Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 32(4): 348-361, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33378218

RESUMO

Sustained cell migration is essential for wound healing and cancer metastasis. The epidermal growth factor receptor (EGFR) signaling cascade is known to drive cell migration and proliferation. While the signal transduction downstream of EGFR has been extensively investigated, our knowledge of the initiation and maintenance of EGFR signaling during cell migration remains limited. The metalloprotease TACE (tumor necrosis factor alpha converting enzyme) is responsible for producing active EGFR family ligands in the via ligand shedding. Sustained TACE activity may perpetuate EGFR signaling and reduce a cell's reliance on exogenous growth factors. Using a cultured keratinocyte model system, we show that depletion of α-catenin perturbs adherens junctions, enhances cell proliferation and motility, and decreases dependence on exogenous growth factors. We show that the underlying mechanism for these observed phenotypical changes depends on enhanced autocrine/paracrine release of the EGFR ligand transforming growth factor alpha in a TACE-dependent manner. We demonstrate that proliferating keratinocyte epithelial cell clusters display waves of oscillatory extracellular signal-regulated kinase (ERK) activity, which can be eliminated by TACE knockout, suggesting that these waves of oscillatory ERK activity depend on autocrine/paracrine signals produced by TACE. These results provide new insights into the regulatory role of adherens junctions in initiating and maintaining autocrine/paracrine signaling with relevance to wound healing and cellular transformation.


Assuntos
Proteína ADAM17/metabolismo , Junções Aderentes/metabolismo , alfa Catenina/metabolismo , Proteína ADAM17/fisiologia , Junções Aderentes/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Células HaCaT , Humanos , Metaloproteases/metabolismo , Comunicação Parácrina/fisiologia , Fosforilação , Transdução de Sinais , Fator de Crescimento Transformador alfa/metabolismo , alfa Catenina/fisiologia
2.
Elife ; 82019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31833472

RESUMO

During organogenesis, precise control of spindle orientation balances proliferation and differentiation. In the developing murine epidermis, planar and perpendicular divisions yield symmetric and asymmetric fate outcomes, respectively. Classically, division axis specification involves centrosome migration and spindle rotation, events occurring early in mitosis. Here, we identify a novel orientation mechanism which corrects erroneous anaphase orientations during telophase. The directionality of reorientation correlates with the maintenance or loss of basal contact by the apical daughter. While the scaffolding protein LGN is known to determine initial spindle positioning, we show that LGN also functions during telophase to reorient oblique divisions toward perpendicular. The fidelity of telophase correction also relies on the tension-sensitive adherens junction proteins vinculin, α-E-catenin, and afadin. Failure of this corrective mechanism impacts tissue architecture, as persistent oblique divisions induce precocious, sustained differentiation. The division orientation plasticity provided by telophase correction may enable progenitors to adapt to local tissue needs.


Assuntos
Células Epidérmicas/citologia , Células Epiteliais/citologia , Telófase/fisiologia , Actomiosina/fisiologia , Anáfase , Animais , Autorrenovação Celular , Forma Celular , Citoesqueleto/ultraestrutura , Epiderme/embriologia , Feminino , Genes Reporter , Microscopia Intravital , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Conformação Proteica , Interferência de RNA , Fuso Acromático/ultraestrutura , Vinculina/genética , Vinculina/fisiologia , alfa Catenina/genética , alfa Catenina/fisiologia
3.
Mol Biol Cell ; 30(17): 2115-2123, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188702

RESUMO

Maintaining tissue integrity during epidermal morphogenesis depends on α-catenin, which connects the cadherin complex to F-actin. We show that the adhesion modulation domain (AMD) of Caenorhabditis elegans HMP-1/α-catenin regulates its F-actin-binding activity and organization of junctional-proximal actin in vivo. Deleting the AMD increases F-actin binding in vitro and leads to excess actin recruitment to adherens junctions in vivo. Reducing actin binding through a compensatory mutation in the C-terminus leads to improved function. Based on the effects of phosphomimetic and nonphosphorylatable mutations, phosphorylation of S509, within the AMD, may regulate F-actin binding. Taken together, these data establish a novel role for the AMD in regulating the actin-binding ability of an α-catenin and its proper function during epithelial morphogenesis.


Assuntos
Actinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , alfa Catenina/metabolismo , Citoesqueleto de Actina/metabolismo , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Adesão Celular/genética , Morfogênese/fisiologia , Mutação , Fosforilação , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , alfa Catenina/fisiologia
4.
Development ; 145(5)2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29467248

RESUMO

Shortly after birth, muscle cells of the mammalian heart lose their ability to divide. At the same time, the N-cadherin/catenin cell adhesion complex accumulates at the cell termini, creating a specialized type of cell-cell contact called the intercalated disc (ICD). To investigate the relationship between ICD maturation and proliferation, αE-catenin (Ctnna1) and αT-catenin (Ctnna3) genes were deleted to generate cardiac-specific α-catenin double knockout (DKO) mice. DKO mice exhibited aberrant N-cadherin expression, mislocalized actomyosin activity and increased cardiomyocyte proliferation that was dependent on Yap activity. To assess effects on tension, cardiomyocytes were cultured on deformable polyacrylamide hydrogels of varying stiffness. When grown on a stiff substrate, DKO cardiomyocytes exhibited increased cell spreading, nuclear Yap and proliferation. A low dose of either a myosin or RhoA inhibitor was sufficient to block Yap accumulation in the nucleus. Finally, activation of RhoA was sufficient to increase nuclear Yap in wild-type cardiomyocytes. These data demonstrate that α-catenins regulate ICD maturation and actomyosin contractility, which, in turn, control Yap subcellular localization, thus providing an explanation for the loss of proliferative capacity in the newborn mammalian heart.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoesqueleto/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , alfa Catenina/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Animais Recém-Nascidos , Comunicação Celular/genética , Proteínas de Ciclo Celular , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/fisiologia , Fosfoproteínas/fisiologia , Proteínas de Sinalização YAP , alfa Catenina/genética
5.
Oncotarget ; 7(34): 55518-55528, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27487124

RESUMO

Accumulating evidence indicates that deregulation of cancer-associated pseudogene is involved in the pathogenesis of cancer. In the study, we demonstrated that pseudogene CTNNAP1, for the CTNNA1 gene, was dysregulated in colorectal cancer and the degree of dysregulation was remarkably associated with tumor node metastasis (TNM) stage (P<0.05). The mechanistic experiments revealed that pseudogene CTNNAP1 played a pivotal role in the regulation of its cognate gene CTNNA1 by competition for microRNA-141. Moreover, gain-of-function approaches showed that overexpression of CTNNAP1 or CTNNA1 significantly inhibited cell proliferation and tumor growth in vitro and in vivo by inducing G0/G1 cell cycle arrest. Our findings add a new regulatory circuit via competing endogenous RNA (ceRNA) cross-talk between pseudogene CTNNAP1 and its cognate gene CTNNA1, and provide new insights into potential diagnostic biomarker for monitoring human colorectal cancer.


Assuntos
Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor/fisiologia , Pseudogenes/fisiologia , alfa Catenina/genética , Adulto , Idoso , Proliferação de Células , Neoplasias Colorretais/genética , Regulação para Baixo , Feminino , Humanos , Masculino , MicroRNAs/fisiologia , Pessoa de Meia-Idade , alfa Catenina/fisiologia
6.
Methods ; 94: 13-8, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26318089

RESUMO

Mechanosensing of the micro-environments has been shown to be essential for cell survival, growth, differentiation and migration. The mechanosensing pathways are mediated by a set of mechanosensitive proteins located at focal adhesion and cell-cell adherens junctions as well as in the cytoskeleton network. Here we review the applications of magnetic tweezers on elucidating the molecular mechanisms of the mechanosensing proteins. The scope of this review includes the principles of the magnetic tweezers technology, theoretical analysis of force-dependent stability and interaction of mechanosensing proteins, and recent findings obtained using magnetic tweezers.


Assuntos
Moléculas de Adesão Celular/fisiologia , Mecanotransdução Celular , Moléculas de Adesão Celular/química , Espectroscopia de Ressonância de Spin Eletrônica , Matriz Extracelular/química , Matriz Extracelular/fisiologia , Adesões Focais/química , Adesões Focais/fisiologia , Fenômenos Magnéticos , Estabilidade Proteica , Talina/química , Talina/fisiologia , Vinculina/química , Vinculina/fisiologia , alfa Catenina/química , alfa Catenina/fisiologia
7.
J Cell Biol ; 210(4): 647-61, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26261181

RESUMO

The function of the actin-binding domain of α-catenin, αABD, including its possible role in the direct anchorage of the cadherin-catenin complex to the actin cytoskeleton, has remained uncertain. We identified two point mutations on the αABD surface that interfere with αABD binding to actin and used them to probe the role of α-catenin-actin interactions in adherens junctions. We found that the junctions directly bound to actin via αABD were more dynamic than the junctions bound to actin indirectly through vinculin and that recombinant αABD interacted with cortical actin but not with actin bundles. This interaction resulted in the formation of numerous short-lived cortex-bound αABD clusters. Our data suggest that αABD clustering drives the continuous assembly of transient, actin-associated cadherin-catenin clusters whose disassembly is maintained by actin depolymerization. It appears then that such actin-dependent αABD clustering is a unique molecular mechanism mediating both integrity and reassembly of the cell-cell adhesive interface formed through weak cis- and trans-intercadherin interactions.


Assuntos
Actinas/metabolismo , Caderinas/metabolismo , alfa Catenina/fisiologia , Junções Aderentes/metabolismo , Linhagem Celular Tumoral , Humanos , Cinética , Microscopia de Fluorescência , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Imagem com Lapso de Tempo , Vinculina/metabolismo , alfa Catenina/química
8.
J Biol Chem ; 290(31): 18890-903, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26070562

RESUMO

α-Catenin plays a crucial role in cadherin-mediated adhesion by binding to ß-catenin, F-actin, and vinculin, and its dysfunction is linked to a variety of cancers and developmental disorders. As a mechanotransducer in the cadherin complex at intercellular adhesions, mechanical and force-sensing properties of α-catenin are critical to its proper function. Biochemical data suggest that α-catenin adopts an autoinhibitory conformation, in the absence of junctional tension, and biophysical studies have shown that α-catenin is activated in a tension-dependent manner that in turn results in the recruitment of vinculin to strengthen the cadherin complex/F-actin linkage. However, the molecular switch mechanism from autoinhibited to the activated state remains unknown for α-catenin. Here, based on the results of an aggregate of 3 µs of molecular dynamics simulations, we have identified a dynamic salt-bridge network within the core M region of α-catenin that may be the structural determinant of the stability of the autoinhibitory conformation. According to our constant-force steered molecular dynamics simulations, the reorientation of the MII/MIII subdomains under force may constitute an initial step along the transition pathway. The simulations also suggest that the vinculin-binding domain (subdomain MI) is intrinsically much less stable than the other two subdomains in the M region (MII and MIII). Our findings reveal several key insights toward a complete understanding of the multistaged, force-induced conformational transition of α-catenin to the activated conformation.


Assuntos
alfa Catenina/química , Sequência de Aminoácidos , Adesão Celular , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , alfa Catenina/fisiologia
9.
Cell Adh Migr ; 9(3): 167-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25914082

RESUMO

The disproportional enlargement of the neocortex through evolution has been instrumental in the success of vertebrates, in particular mammals. The neocortex is a multilayered sheet of neurons generated from a simple proliferative neuroepithelium through a myriad of mechanisms with substantial evolutionary conservation. This developing neuroepithelium is populated by progenitors that can generate additional progenitors as well as post-mitotic neurons. Subtle alterations in the production of progenitors vs. differentiated cells during development can result in dramatic differences in neocortical size. This review article will examine how cadherin adhesion proteins, in particular α-catenin and N-cadherin, function in regulating the neural progenitor microenvironment, cell proliferation, and differentiation in cortical development.


Assuntos
Junções Aderentes/fisiologia , Caderinas/fisiologia , Neocórtex/crescimento & desenvolvimento , alfa Catenina/fisiologia , beta Catenina/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Microambiente Celular , Humanos , Camundongos , Neurônios/fisiologia , Transdução de Sinais
11.
Circ Res ; 116(1): 70-9, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25305307

RESUMO

RATIONALE: Shortly after birth, muscle cells of the mammalian heart lose their ability to divide. Thus, they are unable to effectively replace dying cells in the injured heart. The recent discovery that the transcriptional coactivator Yes-associated protein (Yap) is necessary and sufficient for cardiomyocyte proliferation has gained considerable attention. However, the upstream regulators and signaling pathways that control Yap activity in the heart are poorly understood. OBJECTIVE: To investigate the role of α-catenins in the heart using cardiac-specific αE- and αT-catenin double knockout mice. METHODS AND RESULTS: We used 2 cardiac-specific Cre transgenes to delete both αE-catenin (Ctnna1) and αT-catenin (Ctnna3) genes either in the perinatal or in the adult heart. Perinatal depletion of α-catenins increased cardiomyocyte number in the postnatal heart. Increased nuclear Yap and the cell cycle regulator cyclin D1 accompanied cardiomyocyte proliferation in the α-catenin double knockout hearts. Fetal genes were increased in the α-catenin double knockout hearts indicating a less mature cardiac gene expression profile. Knockdown of α-catenins in neonatal rat cardiomyocytes also resulted in increased proliferation, which could be blocked by knockdown of Yap. Finally, inactivation of α-catenins in the adult heart using an inducible Cre led to increased nuclear Yap and cardiomyocyte proliferation and improved contractility after myocardial infarction. CONCLUSIONS: These studies demonstrate that α-catenins are critical regulators of Yap, a transcriptional coactivator essential for cardiomyocyte proliferation. Furthermore, we provide proof of concept that inhibiting α-catenins might be a useful strategy to promote myocardial regeneration after injury.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células/fisiologia , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , alfa Catenina/fisiologia , Animais , Animais Recém-Nascidos , Proteínas de Ciclo Celular , Células Cultivadas , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Proteínas de Sinalização YAP
12.
Annu Rev Cell Dev Biol ; 30: 291-315, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25062360

RESUMO

Cadherins are the principal adhesion proteins at intercellular junctions and function as the biochemical Velcro that binds cells together. Besides this mechanical function, cadherin complexes are also mechanotransducers that sense changes in tension and trigger adaptive reinforcement of intercellular junctions. The assembly and regulation of cadherin adhesions are central to their mechanical functions, and new evidence is presented for a comprehensive model of cadherin adhesion, which is surprisingly more complex than previously appreciated. Recent findings also shed new light on mechanisms that regulate cadherin junction assembly, adhesion, and mechanotransduction. We further describe recent evidence for cadherin-based mechanotransduction, and the rudiments of the molecular mechanism, which involves α-catenin and vinculin as key elements. Potential roles of a broader cast of possible force-sensitive partners are considered, as well as known and speculative biological consequences of adhesion and force transduction at cadherin-mediated junctions.


Assuntos
Caderinas/fisiologia , Adesão Celular/fisiologia , Mecanotransdução Celular/fisiologia , Actinas/fisiologia , Regulação Alostérica , Animais , Caderinas/química , Citoesqueleto/fisiologia , Endocitose , Glicosilação , Humanos , Modelos Biológicos , Modelos Moleculares , Morfogênese , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transdução de Sinais , Relação Estrutura-Atividade , Vinculina/fisiologia , alfa Catenina/fisiologia
13.
Toxicol Sci ; 141(1): 254-62, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24973089

RESUMO

Cisplatin is one of the most potent and widely used antitumor drugs. However, the use of cisplatin is limited by its side effect, nephrotoxicity. Evidence has shown an increased incidence and severity of acute kidney injury (AKI) in the elderly. Previous studies from our laboratory demonstrate a decrease in α(E)-catenin expression in aged kidney. In this study, we investigated whether the loss of α(E)-catenin may increase cisplatin nephrotoxicity. To study the effects of reduced α(E)-catenin, a cell line with stable knockdown of α(E)-catenin (C2 cells) was used; NT3 is nontargeted control. C2 cells exhibited a significant loss of viability as determined by MTT assay compared with NT3 cells after cisplatin challenge, but showed no difference in lactate dehydrogenase (LDH) leakage. Increased caspase 3/7 activation and PARP cleavage was observed in C2 cells after cisplatin treatment. Z-VAD, a pan-caspase inhibitor, abolished the difference in susceptibility between NT3 and C2 cells. Interestingly, the expression of α(E)-catenin was further decreased after cisplatin treatment. Furthermore, in vivo data demonstrated a significant increase in serum creatinine at 72 h after a single dose of cisplatin in 24-month-old rats, but not in 4-month-old rats. Increased expression of KIM-1 and in situ apoptosis were also detected in aged kidney after cisplatin challenge. Taken together, these data suggest that loss of α(E)-catenin increases apoptosis of tubular epithelial cells which may contribute to the increased nephrotoxicity induced by cisplatin in aged kidney.


Assuntos
Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Cisplatino/toxicidade , Células Epiteliais/efeitos dos fármacos , Nefropatias/induzido quimicamente , Túbulos Renais Proximais/efeitos dos fármacos , alfa Catenina/fisiologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Western Blotting , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Técnicas de Silenciamento de Genes , Nefropatias/genética , Nefropatias/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real , alfa Catenina/genética
14.
Proc Natl Acad Sci U S A ; 111(14): 5260-5, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706864

RESUMO

α-Catenin (α-cat) is an actin-binding protein required for cell-cell cohesion. Although this adhesive function for α-cat is well appreciated, cells contain a substantial amount of nonjunctional α-cat that may be used for other functions. We show that α-cat is a nuclear protein that can interact with ß-catenin (ß-cat) and T-cell factor (TCF) and that the nuclear accumulation of α-cat depends on ß-cat. Using overexpression, knockdown, and chromatin immunoprecipitation approaches, we show that α-cat attenuates Wnt/ß-cat-responsive genes in a manner that is downstream of ß-cat/TCF loading on promoters. Both ß-cat- and actin-binding domains of α-cat are required to inhibit Wnt signaling. A nuclear-targeted form of α-cat induces the formation of nuclear filamentous actin, whereas cells lacking α-cat show altered nuclear actin properties. Formation of nuclear actin filaments correlates with reduced RNA synthesis and altered chromatin organization. Conversely, nuclear extracts made from cells lacking α-cat show enhanced general transcription in vitro, an activity that can be partially rescued by restoring the C-terminal actin-binding region of α-cat. These data demonstrate that α-cat may limit gene expression by affecting nuclear actin organization.


Assuntos
Transcrição Gênica/fisiologia , alfa Catenina/fisiologia , Linhagem Celular Tumoral , Humanos , Transdução de Sinais
15.
Nat Cell Biol ; 16(3): 245-54, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509793

RESUMO

Basal-like breast cancer is a highly aggressive tumour subtype associated with poor prognosis. Aberrant activation of NF-κB signalling is frequently found in triple-negative basal-like breast cancer cells, but the cause of this activation has remained elusive.Here we report that α-catenin functions as a tumour suppressor in E-cadherin-negative basal-like breast cancer cells by inhibiting NF-κB signalling. Mechanistically, α-catenin interacts with the IκBα protein, and stabilizes IκBα by inhibiting its ubiquitylation and its association with the proteasome. This stabilization in turn prevents nuclear localization of RelA and p50, leading to decreased expression of TNF-α, IL-8 and RelB. In human breast cancer, CTNNA1 expression is specifically downregulated in the basal-like subtype, correlates with clinical outcome and inversely correlates with TNF and RELB expression. Taken together, these results uncover a previously undescribed mechanism by which the NF-κB pathway is activated in E-cadherin-negative basal-like breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Neoplasia de Células Basais/metabolismo , Fator de Transcrição RelB/genética , alfa Catenina/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Antígenos CD , Sequência de Bases , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Regulação para Baixo , Feminino , Humanos , Proteínas I-kappa B/metabolismo , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Inibidor de NF-kappaB alfa , Subunidade p50 de NF-kappa B/metabolismo , Transplante de Neoplasias , Neoplasia de Células Basais/patologia , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelB/metabolismo , Carga Tumoral , Proteínas Supressoras de Tumor/fisiologia , Ubiquitinação
16.
J Cell Sci ; 127(Pt 8): 1779-91, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24522187

RESUMO

The findings presented here demonstrate the role of α-catenin in cadherin-based adhesion and mechanotransduction in different mechanical contexts. Bead-twisting measurements in conjunction with imaging, and the use of different cell lines and α-catenin mutants reveal that the acute local mechanical manipulation of cadherin bonds triggers vinculin and actin recruitment to cadherin adhesions in an actin- and α-catenin-dependent manner. The modest effect of α-catenin on the two-dimensional binding affinities of cell surface cadherins further suggests that force-activated adhesion strengthening is due to enhanced cadherin-cytoskeletal interactions rather than to α-catenin-dependent affinity modulation. Complementary investigations of cadherin-based rigidity sensing also suggest that, although α-catenin alters traction force generation, it is not the sole regulator of cell contractility on compliant cadherin-coated substrata.


Assuntos
Caderinas/sangue , Caderinas/fisiologia , Adesão Celular , Mecanotransdução Celular , alfa Catenina/fisiologia , Actinas/metabolismo , Animais , Sítios de Ligação , Fenômenos Biomecânicos , Caderinas/química , Linhagem Celular Tumoral , Cães , Eritrócitos/metabolismo , Humanos , Cinética , Células Madin Darby de Rim Canino , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Vinculina/metabolismo
17.
Anim Reprod Sci ; 140(3-4): 189-94, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23820070

RESUMO

In previous research, several WNT signaling pathway genes including transcription factor 12 (TCF12), catenin alpha-like protein 1 (CTNNAL1) and wingless-type MMTV integration site family, member 10B (WNT10B) were differentially expressed in PMSG-hCG stimulated preovulatory ovarian follicles of Large White and Chinese Taihu sows. In the present research, these three genes were selected as the candidate genes for litter size traits in pigs. Four mutations (TCF12 c.-201+65 G>A, TCF12 c.-200-300 G>A, CTNNAL1 c.1878 G>C and WNT10B c.*12 C>T) were detected in eleven pig populations, and results indicated CTNNAL1 c.1878 G and WNT10B c.*12 C were the major alleles in all tested pig populations, while TCF12 c.-201+65 A and TCF12 c.-200-300 A were the major alleles in several Chinese native pig breeds. Association analysis of four mutations with litter size in Large White and DIV pigs showed that both the signficant differences of total number born (TNB) and number born alive (NBA) among three genotypes and the significance of additive effects appeared at TCF12 c.-200-300 G>A and CTNNAL1 c.1878 G>C loci, suggesting these two mutations might be reliable markers for pig selection and breeding.


Assuntos
Animais Recém-Nascidos/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Polimorfismo de Nucleotídeo Único/fisiologia , Suínos/fisiologia , Proteínas Wnt/fisiologia , alfa Catenina/fisiologia , Animais , Animais Recém-Nascidos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , DNA/química , DNA/genética , Feminino , Genótipo , Modelos Lineares , Tamanho da Ninhada de Vivíparos/genética , Tamanho da Ninhada de Vivíparos/fisiologia , Folículo Ovariano/fisiologia , Reação em Cadeia da Polimerase/veterinária , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Locos de Características Quantitativas/genética , Locos de Características Quantitativas/fisiologia , Suínos/genética , Proteínas Wnt/genética , alfa Catenina/genética
18.
PLoS One ; 8(1): e55069, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23359820

RESUMO

Cancer cell invasion is the critical first step of metastasis, yet, little is known about how cancer cells invade and initiate metastasis in a complex extracellular matrix. Using a cell line from bone metastasis of prostate cancer (PC3), we analyzed how prostate cancer cells migrate in a physiologically relevant 3D Matrigel. We found that PC3 cells migrated more efficiently as multi-cellular clusters than isolated single cells, suggesting that the presence of cell-cell adhesion improves 3D cell migration. Perturbation of N-cadherin function by transfection of either the N-cadherin cytoplasmic domain or shRNA specific to N-cadherin abolished collective cell migration. Interestingly, PC3 cells do not express α-catenin, an actin binding protein in the cadherin complex. When the full-length α-catenin was re-introduced, the phenotype of PC3 cells reverted back to a more epithelial phenotype with a decreased cell migration rate in 3D Matrigel. Interestingly, we found that the N-terminal half of α-catenin was sufficient to suppress invasive phenotype. Taken together, these data suggest that the formation of N-cadherin junctions promotes 3D cell migration of prostate cancer cells, and this is partly due to an aberrant regulation of the N-cadherin complex in the absence of α-catenin.


Assuntos
Caderinas/fisiologia , Neoplasias da Próstata/patologia , alfa Catenina/fisiologia , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias da Próstata/metabolismo , alfa Catenina/metabolismo
19.
Placenta ; 33(7): 554-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22534068

RESUMO

Transcriptional activation of CTNNA3, encoding αT-catenin, by the Y153H mutated form of the human STOX1 transcription factor was proposed to be responsible for altered fetal trophoblast invasion into the maternal endometrium during placentation in pre-eclampsia. Here we have generated a mouse model to investigate the in vivo effects of ectopic αT-catenin expression on trophoblast invasion. Histological analysis was used to determine the invasive capacities of trophoblasts from transgenic embryos, as well as proliferation rates of spongiotrophoblasts in the junctional zone. Augmented expression of αT-catenin reduced the number of invading trophoblasts but did not cause embryonic mortality. The, αT-catenin positive cells could still invade into the decidual layer and migrated as deeply as wild-type trophoblasts. Furthermore, the junctional zone is enlarged in placentas of mice overexpressing αT-catenin due to hyperproliferation of the residing spongiotrophoblasts, suggesting a pivotal role of αT-catenin levels in the control of the proliferative versus invasive state of trophoblasts during placentation. Our study provides, for the first time, in vivo data on the effects of increased levels of αT-catenin in the placenta.


Assuntos
Placentação/fisiologia , Trofoblastos/fisiologia , alfa Catenina/genética , Animais , Proliferação de Células , Embrião de Mamíferos/metabolismo , Feminino , Expressão Gênica , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Placenta/química , Placenta/citologia , Placenta/metabolismo , Gravidez , Proteínas/genética , RNA não Traduzido , Trofoblastos/citologia , alfa Catenina/análise , alfa Catenina/fisiologia
20.
Biol Reprod ; 86(5): 141, 1-10, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22378759

RESUMO

CDH1 is a cell-cell adhesion molecule expressed in the epithelium to coordinate key morphogenetic processes, establish cell polarity, and regulate epithelial differentiation and proliferation. To determine the role of CDH1 in the mouse uterus, Cdh1 was conditionally ablated by crossing Pgr-Cre and Cdh1-flox mice, and the phenotype was characterized. We found that loss of Cdh1 results in a disorganized cellular structure of the epithelium and ablation of endometrial glands in the neonatal uterus. Cdh1(d/d) mice lost adherens junctions (CTNNB1 and CTNNA1) and tight junctions (claudin, occludin, and ZO-1 proteins) in the neonatal uterus, leading to loss of epithelial cell-cell interaction. Ablation of Cdh1 induced abnormal epithelial proliferation and massive apoptosis, and disrupted Wnt and Hox gene expression in the neonatal uterus. Although the uteri of Cdh1(d/d) mice did not show any myometrial defects, ablation of Cdh1 inhibited expression of epithelial (cytokeratin 8) and stromal (CD10) markers. Cdh1(d/d) mice were infertile because of defects during implantation and decidualization. Furthermore, we showed in the model of conditional ablation of both Cdh1 and Trp53 in the uterus that interrupting cell cycle regulation through the loss of Cdh1 leads to abnormal uterine development. The uteri of Cdh1(d/d) Trp53(d/d) mice exhibited histological features of endometrial carcinomas with myometrial invasion. Collectively, these findings suggest that CDH1 has an important role in structural and functional development of the uterus as well as adult uterine function. CDH1 has a capacity to control cell fate by altering directional cell proliferation and apoptosis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Endométrio/crescimento & desenvolvimento , Útero/fisiologia , Junções Aderentes , Animais , Apoptose/fisiologia , Carcinoma/genética , Carcinoma/patologia , Carcinoma/fisiopatologia , Proteínas Cdh1 , Proteínas de Ciclo Celular/genética , Proliferação de Células , Claudinas/fisiologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/fisiopatologia , Endométrio/citologia , Endométrio/fisiologia , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Queratina-8/biossíntese , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Neprilisina/biossíntese , Ocludina , Fosfoproteínas/fisiologia , Junções Íntimas , Proteína Supressora de Tumor p53/biossíntese , Via de Sinalização Wnt/fisiologia , Proteína da Zônula de Oclusão-1 , alfa Catenina/fisiologia , beta Catenina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...