Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Gen Virol ; 105(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888587

RESUMO

Turtlegrass virus X, which infects the seagrass Thalassia testudinum, is the only potexvirus known to infect marine flowering plants. We investigated potexvirus distribution in seagrasses using a degenerate reverse transcription polymerase chain reaction (RT-PCR) assay originally designed to capture potexvirus diversity in terrestrial plants. The assay, which implements Potex-5 and Potex-2RC primers, successfully amplified a 584 nt RNA-dependent RNA polymerase (RdRp) fragment from TVX-infected seagrasses. Following validation, we screened 74 opportunistically collected, apparently healthy seagrass samples for potexviruses using this RT-PCR assay. The survey examined the host species T. testudinum, Halodule wrightii, Halophila stipulacea, Syringodium filiforme, Ruppia maritima, and Zostera marina. Potexvirus PCR products were successfully generated only from T. testudinum samples and phylogenetic analysis of sequenced PCR products revealed five distinct TVX sequence variants. Although the RT-PCR assay revealed limited potexvirus diversity in seagrasses, the expanded geographic distribution of TVX shown here emphasizes the importance of future studies to investigate T. testudinum populations across its native range and understand how the observed fine-scale genetic diversity affects host-virus interactions.


Assuntos
Variação Genética , Filogenia , Potexvirus , Potexvirus/genética , Potexvirus/isolamento & purificação , Potexvirus/classificação , Golfo do México , Doenças das Plantas/virologia , Hydrocharitaceae/virologia , RNA Polimerase Dependente de RNA/genética , RNA Viral/genética , Zosteraceae/virologia
2.
Mar Pollut Bull ; 199: 115943, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176159

RESUMO

The surfgrass Phyllospadix scouleri grows in highly productive meadows along the Pacific coast of North America. This region has experienced increasingly severe marine heatwaves (MHWs) in recent years. Our study evaluated the impact of consecutive MHWs, simulated in mesocosms, on essential ecophysiological features of P. scouleri. Overall, our findings show that the plants' overall physiological status has been progressively declining. Interestingly, the indicators of physiological stress in photosynthesis only showed up once the initial heat exposure stopped (i.e., during the recovery period). The warming caused increased oxidative damage and a decrease in nitrate uptake rates. However, the levels of non-structural carbohydrates and relative growth rates were not affected. Our findings emphasize the significance of incorporating recovery periods in this type of study as they expose delayed stress responses. Furthermore, experiencing consecutive intense MHWs can harm surfgrasses over time, compromising the health of their meadows and the services they offer to the ecosystem.


Assuntos
Ecossistema , Zosteraceae , Estresse Fisiológico , Fotossíntese , Carboidratos
3.
Sci Total Environ ; 883: 163538, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37100139

RESUMO

Seagrasses, which are considered among the most ecologically valuable and endangered coastal ecosystems, have a narrowly limited distribution in the south-east Pacific, where Zostera chilensis is the only remaining relict. Due to water scarcity, desalination industry has grown in the last decades in the central-north coasts of Chile, which may be relevant to address in terms of potential impacts on benthic communities due to their associated high-salinity brine discharges to subtidal ecosystems. In this work, we assessed ecophysiological and cellular responses to desalination-extrapolable hypersalinity conditions on Z. chilensis. Mesocosms experiments were performed for 10 days, where plants were exposed to 3 different salinity treatments: 34 psu (control), 37 psu and 40 psu. Photosynthetic performance, H2O2 accumulation, and ascorbate content (reduced and oxidized) were measured, as well as relative gene expression of enzymes related to osmotic regulation and oxidative stress; these, at 1, 3, 6 and 10 days. Z. chilensis showed a decrease in photosynthetic parameters such as electron transport rate (ETRmax) and saturation irradiance (EkETR) under hypersalinity treatments, while non-photochemical quenching (NPQmax) presented an initial increment and a subsequent decline at 40 psu. H2O2 levels increased with hypersalinity, while ascorbate and dehydroascorbate only increased under 37 psu, although decreased along the experimental period. Increased salinities also triggered the expression of genes related to ion transport and osmolyte syntheses, but salinity-dependent up-regulated genes were mostly those related to the reactive oxygen species metabolism. The relict seagrass Z. chilensis has shown to withstand increased salinities that may be extrapolable to desalination effects in the short-term. As the latter is not fully clear in the long-term, and considering the restricted distribution and ecological importance, direct brine discharges to Z. chilensis meadows may not be recommended.


Assuntos
Magnoliopsida , Zosteraceae , Ecossistema , Zosteraceae/metabolismo , Chile , Magnoliopsida/metabolismo , Peróxido de Hidrogênio/metabolismo , Oceano Pacífico , Ácido Ascórbico , Medição de Risco , Salinidade
4.
Mar Environ Res ; 188: 105996, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37104877

RESUMO

A short stretch (27°S and 30°S) along the coast of Chile is habitat for the seagrass Heterozostera nigricaulis. The seagrass is classified as endangered and grows only clonally, but there are no data on its physiology and growth. However, this information is important to gain insights into its acclimation potential and how disturbances may affect them. We therefore studied H. nigricaulis at 27° and 30°S, and determined their growth and physiology among seasons and depths over one year. Biomass was higher at 27° than at 30°S, and was always higher in summer than in autumn and winter. Increased photosynthesis supported growth in summer, and in winter carbonic anhydrase activity was in place to maintain these evergreen meadows. Our results suggest that these seagrass meadows are adapted to local conditions, which, together with their asexual reproduction, could make them more vulnerable to disturbance. Therefore, our results serve as a basis for future studies on seagrass growth dynamics, and are important for protection and management plans.


Assuntos
Zosteraceae , Chile , Zosteraceae/fisiologia , Ecossistema , Biomassa , Estações do Ano
5.
Mar Environ Res ; 183: 105809, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435174

RESUMO

Human- and nature-induced hypersaline conditions in coastal systems can lead to profound alterations of the structure and vitality of seagrass meadows and their socio-ecological benefits. In the last two decades, recent research efforts (>50 publications) have contributed significantly to unravel the physiological basis underlying the seagrass-hypersalinity interactions, although most (∼70%) are limited to few species (e.g. Posidonia oceanica, Zostera marina, Thalassia testudinum, Cymodocea nodosa). Variables related to photosynthesis and carbon metabolism are among the most prevalent in the literature, although other key metabolic processes such as plant water relations and responses at molecular (i.e. gene expression) and ultrastructure level are attracting attention. This review emphasises all these latest insights, offering an integrative perspective on the interplay among biological responses across different functional levels (from molecular to clonal structure), and their interaction with biotic/abiotic factors including those related to climate change. Other issues such as the role of salinity in driving the evolutionary trajectory of seagrasses, their acclimation mechanisms to withstand salinity increases or even the adaptive properties of populations that have historically lived under hypersaline conditions are also included. The pivotal role of the costs and limits of phenotypic plasticity in the successful acclimation of marine plants to hypersalinity is also discussed. Finally, some lines of research are proposed to fill the remaining knowledge gaps.


Assuntos
Alismatales , Zosteraceae , Humanos , Estresse Fisiológico/fisiologia , Alismatales/fisiologia , Fotossíntese/fisiologia , Aclimatação
6.
Mar Environ Res ; 172: 105501, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34656017

RESUMO

Intertidal seagrasses are subjected to desiccation and direct solar radiation during low tides. It is assumed that the canopy structure can self-protect the underlying shoots during these events, although there is no evidence on a physiological basis. The physiological responses of the surfgrass Phyllospadix torreyi were examined when emerged during low tide, on i) shoots overlaying the canopy, and ii) shoots sheltered within the canopy. Leaf water potential and water content decreased in external leaves after emersion, and the higher concentration of organic osmolytes reflected osmoregulation. Additionally, these shoots also exhibited a drastic reduction in carbohydrates after re-immersion, likely from cellular damage. Lipid peroxidation and antioxidant activity increments were also detected, while photosynthetic efficiency strongly diminished from direct exposure to solar radiation. Conversely, the sheltered shoots did not dehydrate and solely accumulated some oxidative stress, likely resulting from the warming of the canopy. In conclusion, the leaf canopy structure buffers physiological stress in the sheltered shoots, thus acting as a self-protective mechanism to cope with emersion.


Assuntos
Zosteraceae , Fotossíntese , Folhas de Planta , Estresse Fisiológico , Água
7.
Nat Commun ; 11(1): 3668, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699271

RESUMO

Restoration is becoming a vital tool to counteract coastal ecosystem degradation. Modifying transplant designs of habitat-forming organisms from dispersed to clumped can amplify coastal restoration yields as it generates self-facilitation from emergent traits, i.e. traits not expressed by individuals or small clones, but that emerge in clumped individuals or large clones. Here, we advance restoration science by mimicking key emergent traits that locally suppress physical stress using biodegradable establishment structures. Experiments across (sub)tropical and temperate seagrass and salt marsh systems demonstrate greatly enhanced yields when individuals are transplanted within structures mimicking emergent traits that suppress waves or sediment mobility. Specifically, belowground mimics of dense root mats most facilitate seagrasses via sediment stabilization, while mimics of aboveground plant structures most facilitate marsh grasses by reducing stem movement. Mimicking key emergent traits may allow upscaling of restoration in many ecosystems that depend on self-facilitation for persistence, by constraining biological material requirements and implementation costs.


Assuntos
Adaptação Fisiológica , Recuperação e Remediação Ambiental/métodos , Hydrocharitaceae/fisiologia , Áreas Alagadas , Zosteraceae/fisiologia , Plásticos Biodegradáveis , Biomimética/métodos , Ecologia/métodos , Recuperação e Remediação Ambiental/instrumentação , Florida , Países Baixos , Água do Mar , Suécia , Clima Tropical , Índias Ocidentais
8.
Biomed Res Int ; 2019: 3613679, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31179319

RESUMO

Conservation of eelgrass relies on transplants and evaluation of success depends on nondestructive measurements of average leaf biomass in shoots among other variables. Allometric proxies offer a convenient way to assessments. Identifying surrogates via log transformation and linear regression can set biased results. Views conceive this approach to be meaningful, asserting that curvature in geometrical space explains bias. Inappropriateness of correction factor of retransformation bias could also explain inconsistencies. Accounting for nonlinearity of the log transformed response relied on a generalized allometric model. Scaling parameters depend continuously on the descriptor. Joining correction factor is conceived as the partial sum of series expansion of mean retransformed residuals leading to highest reproducibility strength. Fits of particular characterizations of the generalized curvature model conveyed outstanding reproducibility of average eelgrass leaf biomass in shoots. Although nonlinear heteroscedastic regression resulted also to be suitable, only log transformation approaches can unmask a size related differentiation in growth form of the leaf. Generally, whenever structure of regression error is undetermined, choosing a suitable form of retransformation correction factor becomes elusive. Compared to customary nonparametric characterizations of this correction factor, present form proved more efficient. We expect that offered generalized allometric model along with proposed correction factor form provides a suitable analytical arrangement for the general settings of allometric examination.


Assuntos
Biomassa , Modelos Biológicos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Zosteraceae/crescimento & desenvolvimento
9.
Theor Biol Med Model ; 15(1): 4, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510759

RESUMO

BACKGROUND: The effects of current anthropogenic influences on eelgrass (Zostera marina) meadows are noticeable. Eelgrass ecological services grant important benefits for mankind. Preservation of eelgrass meadows include several transplantation methods. Evaluation of establishing success relies on the estimation of standing stock and productivity. Average leaf biomass in shoots is a fundamental component of standing stock. Existing methods of leaf biomass measurement are destructive and time consuming. These assessments could alter shoot density in developing transplants. Allometric methods offer convenient indirect assessments of individual leaf biomass. Aggregation of single leaf projections produce surrogates for average leaf biomass in shoots. Involved parameters are time invariant, then derived proxies yield simplified nondestructive approximations. On spite of time invariance local factors induce relative variability of parameter estimates. This influences accuracy of surrogates. And factors like analysis method, sample size and data quality also impact precision. Besides, scaling projections are sensitive to parameter fluctuation. Thus the suitability of the addressed allometric approximations requires clarification. RESULTS: The considered proxies produced accurate indirect assessments of observed values. Only parameter estimates fitted from raw data using nonlinear regression, produced robust approximations. Data quality influenced sensitivity and sample size for an optimal precision. CONCLUSIONS: Allometric surrogates of average leaf biomass in eelgrass shoots offer convenient nondestructive assessments. But analysis method and sample size can influence accuracy in a direct manner. Standardized routines for data quality are crucial on granting cost-effectiveness of the method.


Assuntos
Biomassa , Confiabilidade dos Dados , Folhas de Planta , Estatística como Assunto/normas , Zosteraceae , Tamanho da Amostra
10.
Theor Biol Med Model ; 12: 30, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627684

RESUMO

BACKGROUND: Eelgrass grants important ecological benefits including a nursery for waterfowl and fish species, shoreline stabilization, nutrient recycling and carbon sequestration. Upon the exacerbation of deleterious anthropogenic influences, re-establishment of eelgrass beds has mainly depended on transplantation. Productivity estimations provide valuable information for the appraisal of the restoration of ecological functions of natural populations. Assessments over early stages of transplants should preferably be nondestructive. Allometric scaling of eelgrass leaf biomass in terms of matching length provides a proxy that reduces leaf biomass and productivity estimations to simple measurements of leaf length and its elongation over a period. We examine how parameter variability impacts the accuracy of the considered proxy and the extent on what data quality and sample size influence the uncertainties of the involved allometric parameters. METHODS: We adapted a Median Absolute Deviation data quality control procedure to remove inconsistencies in the crude data. For evaluating the effect of parametric uncertainty we performed both a formal exploration and an analysis of the sensitivity of the allometric projection method to parameter changes. We used parameter estimates obtained by means of nonlinear regression from crude as well as processed data. RESULTS: We obtained reference leaf growth rates by allometric projection using parameter estimates produced by the crude data, and then considered changes in fitted parameters bounded by the modulus of the vector of the linked standard errors, we found absolute deviations up to 10% of reference values. After data quality control, the equivalent maximum deviation was under 7% of corresponding reference rates. Therefore, the addressed allometric method is robust. Even the smaller sized samples in the quality controlled dataset produced better accuracy levels than the whole set of crude data. CONCLUSIONS: We propose quality control of data as a highly recommended step in the overall procedure that leads to reliable allometric surrogates of eelgrass leaf growth rates. The proliferation of inconsistent replicates in the crude data points towards the importance of discarding incomplete leaves. We also recommend avoiding errors in estimating the biomass of small leaves for which precision of the used analytical scale might be an issue.


Assuntos
Confiabilidade dos Dados , Folhas de Planta/crescimento & desenvolvimento , Zosteraceae/crescimento & desenvolvimento , Viés , Biomassa , Folhas de Planta/anatomia & histologia , Controle de Qualidade , Tamanho da Amostra
11.
ScientificWorldJournal ; 2014: 786896, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24892089

RESUMO

Despite the ecological importance of eelgrass, nowadays anthropogenic influences have produced deleterious effects in many meadows worldwide. Transplantation plots are commonly used as a feasible remediation scheme. The characterization of eelgrass biomass and its dynamics is an important input for the assessment of the overall status of both natural and transplanted populations. Particularly, in restoration plots it is desirable to obtain nondestructive assessments of these variables. Allometric models allow the expression of above ground biomass and productivity of eelgrass in terms of leaf area, which provides cost effective and nondestructive assessments. Leaf area in eelgrass can be conveniently obtained by the product of associated length and width. Although these variables can be directly measured on most sampled leaves, digital image methods could be adapted in order to simplify measurements. Nonetheless, since width to length ratios in eelgrass leaves could be even negligible, noise induced by leaf humidity content could produce misidentification of pixels along the peripheral contour of leaves images. In this paper, we present a procedure aimed to produce consistent estimations of eelgrass leaf area in the presence of the aforementioned noise effects. Our results show that digital image procedures can provide reliable, nondestructive estimations of eelgrass leaf area.


Assuntos
Umidade , Folhas de Planta/anatomia & histologia , Zosteraceae/anatomia & histologia , Biomassa
12.
Theor Biol Med Model ; 10: 34, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23680348

RESUMO

Estimation of leaf productivity in eelgrass (Zostera marina L.) is crucial for evaluating the ecological role of this important seagrass species. Although leaf marking techniques are widely used to obtain estimates of leaf productivity, the accuracy of these assessments, has been questioned mainly because these fail to account for leaf growth below the reference mark and also because they apparently disregard the contribution of mature leaf tissues to the growth rate of leaves. On the other hand, the plastochrone method is a simpler technique that has been considered to effectively capture growth in a more realistic way, thereby providing more accurate assessments of both above- and below-ground productivities. But since the actual values of eelgrass growth rates are difficult to obtain, the worth of the plastochrone method has been largely vindicated because it produces assessments that overestimate productivity as compared to estimates obtained by leaf marking. Additionally, whenever eelgrass leaf biomass can be allometrically scaled in terms of matching leaf length in a consistent way, the associated leaf growth rates can be also projected allometrically. In this contribution, we used that approach to derive an authentication of the plastochrone method and formally demonstrate that, as has been claimed to occur for leaf marking approaches, the plastochrone method itself underestimates actual values of eelgrass leaf growth rates. We also show that this unavoidable bias is mainly due to the inadequacy of single-leaf biomass assessments in providing a proxy for the growth of all leaf tissue in a shoot over a given interval. Moreover, the derived formulae give conditions under which assessments of leaf growth rates using the plastochrone method would systematically underestimate matching values obtained by leaf marking procedures. And, assessments of leaf growth rates obtained by using the present data show that plastochrone method estimations underestimated corresponding proxies obtained allometrically (27%), or through leaf marking (35%). Allometric projection is recommended as a simpler and more effective procedure to reduce the bias in eelgrass leaf productivity estimations that associates to the use of plastochrone methods.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Zosteraceae/crescimento & desenvolvimento
13.
ScientificWorldJournal ; 2012: 543730, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22645432

RESUMO

The characterization of biomass and its dynamics provides valuable information for the assessment of natural and transplanted eelgrass populations. The need for simple, nondestructive assessments has led to the use of the leaf biomass-to-length ratio for converting leaf-length measurements, which can be easily obtained, to leaf growth rates through the plastochrone method. Using data on leaf biomass and length collected in three natural eelgrass populations and a mesocosm, we evaluated the suitability of a leaf weight-to-length ratio for nondestructive assessments. For the data sets considered, the isometric scaling that sustains the weight-to-length proxy always produced inconsistent fittings, and for leaf-lengths greater than a threshold value, the conversion of leaf length to biomass generated biased estimations. In contrast, an allometric scaling of leaf biomass and length was highly consistent in all the cases considered. And these nondestructive assessments generated reliable levels of reproducibility in leaf biomass for all the ranges of variability in leaf lengths. We argue that the use of allometric scaling for the representation of leaf biomass in terms of length provides a more reliable approach for estimating eelgrass biomass.


Assuntos
Folhas de Planta/metabolismo , Fenômenos Fisiológicos Vegetais , Zosteraceae/fisiologia , Algoritmos , Biomassa , Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental/métodos , Modelos Biológicos , Modelos Estatísticos , Reprodutibilidade dos Testes , Zosteraceae/anatomia & histologia
14.
Rev. biol. trop ; Rev. biol. trop;56(3): 1003-1013, sep. 2008. graf
Artigo em Inglês | LILACS | ID: lil-637842

RESUMO

Seagrass beds provide much of the primary production in estuaries; host many fishes and fish larvae, and abate erosion. The present study presents original analytical methods for estimating mean leaf-growth rates of eelgrass (Zostera marina). The method was calibrated by using data collected in a Z. marina meadow at Punta Banda estuary in Baja California, Mexico. The analytical assessments were based on measurements of leaf length and standard regression procedures. We present a detailed explanation of the formal procedures involved in the derivation of these analytical methods. The measured daily leaf-growth rate was 10.9 mm d-1 leaf-1. The corresponding value projected by our method was 10.2 mm d-1 leaf-1. The associated standard errors were of 0.53 and 0.56 mm d-1 leaf-1 respectively. The method was validated by projecting leaf-growth rates from an independent data set, which gave consistent results. The use of the method to obtain the mean leaf growth rate of a transplanted plot is also illustrated. Comparison of our leaf-growth data with previously reported assessments show the significant forcing of sea-surface temperature on eelgrass leaf dynamics. The formal constructs provided here are of general scope and can be applied to equivalent eelgrass data sets in a straightforward manner. Rev. Biol. Trop. 56 (3): 1003-1013. Epub 2008 September 30.


Las praderas de pastos marinos abaten la erosión y aportan gran parte de la productividad primaria de los esteros y son refugio de muchos peces y sus larvas. El presente trabajo introduce métodos analíticos para estimar las tasas medias de crecimiento foliar de Zostera marina L. y sus varianzas. La calibración del método se llevó a cabo utilizando datos de una pradera de esta fanerógama en el Estero de Punta Banda Baja California, México. Las referidas estimaciones analíticas, se basan en medias de longitud foliar y en procedimientos estandarizados de regresión. Dichas determinaciones son por ende no-destructivas. Se proporciona una explicación detallada de los aspectos formales de la derivación del método. El valor promedio observado de la tasa media diaria de crecimiento foliar fue de 10.9 mm d-1 leaf-1. El valor correspondiente proyectado mediante nuestro método fue de 10.2 mm d-1 leaf-1. Los errores estándar asociados fueron 0.53 y 0.56 mm d-1 leaf-1 respectivamente. Valores proyectados de la tasa media de crecimiento foliar diario utilizando datos de longitudes foliares publicadas por otros autores dieron también resultados consistentes. Se ilustra también el uso del método para proyectar la media de crecimiento foliar de una parcela transplantada de Zostera marina. La comparación de los resultados de este estudio con equivalentes reportados previamente nos permite concluir que las diferencias observadas pueden ser explicadas en función de la variabilidad de la temperatura superficial del mar en virtud del control de esta variable sobre la dinámica foliar de Z. marina. Las herramientas de estimación indirecta presentadas en este trabajo pueden aplicarse fácilmente a datos equivalentes de Z. marina.


Assuntos
Monitoramento Ambiental/métodos , Folhas de Planta/crescimento & desenvolvimento , Zosteraceae/crescimento & desenvolvimento , Monitoramento Ambiental/economia , México , Modelos Biológicos , Estações do Ano
15.
Rev. biol. trop ; Rev. biol. trop;56(3): 1015-1022, sep. 2008. graf
Artigo em Inglês | LILACS | ID: lil-637843

RESUMO

The main goal of this study is to provide estimations of mean mortality rate of vegetative shoots of the seagrass Zostera marina in a meadow near Ensenada Baja California, using a technique that minimizes destructive sampling. Using cohorts and Leslie matrices, three life tables were constructed, each representing a season within the period of monthly sampling (April 1999 to April 2000). Ages for the cohorts were established in terms of Plastochrone Interval (PI). The matrices were projected through time to estimate the mean total number of individuals at time t, n(t) as well as mortality. We found no statistical differences between observed and predicted mean values for these variables (t=-0.11, p=0.92 for n(t) and t=0.69, p=0.5 for mean rate of mortality). We found high correlation coefficient values between observed and projected values for monthly number of individuals (r=0.70, p=0.007) and monthly mortality rates (r=0.81, p=0.001). If at a certain time t a sudden environmental change occurs, and as long as the perturbation does not provoke the killing of all the individuals of a given age i for 0 ≤ i ≤ x - 1, there will be a prevailing number of individuals of age or stage x at a time t+1. This nondestructive technique reduces the number of field visits and samples needed for the demographic analysis of Z. marina, and therefore decreases the disturbance caused by researches to the ecosystem. Rev. Biol. Trop. 56 (3): 1015-1022. Epub 2008 September 30.


El propósito principal de este estudio es el de proveer estimaciones de tasas promedio de mortalidad de tallos vegetativos de Zostera marina en una pradera cercana a Ensenada Baja California, utilizando una técnica que minimiza los muestreos destructivos para estos pastos marinos. Mediante la utilización de cohortes y matrices de Leslie, se construyeron tres tablas de vida, cada una representando a una estación dentro de período anual de muestreos mensuales (Abril 1999 a Abril 2000). Las edades de los cohortes fueron estimadas en términos de Intervalos de Plastocrono (IP). Las matrices de Leslie fueron proyectadas a través del tiempo para estimar el número total de individuos a un tiempo t, n(t) así como las tasas de mortalidad. No se encontraron diferencias significativas entre los valores medios observados y proyectados para estas variables (t=0.11, p=0.92 para n(t) y t=0.69, p=0.5 para la tasa media de mortalidad). Se encontraron altas correlaciones los valores observados y proyectados tanto en el número de individuos (r=0.70, p=0.007) como las tasas mensuales de mortalidad (r=0.81, p=0.001). Si a cierto tiempo t ocurre un cambio ambiental repentino, de tal manera que la perturbación no provoque la muerte de todos los individuos de una edad i para 0 ≤ i ≤ x-1, prevalecerá un número de individuos de edad o estadio x al tiempo t+1. Esta técnica no destructiva reduce el número de visitas al campo y de muestras necesarias para un análisis demográfico de Z. marina y por lo tanto decrece el disturbio causado al ecosistema.


Assuntos
Monitoramento Ambiental/métodos , Zosteraceae/fisiologia , México , Modelos Biológicos , Estações do Ano , Fatores de Tempo
16.
Arch Environ Contam Toxicol ; 55(2): 218-28, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18188634

RESUMO

San Ignacio and Ojo de Liebre lagoons in central Baja California, Mexico are nursery and grazing grounds for whales and turtles. Ojo de Liebre Lagoon also supports a salt mine operation. By concentrating trace metals via evaporation, this activity might harm biota. Consequently, salt mining might be incompatible with the lagoon's ecological role. Eelgrass can incorporate these elements and reroute them to other organisms. Trace metals in sediments (Cd, Co, Cu, Mn, Ni, Pb, Zn, and Fe) were measured at both lagoons. Some (Cu, Mn, Pb, and Zn) were also measured in Zostera marina patches at both lagoons. The results did not show elevated metal concentration at any lagoon, either for sediments or eelgrass. No statistically significant differences between lagoons were found. However, eelgrass at both lagoons showed larger concentration ranges than in sediments. Also, a correlation exists between sediment metal concentration and its concentration in eelgrass. Surprisingly, several sediment metal concentrations are higher than those considered as elevated for the Southern California Bight.


Assuntos
Sedimentos Geológicos/análise , Metais Pesados/análise , Poluentes Químicos da Água/análise , Zosteraceae/química , Análise de Variância , México , Oceano Pacífico , Salinidade , Espectrofotometria Atômica
17.
Rev Biol Trop ; 56(3): 1003-13, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19419023

RESUMO

Seagrass beds provide much of the primary production in estuaries; host many fishes and fish larvae, and abate erosion. The present study presents original analytical methods for estimating mean leaf-growth rates of eelgrass (Zostera marina). The method was calibrated by using data collected in a Z. marina meadow at Punta Banda estuary in Baja California, Mexico. The analytical assessments were based on measurements of leaf length and standard regression procedures. We present a detailed explanation of the formal procedures involved in the derivation of these analytical methods. The measured daily leaf-growth rate was 10.9 mm d(-1) leaf(-1). The corresponding value projected by our method was 10.2 mm d(-1) leaf(-). The associated standard errors were of 0.53 and 0.56 mm d(-1) leaf(-1) respectively. The method was validated by projecting leaf-growth rates from an independent data set, which gave consistent results. The use of the method to obtain the mean leaf growth rate of a transplanted plot is also illustrated. Comparison of our leaf-growth data with previously reported assessments show the significant forcing of sea-surface temperature on eelgrass leaf dynamics. The formal constructs provided here are of general scope and can be applied to equivalent eelgrass data sets in a straightforward manner.


Assuntos
Monitoramento Ambiental/métodos , Folhas de Planta/crescimento & desenvolvimento , Zosteraceae/crescimento & desenvolvimento , Monitoramento Ambiental/economia , México , Modelos Biológicos , Estações do Ano
18.
Rev Biol Trop ; 56(3): 1015-22, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19419024

RESUMO

The main goal of this study is to provide estimations of mean mortality rate of vegetative shoots of the seagrass Zostera marina in a meadow near Ensenada Baja California, using a technique that minimizes destructive sampling. Using cohorts and Leslie matrices, three life tables were constructed, each representing a season within the period of monthly sampling (April 1999 to April 2000). Ages for the cohorts were established in terms of Plastochrone Interval (PI). The matrices were projected through time to estimate the mean total number of individuals at time t, n(t) as well as mortality. We found no statistical differences between observed and predicted mean values for these variables (t = -0.11, p = 0.92 for n(t) and t = 0.69, p = 0.5 for mean rate of mortality). We found high correlation coefficient values between observed and projected values for monthly number of individuals (r = 0.70, p = 0.007) and monthly mortality rates (r = 0.81, p = 0.001). If at a certain time t a sudden environmental change occurs, and as long as the perturbation does not provoke the killing of all the individuals of a given age i for 0 < or = i < or = x - 1, there will be a prevailing number of individuals of age or stage x at a time t+1. This nondestructive technique reduces the number of field visits and samples needed for the demographic analysis of Z. marina, and therefore decreases the disturbance caused by researches to the ecosystem.


Assuntos
Monitoramento Ambiental/métodos , Zosteraceae/fisiologia , México , Modelos Biológicos , Estações do Ano , Fatores de Tempo
19.
Sci Total Environ ; 373(1): 94-102, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17188334

RESUMO

The Baja California Peninsula, Mexico serves an important role for feeding and developing sea turtles. High concentrations of metals detected in green turtles (Chelonia mydas) from Magdalena Bay prompted an investigation into the sources of metals in the region. We compared metal concentrations in sea turtle tissues with plant species found in their stomach contents, and with the same species of plants collected inside a sea turtle refuge area known as Estero Banderitas. Differences in the metal concentrations between marine plant species were minimal. Principal components analysis of the percent contribution of individual metals to the overall metal signature of each plant or tissue sample generated three principal components that explained 80.7% of the total variance in the data. The plant samples collected within Estero Banderitas formed a separate grouping from the green turtle tissue samples and the plants from the stomach contents. The plants in the stomach contents contained greater percent contributions of Cd and Zn than the plants collected inside the bay, while Pb and Mn contributed more to the metal profiles in the bay samples. The metal profiles in the sea turtle tissues more closely resembled the stomach contents than the same species of plants collected within Estero Banderitas, and suggest that sea turtles collected inside Magdalena Bay use foraging resources outside of the Estero Banderitas region. This work supports the suggestion that metal profiles can be used as "environmentally acquired markers" to improve our understanding of the extent of sea turtle foraging areas.


Assuntos
Metais Pesados/análise , Tartarugas/metabolismo , Poluentes Químicos da Água/análise , Alismatales/química , Animais , Dieta , Monitoramento Ambiental , Eucariotos/química , Comportamento Alimentar , Conteúdo Gastrointestinal/química , Rim/química , Rim/metabolismo , Fígado/química , Fígado/metabolismo , Metais Pesados/metabolismo , México , Poluentes Químicos da Água/metabolismo , Zosteraceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA