However, most studies looking at the role of signaling dynamics focus on one or a few cell lines, leaving the diversity of dynamics across tissues or cell lines a largely unexplored question. We focused on the dynamics of the tumor suppressor protein p53, which regulates cell cycle arrest and apoptosis in response to DNA damage. We established live-cell reporters for 12 cancer cell lines expressing wild-type p53 and quantified p53 dynamics in response to double-strand break-inducing DNA damage. In many of the tested cell lines, we found that p53 abundance oscillated in response to ionizing radiation or the DNA-damaging chemotherapeutic neocarzinostatin and that the periodicity of the oscillations was fixed. In other cell lines, p53 abundance dynamically changed in different ways, such as a single broad pulse or a continuous induction. By combining single-cell assays of p53 signaling dynamics, small-molecule screening in live cells, and mathematical modeling, we identified molecules that perturbed p53 dynamics and determined that cell-specific variation in the efficiency of DNA repair and the activity of the kinase ATM (ataxia-telangiectasia mutated) controlled the signaling landscape of p53 dynamics. Because the dynamics of wild-type p53 varied substantially between cell lines, our study highlights the limitation of using one line as a model system and emphasizes the importance of studying the dynamics of other signaling pathways across different cell lines and genetic backgrounds.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Regulação Neoplásica da Expressão Gênica , Inibidores de Proteínas Quinases/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Humanos , Mutação , Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Radiação Ionizante , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/genética , Zinostatina/farmacologia
11.
Biol Pharm Bull ; 39(10): 1623-1630, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27431785

RESUMO

Neocarzinostatin (NCS) is a member of enediyne antibiotics with high anticancer potential. Our study was performed to explore the synergistic anti-glioma effects of NCS and paclitaxel (PTX) in vitro and in vivo. By 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicities of the drugs to human glioma cells U87MG and rat glioma cells C6 were evaluated. The results showed that the combinations of NCS and PTX can synergistically inhibit glioma cells survival. Cell apoptosis was detected by flow cytometry, and the results showed that the combinations of NCS and PTX synergistically enhanced apoptosis ratio of glioma cells. Western blot revealed that the cell signaling pathways of proliferation and apoptosis were synergistically regulated, in which Akt was synergistically inactivated, p53 was up-regulated with down-regulation of bcl-2. Meanwhile, with the subcutaneous model of U87MG cells and intracerebral implantation model of C6 cells, the combination strategy could synergistically delay the glioma growth and significantly prolong the survival of rats bearing orthotopic glioma. This study demonstrates that the combination of NCS and PTX can potentiate the effect on survival and apoptosis of glioma cells via suppression of Akt, bcl-2, and activations of p53; Meanwhile, the in vivo studies also confirmed that the combination of NCS and PTX synergistically inhibit the gliom growth. Our data about the combinational effects of NCS with PTX may provide an alternative strategy for glioma therapy.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Paclitaxel/uso terapêutico , Zinostatina/uso terapêutico , Animais , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Glioma/patologia , Humanos , Masculino , Camundongos Nus , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Zinostatina/farmacologia
12.
PLoS One ; 11(3): e0150372, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26982737

RESUMO

Alterations in DNA damage response and repair have been observed in Huntington's disease (HD). We generated induced pluripotent stem cells (iPSC) from primary dermal fibroblasts of 5 patients with HD and 5 control subjects. A significant fraction of the HD iPSC lines had genomic abnormalities as assessed by karyotype analysis, while none of our control lines had detectable genomic abnormalities. We demonstrate a statistically significant increase in genomic instability in HD cells during reprogramming. We also report a significant association with repeat length and severity of this instability. Our karyotypically normal HD iPSCs also have elevated ATM-p53 signaling as shown by elevated levels of phosphorylated p53 and H2AX, indicating either elevated DNA damage or hypersensitive DNA damage signaling in HD iPSCs. Thus, increased DNA damage responses in the HD genotype is coincidental with the observed chromosomal aberrations. We conclude that the disease causing mutation in HD increases the propensity of chromosomal instability relative to control fibroblasts specifically during reprogramming to a pluripotent state by a commonly used episomal-based method that includes p53 knockdown.


Assuntos
Técnicas de Silenciamento de Genes , Instabilidade Genômica , Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Células Cultivadas , Dano ao DNA , Humanos , Doença de Huntington/genética , Cariotipagem , Pessoa de Meia-Idade , Inibidores da Síntese de Ácido Nucleico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem , Zinostatina/farmacologia
13.
Cell Commun Signal ; 13: 36, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26208712

RESUMO

BACKGROUND: The consideration of lactate as an active metabolite is a newly emerging and attractive concept. Recently, lactate has been reported to regulate gene transcription via the inhibition of histone deacetylases (HDACs) and survival of cancer cells via hydroxycarboxylic acid receptor 1 (HCAR1). This study examined the role of L- and D-lactate in the DNA damage response in cervical cancer cells. METHODS: Three cervical cancer cell lines were examined: HeLa, Ca Ski and C33A. The inhibitory activity of lactate on HDACs was analysed using Western blot and biochemical methods. The lactate-mediated stimulation of DNA repair and cellular resistance to neocarzinostatin, doxorubicin and cisplatin were studied using γ-H2AX, comet and clonogenic assays. HCAR1 and DNA repair gene expression was quantified by real-time PCR. DNA-PKcs activity and HCAR1 protein expression were evaluated via immunocytochemistry and Western blot, respectively. HCAR1 activation was investigated by measuring intracellular cAMP accumulation and Erk phosphorylation. HCAR1 expression was silenced using shRNA. RESULTS: L- and D-lactate inhibited HDACs, induced histone H3 and H4 hyperacetylation, and decreased chromatin compactness in HeLa cells. Treating cells with lactate increased LIG4, NBS1, and APTX expression by nearly 2-fold and enhanced DNA-PKcs activity. Based on γ-H2AX and comet assays, incubation of cells in lactate-containing medium increased the DNA repair rate. Furthermore, clonogenic assays demonstrated that lactate mediates cellular resistance to clinically used chemotherapeutics. Western blot and immunocytochemistry showed that all studied cell lines express HCAR1 on the cellular surface. Inhibiting HCAR1 function via pertussis toxin pretreatment partially abolished the effects of lactate on DNA repair. Down-regulating HCAR1 decreased the efficiency of DNA repair, abolished the cellular response to L-lactate and decreased the effect of D-lactate. Moreover, HCAR1 shRNA-expressing cells produced significantly lower mRNA levels of monocarboxylate transporter 4. Finally, the enhancement of DNA repair and cell survival by lactate was suppressed by pharmacologically inhibiting monocarboxylate transporters using the inhibitor α-cyano-4-hydroxycinnamic acid (α-CHCA). CONCLUSIONS: Our data indicate that L- and D-lactate present in the uterine cervix may participate in the modulation of cellular DNA damage repair processes and in the resistance of cervical carcinoma cells to anticancer therapy.


Assuntos
Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Histona Desacetilases/metabolismo , Ácido Láctico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Acetilação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colo do Útero/efeitos dos fármacos , Colo do Útero/metabolismo , Cisplatino/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias do Colo do Útero/genética , Zinostatina/farmacologia
14.
Biochim Biophys Acta ; 1843(7): 1309-24, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24703879

RESUMO

DNA damage, which perturbs genomic stability, has been linked to cognitive decline in the aging human brain, and mutations in DNA repair genes have neurological implications. Several studies have suggested that DNA damage is also increased in brain disorders such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise mechanisms connecting DNA damage with neurodegeneration remain poorly understood. CDK5, a critical enzyme in the development of the central nervous system, phosphorylates a number of synaptic proteins and regulates dendritic spine morphogenesis, synaptic plasticity and learning. In addition to these physiological roles, CDK5 has been involved in the neuronal death initiated by DNA damage. We hypothesized that p19INK4d, a member of the cell cycle inhibitor family INK4, is involved in a neuroprotective mechanism activated in response to DNA damage. We found that in response to genotoxic injury or increased levels of intracellular calcium, p19INK4d is transcriptionally induced and phosphorylated by CDK5 which provides it with greater stability in postmitotic neurons. p19INK4d expression improves DNA repair, decreases apoptosis and increases neuronal survival under conditions of genotoxic stress. Our in vivo experiments showed that decreased levels of p19INK4d rendered hippocampal neurons more sensitive to genotoxic insult resulting in the loss of cognitive abilities that rely on the integrity of this brain structure. We propose a feedback mechanism by which the neurotoxic effects of CDK5-p25 activated by genotoxic stress or abnormal intracellular calcium levels are counteracted by the induction and stabilization of p19INK4d protein reducing the adverse consequences on brain functions.


Assuntos
Cálcio/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p19/metabolismo , Reparo do DNA/genética , Hipocampo/metabolismo , Neurônios/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Cognição/fisiologia , Quinase 5 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p19/genética , Citotoxinas/farmacologia , Dano ao DNA , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Humanos , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Transdução de Sinais , Transcrição Gênica , Zinostatina/farmacologia
15.
Cell Cycle ; 13(3): 408-17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24247150

RESUMO

Cells with aberrations in chromosomal ploidy are normally removed by apoptosis. However, aneuploid neurons have been shown to remain functional and active both in the cortex and in the retina. Lim1 horizontal progenitor cells in the chicken retina have a heterogenic final cell cycle, producing some cells that enter S-phase without proceeding into M-phase. The cells become heteroploid but do not undergo developmental cell death. This prompted us to investigate if the final cell cycle of these cells is under the regulation of an active DNA damage response. Our results show that the DNA damage response pathway, including γ-H2AX and Rad51 foci, is not triggered during any phase of the different final cell cycles of horizontal progenitor cells. However, chemically inducing DNA adducts or double-strand breaks in Lim1 horizontal progenitor cells activated the DNA damage response pathway, showing that the cells are capable of a functional response to DNA damage. Moreover, manipulation of the DNA damage response pathway during the final cell cycle using inhibitors of ATM/ATR, Chk1/2, and p38MAPK, neither induced apoptosis nor mitosis in the Lim1 horizontal progenitor cells. We conclude that the DNA damage response pathway is functional in the Lim1 horizontal progenitor cells, but that it is not directly involved in the regulation of the final cell cycle that gives rise to the heteroploid horizontal cell population.


Assuntos
Pontos de Checagem do Ciclo Celular , Quebras de DNA de Cadeia Dupla , Proteínas com Homeodomínio LIM/metabolismo , Células Horizontais da Retina/citologia , Células-Tronco/citologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Embrião de Galinha , Galinhas , Cisplatino/farmacologia , Adutos de DNA/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Histonas/metabolismo , Fosforilação , Rad51 Recombinase/metabolismo , Células Horizontais da Retina/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Zinostatina/farmacologia
16.
Cell Death Dis ; 4: e615, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23640457

RESUMO

Gliomas are resistant to radiation therapy, as well as to TNFα induced killing. Radiation-induced TNFα triggers Nuclear factor κB (NFκB)-mediated radioresistance. As inhibition of NFκB activation sensitizes glioma cells to TNFα-induced apoptosis, we investigated whether TNFα modulates the responsiveness of glioma cells to ionizing radiation-mimetic Neocarzinostatin (NCS). TNFα enhanced the ability of NCS to induce glioma cell apoptosis. NCS-mediated death involved caspase-9 activation, reduction of mitochondrial copy number and lactate production. Death was concurrent with NFκB, Akt and Erk activation. Abrogation of Akt and NFκB activation further potentiated the death inducing ability of NCS in TNFα cotreated cells. NCS-induced p53 expression was accompanied by increase in TP53-induced glycolysis and apoptosis regulator (TIGAR) levels and ATM phosphorylation. siRNA-mediated knockdown of TIGAR abrogated NCS-induced apoptosis. While DN-IκB abrogated NCS-induced TIGAR both in the presence and absence of TNFα, TIGAR had no effect on NFκB activation. Transfection with TIGAR mutant (i) decreased apoptosis and γH2AX foci formation (ii) decreased p53 (iii) elevated ROS and (iv) increased Akt/Erk activation in cells cotreated with NCS and TNFα. Heightened TIGAR expression was observed in GBM tumors. While NCS induced ATM phosphorylation in a NFκB independent manner, ATM inhibition abrogated TIGAR and NFκB activation. Metabolic gene profiling indicated that TNFα affects NCS-mediated regulation of several genes associated with glycolysis. The existence of ATM-NFκB axis that regulate metabolic modeler TIGAR to overcome prosurvival response in NCS and TNFα cotreated cells, suggests mechanisms through which inflammation could affect resistance and adaptation to radiomimetics despite concurrent induction of death.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Zinostatina/farmacologia , Trifosfato de Adenosina/metabolismo , Proteínas Reguladoras de Apoptose , Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Caspase 9/química , Caspase 9/metabolismo , Linhagem Celular Tumoral , Glioma/metabolismo , Glioma/patologia , Glicólise , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ácido Láctico/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Monoéster Fosfórico Hidrolases , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo
17.
Biofactors ; 39(5): 575-88, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23625367

RESUMO

The anti-cancer activity of organic selenium has been most consistently documented at supra-nutritional levels at which selenium-dependent, antioxidant enzymes are maximized in both expression and activity. Thus, there is a strong imperative to identify mechanisms other than antioxidant protection to account for selenium's anti-cancer activity. In vivo work in dogs showed that dietary selenium supplementation decreased DNA damage but increased apoptosis in the prostate, leading to a new hypothesis: Organic selenium exerts its cancer preventive effect by selectively increasing apoptosis in DNA-damaged cells. Here, we test whether organic selenium (methylseleninic acid; MSA) triggers more apoptosis in human and canine prostate cancer cells that have more DNA damage (strand breaks) created by hydrogen-peroxide (H2O2) at noncytotoxic doses prior to MSA exposure. Apoptosis triggered by MSA was significantly higher in H2O2-damaged cells. A supra-additive effect was observed--the extent of MSA-triggered apoptosis in H2O2-damaged cells exceeded the sum of apoptosis induced by MSA or H2O2 alone. However, neither the persistence of H2O2-induced DNA damage, nor the activation of mitogen-activated protein kinases was required to sensitize cells to MSA-triggered apoptosis. Our results document that selenium can exert a "homeostatic housecleaning" effect--a preferential elimination of DNA-damaged cells. This work introduces a new and potentially important perspective on the anti-cancer action of selenium in the aging prostate that is independent of its role in antioxidant protection.


Assuntos
Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Cães , Etoposídeo/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Mutagênicos/farmacologia , Oxidantes/farmacologia , Neoplasias da Próstata , Zinostatina/farmacologia
18.
PLoS One ; 7(8): e43875, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928046

RESUMO

There is some interest in how mammalian oocytes respond to different types of DNA damage because of the increasing expectation of fertility preservation in women undergoing chemotherapy. Double strand breaks (DSBs) induced by ionizing radiation and agents such as neocarzinostatin (NCS), and interstrand crosslinks (ICLs) induced by alkylating agents such as mitomycin C (MMC), are toxic DNA lesions that need to be repaired for cell survival. Here we examined the effects of NCS and MMC treatment on oocytes collected from antral follicles in mice, because potentially such oocytes are readily collected from ovaries and do not need to be in vitro grown to achieve meiotic competency. We found that oocytes were sensitive to NCS, such that this ionizing radiation mimetic blocked meiosis I and caused fragmented DNA. In contrast, MMC had no impact on the completion of either meiosis I or II, even at extremely high doses. However, oocytes treated with MMC did show γ-H2AX foci and following their in vitro maturation and parthenogenetic activation the development of the subsequent embryos was severely compromised. Addition of MMC to 1-cell embryos caused a similarly poor level of development, demonstrating oocytes have eventual sensitivity to this ICL-inducing agent but this does not occur during their meiotic division. In oocytes, the association of Fanconi Anemia protein, FANCD2, with sites of ICL lesions was not apparent until entry into the embryonic cell cycle. In conclusion, meiotic maturation of oocytes is sensitive to DSBs but not ICLs. The ability of oocytes to tolerate severe ICL damage and yet complete meiosis, means that this type of DNA lesion goes unrepaired in oocytes but impacts on subsequent embryo quality.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Meiose/efeitos dos fármacos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Embrião de Mamíferos/citologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Mitomicina/farmacologia , Oócitos/metabolismo , Zinostatina/farmacologia
19.
PLoS One ; 6(8): e23432, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858116

RESUMO

Normal cells, both in vivo and in vitro, become quiescent after serial cell proliferation. During this process, cells can develop immortality with genomic instability, although the mechanisms by which this is regulated are unclear. Here, we show that a growth-arrested cellular status is produced by the down-regulation of histone H2AX in normal cells. Normal mouse embryonic fibroblast cells preserve an H2AX diminished quiescent status through p53 regulation and stable-diploidy maintenance. However, such quiescence is abrogated under continuous growth stimulation, inducing DNA replication stress. Because DNA replication stress-associated lesions are cryptogenic and capable of mediating chromosome-bridge formation and cytokinesis failure, this results in tetraploidization. Arf/p53 module-mutation is induced during tetraploidization with the resulting H2AX recovery and immortality acquisition. Thus, although cellular homeostasis is preserved under quiescence with stable diploidy, tetraploidization induced under growth stimulation disrupts the homeostasis and triggers immortality acquisition.


Assuntos
Regulação para Baixo , Fibroblastos/metabolismo , Histonas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Western Blotting , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Citotoxinas/farmacologia , Diploide , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Instabilidade Genômica , Histonas/genética , Camundongos , Camundongos Knockout , Poliploidia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/genética , Zinostatina/farmacologia
20.
Cell Cycle ; 10(17): 2850-7, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21857162

RESUMO

DNA double-strand breaks (DSBs) are the most severe type of DNA damage. Occurrence of DSBs in the cell activates the DNA damage response (DDR), which involves signaling cascades that sense and respond to the damage. Promptly after DSB induction, DDR proteins accumulate surrounding both DNA ends and form microscopically-visible foci. Recently, we demonstrated that the key DDR protein MDC1 directly binds RAP80, an additional DDR protein that recruits BRCA1 to DSBs. We provided evidences that the MDC1-RAP80 interaction depends on a ubiquitylation event on K-1977 of MDC1. However, it remained unknown whether K-1977 of MDC1 is required for the recruitment of RAP80 to DSBs. Here we show that K-1977 of MDC1 is necessary for focus formation by RAP80. Nevertheless, it has not effect on focus formation by γ-H2AX, MDC1 or 53BP1. The results imply a role for the MDC1-RAP80 interaction in focus formation by the RAP80-BRCA1 complex. In light of these recent results we discuss several aspects of the complexity of focus formation and present a model for the involvement of individual and complex recruitment mechanisms in focus formation.


Assuntos
Proteínas de Transporte/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Reparo do DNA , Proteínas de Ligação a DNA , Imunofluorescência , Células HeLa , Chaperonas de Histonas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/genética , Mutação Puntual , Transdução de Sinais , Transativadores/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitinação , Zinostatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...