Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 62(13): 23, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34698771

RESUMO

Purpose: Optic nerve damage leads to impairment of visual functions. We previously demonstrated that apolipoprotein E-containing lipoproteins (E-LPs) protect retinal ganglion cells (RGCs) from degeneration in a glaucoma model of glutamate/aspartate transporter-deficient mice. This study aimed to determine whether E-LPs protect RGCs from N-methyl-D-aspartate (NMDA)-induced excitotoxicity, and to investigate the details of an indirect neuroprotective mechanism of E-LPs by reducing α2-macroglobulin, which interferes with the neuroprotective effect of E-LPs, in Müller glia. Methods: Excitotoxicity was caused by intravitreal injection of NMDA, and then retinae were subjected to immunoblotting or quantitative reverse transcription-PCR. Primary cultures of mouse mixed retinal cells and mouse Müller glia were used for evaluating the effects of E-LPs on the expression of α2-macroglobulin. Results: Intravitreal injection of E-LPs protected the optic nerve from degeneration and attenuated the increase in α2-macroglobulin in aqueous humor and retina of rats. E-LPs directly decreased the expression and secretion of α2-macroglobulin in primary cultures of Müller glia; this decrease in production of α2-macroglobulin was blocked by knockdown of the low-density lipoprotein receptor-related protein 1 (LRP1) with small interfering RNA. E-LPs promoted the phosphorylation of STAT3, whereas Stattic, an inhibitor of STAT3, restored the expression of α2-macroglobulin decreased by E-LPs. Conclusions: In addition to our previous findings of the protection of RGCs by E-LPs, the new observations in Müller glia indicate that a reduction of the intraocular α2-macroglobulin, regulated by the E-LP-LRP1-STAT3 pathway, might be an additional protective mechanism against excitotoxicity in the retina.


Assuntos
Apolipoproteínas E/metabolismo , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , alfa 2-Macroglobulinas Associadas à Gravidez/genética , Degeneração Retiniana/genética , Células Ganglionares da Retina/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , alfa 2-Macroglobulinas Associadas à Gravidez/biossíntese , RNA/genética , Ratos , Ratos Sprague-Dawley , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo
2.
PLoS One ; 14(7): e0216144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31335900

RESUMO

The present study, for the first time, reported twelve A2M isoforms in Tenualosa ilisha, through SMRT sequencing. Hilsa shad, T. ilisha, an anadromous fish, faces environmental stresses and is thus prone to diseases. Here, expression profiles of different A2M isoforms in four tissues were studied in T. ilisha, for the tissue specific diversity of A2M. Large scale high quality full length transcripts (>0.99% accuracy) were obtained from liver, ovary, testes and gill transcriptomes, through Iso-sequencing on PacBio RSII. A total of 12 isoforms, with complete putatative proteins, were detected in three tissues (7 isoforms in liver, 4 in ovary and 1 in testes). Complete structure of A2M mRNA was predicted from these isoforms, containing 4680 bp sequence, 35 exons and 1508 amino acids. With Homo sapiens A2M as reference, six functional domains (A2M_N,A2M_N2, A2M, Thiol-ester_cl, Complement and Receptor domain), along with a bait region, were predicted in A2M consensus protein. A total of 35 splice sites were identified in T. ilisha A2M consensus transcript, with highest frequency (55.7%) of GT-AG splice sites, as compared to that of Homo sapiens. Liver showed longest isoform (X1) consisting of all domains, while smallest (X10) was found in ovary with one Receptor domain. Present study predicted five putative markers (I-212, I-269, A-472, S-567 and Y-906) for EUS disease resistance in A2M protein, which were present in MG2 domains (A2M_N and A2M_N2), by comparing with that of resistant and susceptible/unknown response species. These markers classified fishes into two groups, resistant and susceptible response. Potential markers, predicted in T. ilisha, placed it to be EUS susceptible category. Putative markers reported in A2M protein may serve as molecular markers in diagnosis of EUS disease resistance/susceptibility in fishes and may have a potential for inclusion in the marker panel for pilot studies. Further, challenging studies are required to confirm the role of particular A2M isoforms and markers identified in immune protection against EUS disease.


Assuntos
Processamento Alternativo/fisiologia , Proteínas de Peixes , Peixes , alfa 2-Macroglobulinas Associadas à Gravidez , Animais , Proteínas de Peixes/biossíntese , Proteínas de Peixes/genética , Peixes/genética , Peixes/metabolismo , Humanos , Especificidade de Órgãos/fisiologia , alfa 2-Macroglobulinas Associadas à Gravidez/biossíntese , alfa 2-Macroglobulinas Associadas à Gravidez/genética , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética
3.
Respir Res ; 17(1): 71, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27301375

RESUMO

BACKGROUND: Gastric contents aspiration in humans is a risk factor for severe respiratory failure with elevated mortality. Although aspiration-induced local lung inflammation has been studied in animal models, little is known about extrapulmonary effects of aspiration. We investigated whether a single orotracheal instillation of whole gastric fluid elicits a liver acute phase response and if this response contributes to enrich the alveolar spaces with proteins having antiprotease activity. METHODS: In anesthetized Sprague-Dawley rats receiving whole gastric fluid, we studied at different times after instillation (4 h -7 days): changes in blood cytokines and acute phase proteins (fibrinogen and the antiproteases alpha1-antitrypsin and alpha2-macroglobulin) as well as liver mRNA expression of the two antiproteases. The impact of the systemic changes on lung antiprotease defense was evaluated by measuring levels and bioactivity of antiproteases in broncho-alveolar lavage fluid (BALF). Markers of alveolar-capillary barrier derangement were also studied. Non-parametric ANOVA (Kruskall-Wallis) and linear regression analysis were used. RESULTS: Severe peribronchiolar injury involving edema, intra-alveolar proteinaceous debris, hemorrhage and PMNn cell infiltration was seen in the first 24 h and later resolved. Despite a large increase in several lung cytokines, only IL-6 was found elevated in blood, preceding increased liver expression and blood concentration of both antiproteases. These changes, with an acute phase response profile, were significantly larger for alpha2-macroglobulin (40-fold increment in expression with 12-fold elevation in blood protein concentration) than for alpha1-antitrypsin (2-3 fold increment in expression with 0.5-fold elevation in blood protein concentration). Both the increment in capillary-alveolar antiprotease concentration gradient due to increased antiprotease liver synthesis and a timely-associated derangement of the alveolar-capillary barrier induced by aspiration, contributed a 58-fold and a 190-fold increase in BALF alpha1-antitrypsin and alpha2-macroglobulin levels respectively (p < 0.001). CONCLUSIONS: Gastric contents-induced acute lung injury elicits a liver acute phase response characterized by increased mRNA expression of antiproteases and elevation of blood antiprotease concentrations. Hepatic changes act in concert with derangement of the alveolar capillary barrier to enrich alveolar spaces with antiproteases. These findings may have significant implications decreasing protease burden, limiting injury in this and other models of acute lung injury and likely, in recurrent aspiration.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Reação de Fase Aguda/enzimologia , Fígado/metabolismo , alfa 2-Macroglobulinas Associadas à Gravidez/biossíntese , Alvéolos Pulmonares/enzimologia , Aspiração Respiratória de Conteúdos Gástricos/complicações , alfa 1-Antitripsina/biossíntese , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Reação de Fase Aguda/sangue , Reação de Fase Aguda/etiologia , Reação de Fase Aguda/patologia , Animais , Barreira Alveolocapilar/enzimologia , Barreira Alveolocapilar/patologia , Modelos Animais de Doenças , Indução Enzimática , Mediadores da Inflamação/sangue , Interleucina-6/sangue , Masculino , alfa 2-Macroglobulinas Associadas à Gravidez/genética , Alvéolos Pulmonares/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos Sprague-Dawley , Fatores de Tempo , alfa 1-Antitripsina/sangue , alfa 1-Antitripsina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...