Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 31(12): 1315-1322, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30422632

RESUMO

Ziram is a dimethyldithiocarbamate fungicide, which may influence the male reproductive system as a potential endocrine disruptor. We interrogated the disruption of ziram on rat progenitor Leydig cell development. Prepubertal male Sprague-Dawley rats were orally treated with 0, 2, 4, or 8 mg/kg ziram for 2 weeks. We investigated the effects of ziram on serum testosterone levels, Leydig cell number, and Leydig and Sertoli cell gene and protein expression, SIRT1/PGC-1α levels, and phosphorylation of AKT1, ERK1/2, and AMPK in vivo. We also interrogated the effects of ziram on reactive oxidative species (ROS) level, apoptosis rate, and mitochondrial membrane potential of progenitor Leydig cells in vitro. Ziram decreased serum testosterone and follicle-stimulating hormone levels, the down-regulated Leydig cell-specific gene ( Lhcgr, Scarb1, Star, Cyp17a1, and Hsd17b3), and their protein expression. However, ziram stimulated anti-Müllerian hormone production. Ziram lowered SIRT1/PGC-1α and phosphorylated protein levels of AKT1. Ziram induced ROS and apoptosis and lowered the mitochondrial membrane potential of progenitor Leydig cells in vitro. In conclusion, ziram disrupts Leydig cell development during the prepubertal period potentially through the SIRT1/PGC-1α and phosphorylated AKT1 signaling.


Assuntos
Fungicidas Industriais/toxicidade , Puberdade Tardia/etiologia , Transdução de Sinais/efeitos dos fármacos , Testículo/efeitos dos fármacos , Ziram/toxicidade , Animais , Apoptose/efeitos dos fármacos , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fungicidas Industriais/química , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Puberdade Tardia/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Testículo/metabolismo , Testosterona/sangue , Ziram/química
2.
Toxicol Mech Methods ; 28(1): 38-44, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28707553

RESUMO

The neurotoxicity of ziram is largely unknown. In this study, we investigated the direct inhibitions of ziram on rat neurosteroid synthetic and metabolizing enzymes, 5α-reductase 1 (SRD5A1), 3α-hydroxysteroid dehydrogenase (AKR1C14), and retinol dehydrogenase 2 (RDH2). Rat SRD5A1, AKR1C14, and RDH2 were cloned and transiently expressed in COS1 cells, and the effects of ziram on these enzymes were measured. Ziram inhibited rat SRD5A1 and AKR1C14 with IC50 values of 1.556 ± 0.078 and 1.017 ± 0.072 µM, respectively, when 1000 nM steroid substrates were used. Ziram weakly inhibited RDH2 at 100 µM, when androstanediol (1000 nM) was used. Ziram competitively inhibited SRD5A1 and non-competitively inhibited AKR1C14 when steroid substrates were used. Docking study showed that ziram bound to NADPH-binding pocket of AKR1C14. In conclusion, our results demonstrated that ziram inhibited SRD5A1 and AKR1C14 activities, thus possibly interfering with neurosteroid production in rats.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Fungicidas Industriais/toxicidade , Proteínas de Membrana/antagonistas & inibidores , Neurotransmissores/biossíntese , Ziram/toxicidade , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/química , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeído Redutase/química , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Células COS , Chlorocebus aethiops , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Medição de Risco , Relação Estrutura-Atividade , Transfecção , Ziram/química , Ziram/metabolismo
3.
Steroids ; 128: 114-119, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28951168

RESUMO

Placenta produces progesterone and estradiol for maintaining pregnancy. Two critical enzymes are responsible for their production: 3ß-hydroxysteroid dehydrogenase 1 (HSD3B1) that catalyzes the formation of progesterone from pregnenolone and aromatase that catalyzes the production of estradiol from testosterone. Fungicide ziram may disrupt the placental steroid production. In the present study, we investigated the effects of ziram on steroid formation in human placental cell line JEG-3 cells and on HSD3B1 and aromatase in the human placenta. Ziram did not inhibit progesterone production in JEG-3 cells and HSD3B1 activity at 100µM. Ziram was a potent aromatase inhibitor with the half maximal inhibitory concentration (IC50) value of 333.8nM. When testosterone was used to determine the mode of action, ziram was found to be a competitive inhibitor. Docking study showed that ziram binds to the testosterone binding pocket of the aromatase. In conclusion, ziram is a potent inhibitor of human aromatase.


Assuntos
Inibidores da Aromatase/química , Aromatase/genética , Complexos Multienzimáticos/genética , Placenta/metabolismo , Progesterona Redutase/genética , Esteroide Isomerases/genética , Ziram/química , Aromatase/biossíntese , Aromatase/química , Inibidores da Aromatase/uso terapêutico , Linhagem Celular Tumoral , Estradiol/metabolismo , Feminino , Humanos , Complexos Multienzimáticos/biossíntese , Complexos Multienzimáticos/química , Placenta/química , Placenta/efeitos dos fármacos , Gravidez , Pregnenolona/metabolismo , Progesterona/biossíntese , Progesterona Redutase/biossíntese , Progesterona Redutase/química , Ligação Proteica , Esteroide Isomerases/biossíntese , Esteroide Isomerases/química , Testosterona/metabolismo , Ziram/uso terapêutico
4.
Talanta ; 158: 152-158, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27343589

RESUMO

A simple and rapid vortex-assisted magnetic solid phase extraction (VA-MSPE) method for the separation and preconcentration of ziram (zinc dimethyldithiocarbamate), subsequent detection of the zinc in complex structure of ziram by flame atomic absorption spectrometry (AAS) has been developed. The ziram content was calculated by using stoichiometric relationship between the zinc and ziram. Magnetic carboxylated nanodiamonds (MCNDs) as solid-phase extraction adsorbent was prepared and characterized by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) spectrometry and scanning electron microscopy (SEM). These magnetic carboxylated nanodiamonds carrying the ziram could be easily separated from the aqueous solution by applying an external magnetic field; no filtration or centrifugation was necessary. Some important factors influencing the extraction efficiency of ziram such as pH of sample solution, amount of adsorbent, type and volume of eluent, extraction and desorption time and sample volume were studied and optimized. The total extraction and detection time was lower than 10min The preconcentration factor (PF), the precision (RSD, n=7), the limit of detection (LOD) and limit of quantification (LOQ) were 160, 7.0%, 5.3µgL(-1) and 17.5µgL(-1), respectively. The interference of various ions has been examined and the method has been applied for the determination of ziram in various waters, foodstuffs samples and synthetic mixtures.


Assuntos
Contaminação de Alimentos/análise , Fungicidas Industriais/análise , Nanopartículas de Magnetita/química , Nanodiamantes/química , Poluentes Químicos da Água/análise , Ziram/análise , Adsorção , Água Potável/análise , Fungicidas Industriais/química , Lagos/química , Fenômenos Magnéticos , Nanocompostos/química , Oryza/química , Extração em Fase Sólida , Triticum/química , Poluentes Químicos da Água/química , Ziram/química
5.
Chem Res Toxicol ; 29(3): 398-405, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26859423

RESUMO

Ziram is a widely used fungicide for crops. Its endocrine disrupting action is largely unknown. 11ß-Hydroxysteroid dehydrogenases, isoforms 1 (HSD11B1) and 2 (HSD11B2), have been demonstrated to be the regulators of the local levels of active glucocorticoids, which have broad physiological actions. In the present study, the potency of ziram was tested for its inhibition of rat and human HSD11B1 and HSD11B2. Ziram showed the inhibition of rat HSD11B1 reductase with IC50 of 87.07 µM but no inhibition of human enzyme at 100 µM. Ziram showed the inhibition of both rat and human HSD11B2 with IC50 of 90.26 and 34.93 µM, respectively. Ziram exerted competitive inhibition of rat HSD11B1 when 11-dehydrocorticosterone was used and mixed inhibition when NADPH was supplied. Ziram exerted a noncompetitive inhibition of both rat and human HSD11B2 when steroid substrates were used and an uncompetitive inhibition when NAD(+) was supplied. Increased DTT concentrations antagonized rat and human HSD11B2 activities, suggesting that the cysteine residues are associated with the inhibition of ziram. In conclusion, for humans, ziram is a selective inhibitor of HSD11B2, implying that this agent may cause excessive glucocorticoid action in local tissues such as the kidney, brain, and placenta.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Ziram/farmacologia , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Relação Dose-Resposta a Droga , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ziram/química
6.
J Oleo Sci ; 63(6): 637-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24829128

RESUMO

Vegetable oils are being investigated as potential source of environmentally favorable lubricants over synthetic products. Jatropha curcas L. oil (JO) identified as a potential raw material for biodiesel was explored for its use as a feedstock for biolubricants. Epoxidized jatropha oil (EJO) was prepared by peroxyformic acid generated in situ by reacting formic acid and hydrogen peroxide in the presence of sulfuric acid as catalyst. Almost complete conversion of unsaturated bonds in the oil into oxirane was achieved with oxirane value 5.0 and iodine value of oil reduced from 92 to 2 mg I2/g. EJO exhibited superior oxidative stability compared to JO. This study employed three antioxidants such as butylated hydroxy toluene (BHT), zinc dimethyl dithiocarbamate (ZDDC), and diphenyl amine (DPA) and found that DPA antioxidant performed better than ZDDC and BHT over EJO compared to JO. The lubricating properties of EJO and epoxy soybean oil (ESBO) are comparable. Hence, EJO can be projected as a potential lubricant basestock for high temperature applications.


Assuntos
Biocombustíveis , Compostos de Epóxi/síntese química , Jatropha , Lubrificantes/síntese química , Óleos de Plantas/síntese química , Antioxidantes/química , Hidroxitolueno Butilado/química , Catálise , Difenilamina/química , Óxido de Etileno/química , Formiatos/química , Peróxido de Hidrogênio/química , Oxirredução , Óleos de Plantas/química , Óleo de Soja , Ácidos Sulfúricos/química , Temperatura , Ziram/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-24070320

RESUMO

Thiram belongs to the most important class of dithiocarbamate (DTC) fungicides including dimethyldithiocarbamates (DMDs), ethylenebis(dithiocarbamtes) (EBDs) and propylenebis(dithiocarbamates) (PBDs). During the surface extraction of fruit and vegetables for the LC-MS determination of residues of DMDs, EBDs and PBDs, thiram is reduced by the penicillamine buffer to the DMD anion, thus resulting in false-positive findings of DMD fungicides like ziram. Therefore, an alkaline sulfite buffer was applied for surface extraction, quantitatively transforming thiram into the DMD anion and a stable DMD-sulfite adduct that was used as a selective marker for thiram. Separation was performed isocratically on a ZIC-pHILIC column with acetonitrile-10 mM ammonium hydroxide solution (85/15). Mass selective detection was carried out on a single-quadrupole mass spectrometer coupled to an electrospray ionisation interface operating in negative mode. Using d12-thiram as the internal standard, recoveries of 80-108% were obtained from apples, tomatoes, grapes and sweet peppers, spiked in the range of 0.02-1 mg kg(-1). Limits of detection and quantification were 0.6 and 2 µg kg(-1), respectively.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Frutas/química , Fungicidas Industriais/análise , Espectrometria de Massas/métodos , Tiram/análise , Verduras/química , Estabilidade de Medicamentos , Contaminação de Alimentos/análise , Interações Hidrofóbicas e Hidrofílicas , Resíduos de Praguicidas/análise , Solventes , Sulfitos , Ziram/análise , Ziram/química
8.
Lab Chip ; 12(22): 4651-6, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22824920

RESUMO

Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for direct in-field sensing at remote locations. This report demonstrates the vast potential of gold nanoparticle-based microfluidic sensors for the rapid, in-field, detection of two important classes of environmental contaminants - heavy metals and pesticides. Using gold nanoparticle-based microfluidic sensors linked to a simple digital camera as the detector, detection limits as low as 0.6 µg L(-1) and 16 µg L(-1) could be obtained for the heavy metal mercury and the dithiocarbamate pesticide ziram, respectively. These results demonstrate that the attractive optical properties of gold nanoparticle probes combine synergistically with the inherent qualities of microfluidic platforms to offer simple, portable and sensitive sensors for environmental contaminants.


Assuntos
Técnicas de Química Analítica/instrumentação , Poluentes Ambientais/análise , Ouro/química , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas/métodos , Fenômenos Ópticos , Animais , Bovinos , Poluentes Ambientais/química , Mercúrio/análise , Mercúrio/química , Espectrometria de Fluorescência , Ziram/análise , Ziram/química
9.
Anal Chim Acta ; 625(2): 173-9, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18724991

RESUMO

A simple, sensitive and rapid method for the determination of the pesticides ziram and zineb was described. This new method was based on the coupling of FIA methodology and direct chemiluminescent detection; this approach had not been used up to now with these pesticides. The additional use of an 'on line' photochemical reaction, which was performed by using a photoreactor consisting of a long piece of PTFE helically coiled around a 15W low-pressure lamp, increased by a factor >20 the chemiluminometric response of the pesticides. An additional 3-fold improvement in the analytical signal was also achieved by using quinine as sensitizer. The obtained throughputs were very high (121 and 101 h(-1) for ziram and zineb, respectively); this feature together with its low limit of detection (1 ng mL(-1)) makes this method particularly well suited to routine analyses of environmental samples. On the other hand, its applicability to two members of the dithiocarbamate family of pesticides, makes it promising for the determination of the rest of the members of this family. The method was demonstrated by application to spiked water samples from different origins (ground, river and irrigation).


Assuntos
Análise de Injeção de Fluxo/métodos , Luminescência , Zineb/análise , Ziram/análise , Análise de Injeção de Fluxo/instrumentação , Estrutura Molecular , Fotoquímica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Zineb/química , Ziram/química
10.
Aquat Toxicol ; 66(4): 427-44, 2004 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-15168950

RESUMO

In 1989, the EU restricted the use of tributyl-tin (TBT) and the International Maritime Organisation (IMO) decided for a world-wide ban on TBT in 2003. As a replacement for TBT, new antifouling agents are entering the market. Environmental risk limits (ERLs) are derived for substances that are used as TBT-substitutes, i.e. the compounds Irgarol 1051, dichlofluanid, ziram, chlorothalonil and TCMTB. ERLs represent the potential risk of the substances to the ecosystem and are derived using data on (eco)toxicology and environmental chemistry. Only toxicity studies with endpoints related to population dynamics are taken into account. For Irgarol 1051 especially plants appear to be sensitive; the mode of action is inhibition of photosynthetic electron transport. Despite the higher sensitivity of the plants, the calculated ERL for water based on plants only is higher than the ERL based on all data due to the lower variability in the plant only dataset. Because there is a mechanistic basis to state that plants are the most sensitive species, we propose to base the ERL for water on the plants only dataset. As dichlofluanid is highly unstable in the water phase, it is recommended to base the ERL on the metabolites formed and not on the parent compound. No toxicity data of the studied compounds for organisms living in sediments were found, the ERLs for sediment are derived with help of the equilibrium partitioning method. For dichlofluanid and chlorothalonil the ERL for soil is directly based on terrestrial data, for Irgarol 1051 and ziram the ERL for soil is derived using equilibrium partitioning. Except for Irgarol 1051, no information was encountered in the open literature on the environmental occurrence in The Netherlands of the chemicals studied. The measured concentrations for Irgarol 1051 are close to the derived ERL. For this compound it is concluded that the species composition and thereby ecosystem functioning cannot be considered as protected.


Assuntos
Ecossistema , Monitoramento Ambiental/normas , Pintura , Poluentes Químicos da Água/toxicidade , Compostos de Anilina/química , Benzotiazóis , Nitrilas/química , Medição de Risco , Tiazóis/química , Tiocianatos/química , Triazinas/química , Ziram/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...