Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Arch Biochem Biophys ; 725: 109280, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35605676

RESUMO

Endo-α-N-acetylgalactosaminidase from Bifidobacterium longum (EngBF) belongs to the glycoside hydrolase family GH101 and has a strict preference towards the mucin type glycan, Galß1-3GalNAc, which is O-linked to serine or threonine residues on glycopeptides and -proteins. While other enzymes of the GH101 family exhibit a wider substrate spectrum, no GH101 member has until recently been reported to process the α2-3 sialidated mucin glycan, Neu5Acα2-3Galß1-3GalNAc. However, work published by others (ACS Chem Biol 2021, 16, 2004-2015) during the preparation of the present manuscript demonstrated that the enzymes from several bacteria are able to hydrolyze this glycan from the fluorophore, methylumbelliferyl. Based on molecular docking using the EngBF homolog, EngSP from Streptococcus pneumoniae, substitution of active site amino acid residues with the potential to allow for accommodation of Neu5Acα2-3Galß1-3GalNAc were identified. Based on this analysis, the mutant EngBF variants W750A, Q894A, K1199A, E1294A and D1295A were prepared and tested, for activity towards the Neu5Acα2-3Galß1-3GalNAc O-linked glycan present on bovine fetuin. Among the mutant EngBF variants listed above, only E1294A was shown to release Neu5Acα2-3Galß1-3GalNAc from fetuin, which subsequently was also demonstrated for the substitutions: E1294 M, E1294H and E1294K. In addition, the kcat/KM of the EngBF variants for cleavage of the Neu5Acα2-3Galß1-3GalNAc glycan increased between 5 and 70 times from pH 4.5 to pH 6.0.


Assuntos
Bifidobacterium longum , Animais , Bifidobacterium longum/metabolismo , Bovinos , Fetuínas , Simulação de Acoplamento Molecular , Mucinas/metabolismo , Polissacarídeos/química , alfa-N-Acetilgalactosaminidase/química , alfa-N-Acetilgalactosaminidase/genética
2.
Eur J Med Genet ; 65(2): 104426, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026467

RESUMO

Whole exome sequencing (WES) is a powerful tool for the cataloguing of population-specific genetic diseases. Within this proof-of-concept study we evaluated whether analysis of a small number of individual exomes is capable of identifying recurrent pathogenic alleles. We considered 106 exomes of subjects of Russian origin and revealed 13 genetic variants, which occurred more than twice and fulfilled the criteria for pathogenicity. All these alleles turned out to be indeed recurrent, as revealed by the analysis of 1045 healthy Russian donors. Eight of these variants (NAGA c.973G>A, ACADM c.985A>C, MPO c.2031-2A>C, SLC3A1 c.1400T>C, LRP2 c.6160G>A, BCHE c.293A>G, MPO c.752T>C, FCN3 c.349delC) are non-Russian-specific, as their high prevalence was previously demonstrated in other European populations. The remaining five disease-associated alleles appear to be characteristic for subjects of Russian origin and include CLCN1 c.2680C>T (myotonia congenita), DHCR7 c.453G>A (Smith-Lemli-Opitz syndrome), NUP93 c.1162C>T (steroid-resistant nephrotic syndrome, type 12), SLC26A2 c.1957T>A (multiple epiphyseal dysplasia) and EIF3F c.694T>G (mental retardation). These recessive disease conditions may be of particular relevance for the Russian Federation and other countries with a significant Slavic population.


Assuntos
Frequência do Gene , Doenças Genéticas Inatas/genética , População/genética , Adulto , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Butirilcolinesterase/genética , Feminino , Humanos , Lectinas/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Peroxidase/genética , Federação Russa , Sequenciamento do Exoma/estatística & dados numéricos , alfa-N-Acetilgalactosaminidase/genética
3.
Cell Biol Int ; 46(2): 255-264, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34816536

RESUMO

Although the elevated level of the α-N-acetylgalactosaminidase enzyme (encoded by the NAGA gene) is a well-recognized feature of cancer cells; little research works have been undertaken on the cancer malignancy mechanisms. The effects of NAGA gene downregulation on cancer cells' features such as drug resistance, impaired programmed cell death, and migration were analyzed in this study. The cells grew exponentially with a doubling time of 30 h in an optimal condition. Toxicity of daunorubicin chemotherapy drug on NAGA-transfected EPG85.257RDB cells was evaluated in comparison to control cells and no significant change was recorded. Quantitative transcript analyses and protein levels revealed that the MDR1 pump almost remained unchanged during the study. Moreover, the NAGA gene downregulation enhanced the late apoptosis rate in EPG85.257RDB cells at 24 h posttransfection. The investigated expression level of genes and proteins involved in the TNFR2 signaling pathway, related to cancer cell apoptosis, showed considerable alterations after NAGA silencing as well. MAP3K14 and CASP3 genes were downregulated while IL6, RELA, and TRAF2 experienced an upregulation. Also, NAGA silencing generally diminished the migration ability of EPG85.257RDB cells and the MMP1 gene (as a critical gene in metastasis) expression decreased significantly. The expression of the p-FAK protein, which is located in the downstream of the α2 ß1 integrin signaling pathway, was reduced likewise. It could be concluded that despite drug resistance, NAGA silencing resulted in augmentative and regressive effects on cell death and migration.


Assuntos
Neoplasias Gástricas , Apoptose , Morte Celular , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Humanos , Neoplasias Gástricas/metabolismo , alfa-N-Acetilgalactosaminidase/genética , alfa-N-Acetilgalactosaminidase/metabolismo , alfa-N-Acetilgalactosaminidase/uso terapêutico
4.
Mol Psychiatry ; 26(11): 6896-6911, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33931730

RESUMO

Genome-wide association studies (GWASs) have revealed that genetic variants at the 22q13.2 risk locus were robustly associated with schizophrenia. However, the causal variants at this risk locus and their roles in schizophrenia remain elusive. Here we identify the risk missense variant rs1801311 (located in the 1st exon of NDUFA6 gene) as likely causal for schizophrenia at 22q13.2 by disrupting binding of YY1, TAF1, and POLR2A. We systematically elucidated the regulatory mechanisms of rs1801311 and validated the regulatory effect of this missense variant. Intriguingly, rs1801311 physically interacted with NAGA (encodes the alpha-N-acetylgalactosaminidase, which is mainly involved in regulating metabolisms of glycoproteins and glycolipids in lysosome) and showed the most significant association with NAGA expression in the human brain, with the risk allele (G) associated with higher NAGA expression. Consistent with eQTL analysis, expression analysis showed that NAGA was significantly upregulated in brains of schizophrenia cases compared with controls, further supporting that rs1801311 may confer schizophrenia risk by regulating NAGA expression. Of note, we found that NAGA regulates important neurodevelopmental processes, including proliferation and differentiation of neural stem cells. Transcriptome analysis corroborated that NAGA regulates pathways associated with neuronal differentiation. Finally, we independently confirmed the association between rs1801311 and schizophrenia in a large Chinese cohort. Our study elucidates the regulatory mechanisms of the missense schizophrenia risk variant rs1801311 and provides mechanistic links between risk variant and schizophrenia etiology. In addition, this study also revealed the novel role of coding variants in gene regulation and schizophrenia risk, i.e., genetic variant in coding region of a specific gene may confer disease risk through regulating distal genes (act as regulatory variant for distal genes).


Assuntos
Esquizofrenia , Alelos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Fator de Transcrição YY1/genética , alfa-N-Acetilgalactosaminidase/genética , alfa-N-Acetilgalactosaminidase/metabolismo
5.
Insect Mol Biol ; 30(4): 367-378, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33742736

RESUMO

Horizontal gene transfer is an important evolutionary mechanism not only for bacteria but also for eukaryotes. In the domestic silkworm Bombyx mori, a model species of lepidopteran insects, some enzymes are known to have been acquired by horizontal transfer; however, the enzymatic features of protein BmNag31, belonging to glycoside hydrolase family 31 (GH31) and whose gene was predicted to be transferred from Enterococcus sp. are unknown. In this study, we reveal that the transcription of BmNag31 increases significantly during the prepupal to pupal stage, and decreases in the adult stage. The full-length BmNag31 and its truncated mutants were heterologously expressed in Escherichia coli and characterized. Its catalytic domain exhibits α-N-acetylgalactosaminidase activity and the carbohydrate-binding module family 32 domain shows binding activity towards N-acetylgalactosamine, similar to the Enterococcus faecalis homolog, EfNag31A. Gel filtration chromatography and blue native polyacrylamide gel electrophoresis analyses indicate that BmNag31 forms a hexamer whereas EfNag31A is monomeric. These results provide insights into the function of lepidopteran GH31 α-N-acetylgalactosaminidase.


Assuntos
Bombyx , alfa-N-Acetilgalactosaminidase/química , Animais , Evolução Biológica , Bombyx/genética , Bombyx/metabolismo , Enterococcus/genética , Escherichia coli , Transferência Genética Horizontal , Genes Bacterianos , Glicosídeo Hidrolases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-N-Acetilgalactosaminidase/genética , alfa-N-Acetilgalactosaminidase/metabolismo
6.
FEBS Lett ; 594(14): 2282-2293, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32367553

RESUMO

Glycoside hydrolases catalyze the hydrolysis of glycosidic linkages in carbohydrates. The glycoside hydrolase family 31 (GH31) contains α-glucosidase, α-xylosidase, α-galactosidase, and α-transglycosylase. Recent work has expanded the diversity of substrate specificity of GH31 enzymes, and α-N-acetylgalactosaminidases (αGalNAcases) belonging to GH31 have been identified in human gut bacteria. Here, we determined the first crystal structure of a truncated form of GH31 αGalNAcase from the human gut bacterium Enterococcus faecalis. The enzyme has a similar fold to other reported GH31 enzymes and an additional fibronectin type 3-like domain. Additionally, the structure in complex with N-acetylgalactosamine reveals that conformations of the active site residues, including its catalytic nucleophile, change to recognize the ligand. Our structural analysis provides insight into the substrate recognition and catalytic mechanism of GH31 αGalNAcases.


Assuntos
Enterococcus faecalis/enzimologia , alfa-N-Acetilgalactosaminidase/química , alfa-N-Acetilgalactosaminidase/classificação , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Enterococcus faecalis/genética , Hidrólise , Cinética , Modelos Moleculares , Relação Estrutura-Atividade , alfa-N-Acetilgalactosaminidase/genética
7.
Carbohydr Res ; 490: 107962, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32169671

RESUMO

Three large (2084-, 984-, and 2104-amino acids) endo-α-N-acetylgalactosaminidase candidate genes from the commensal human gut bacterium Tyzzerella nexilis were successfully cloned and subsequently expressed in Escherichia coli. Activity tests of the purified proteins revealed that two of the candidate genes (Tn0153 and Tn2105) were able to hydrolyze the disaccharide unit from Galß1-3GalNAc-α-pNP. The biochemical characterization revealed optimum pH conditions of 4.0 for both enzymes and temperature optima of 50 °C. The addition of 2-mercaptoethanol, Triton X-100 and urea had only minor effects on the activity of the enzymes, and the addition of imidazole and sodium dodecyl sulfate led to a significant reduction of the enzymes' activities. A mutational study identified and confirmed the role of the catalytically significant amino acids. The present study describes the first functional characterization of members of the GH101 family from this human gut symbiont.


Assuntos
Clonagem Molecular/métodos , Clostridiales/fisiologia , Trato Gastrointestinal/microbiologia , alfa-N-Acetilgalactosaminidase/genética , alfa-N-Acetilgalactosaminidase/metabolismo , Proteínas de Bactérias , Clostridiales/enzimologia , Dissacarídeos/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Humanos , Hidrólise , Mercaptoetanol/farmacologia , Mutação , Octoxinol/farmacologia , Especificidade por Substrato , Simbiose , Ureia/farmacologia
8.
Int J Med Microbiol ; 310(2): 151398, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31987726

RESUMO

Clostridium perfringens is the causative agent of human clostridial myonecrosis; the major toxins involved in this disease are α-toxin and perfringolysin O. The RevSR two-component regulatory system has been shown to be involved in regulating virulence in a mouse myonecrosis model. Previous microarray and RNAseq analysis of a revR mutant implied that factors other than the major toxins may play a role in virulence. The RNAseq data showed that the expression of the gene encoding the EngCP endo α-N-acetylgalactosaminidase (CPE0693) was significantly down-regulated in a revR mutant. Enzymes from this family have been identified in several Gram-positive pathogens and have been postulated to contribute to their virulence. In this study, we constructed an engCP mutant of C. perfringens and showed that it was significantly less virulent than its wild-type parent strain. Virulence was restored by complementation in trans with the wild-type engCP gene. We also demonstrated that purified EngCP was able to hydrolyse α-dystroglycan derived from C2C12 mouse myotubes. However, EngCP had little effect on membrane permeability in mice, suggesting that EngCP may play a role other than the disruption of the structural integrity of myofibres. Glycan array analysis indicated that EngCP could recognise structures containing the monosaccharide N-acetlygalactosamine at 4C, but could recognise structures terminating in galactose, glucose and N-acetylglucosamine under conditions where EngCP was enzymatically active. In conclusion, we have obtained evidence that EngCP is required for virulence in C. perfringens and, although classical exotoxins are important for disease, we have now shown that an O-glycosidase also plays an important role in the disease process.


Assuntos
Clostridium perfringens/enzimologia , Clostridium perfringens/patogenicidade , Gangrena Gasosa/microbiologia , Fatores de Virulência/genética , alfa-N-Acetilgalactosaminidase/genética , Animais , Permeabilidade da Membrana Celular , Clostridium perfringens/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sequência de RNA , alfa-N-Acetilgalactosaminidase/metabolismo
9.
J Mol Neurosci ; 70(1): 45-55, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31468281

RESUMO

Schindler disease is a rare autosomal recessive lysosomal storage disorder caused by a deficiency in alpha-N-acetylgalactosaminidase (α-NAGA) activity due to defects in the NAGA gene. Accumulation of the enzyme's substrates results in clinically heterogeneous symptoms ranging from asymptomatic individuals to individuals with severe neurological manifestations. Here, a 5-year-old Emirati male born to consanguineous parents presented with congenital microcephaly and severe neurological manifestations. Whole genome sequencing revealed a homozygous missense variant (c.838C>A; p.L280I) in the NAGA gene. The allele is a reported SNP in the ExAC database with a 0.0007497 allele frequency. The proband's asymptomatic sister and cousin carry the same genotype in a homozygous state as revealed from the family screening. Due to the extreme intrafamilial heterogeneity of the disease as seen in previously reported cases, we performed further analyses to establish the pathogenicity of this variant. Both the proband and his sister showed abnormal urine oligosaccharide patterns, which is consistent with the diagnosis of Schindler disease. The α-NAGA activity was significantly reduced in the proband and his sister with 5.9% and 12.1% of the mean normal activity, respectively. Despite the activity loss, p.L280I α-NAGA processing and trafficking were not affected. However, protein molecular dynamic simulation analysis revealed that this amino acid substitution is likely to affect the enzyme's natural dynamics and hinders its ability to bind to the active site. Functional analysis confirmed the pathogenicity of the identified missense variant and the diagnosis of Schindler disease. Extreme intrafamilial clinical heterogeneity of the disease necessitates further studies for proper genetic counseling and management.


Assuntos
Doenças por Armazenamento dos Lisossomos/genética , Mutação de Sentido Incorreto , Distrofias Neuroaxonais/genética , Fenótipo , alfa-N-Acetilgalactosaminidase/deficiência , Adulto , Domínio Catalítico , Células Cultivadas , Criança , Feminino , Humanos , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Distrofias Neuroaxonais/patologia , Linhagem , Ligação Proteica , alfa-N-Acetilgalactosaminidase/química , alfa-N-Acetilgalactosaminidase/genética , alfa-N-Acetilgalactosaminidase/metabolismo
10.
J Biol Chem ; 294(44): 16400-16415, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31530641

RESUMO

α-Linked GalNAc (α-GalNAc) is most notably found at the nonreducing terminus of the blood type-determining A-antigen and as the initial point of attachment to the peptide backbone in mucin-type O-glycans. However, despite their ubiquity in saccharolytic microbe-rich environments such as the human gut, relatively few α-N-acetylgalactosaminidases are known. Here, to discover and characterize novel microbial enzymes that hydrolyze α-GalNAc, we screened small-insert libraries containing metagenomic DNA from the human gut microbiome. Using a simple fluorogenic glycoside substrate, we identified and characterized a glycoside hydrolase 109 (GH109) that is active on blood type A-antigen, along with a new subfamily of glycoside hydrolase 31 (GH31) that specifically cleaves the initial α-GalNAc from mucin-type O-glycans. This represents a new activity in this GH family and a potentially useful new enzyme class for analysis or modification of O-glycans on protein or cell surfaces.


Assuntos
Glicosídeo Hidrolases/síntese química , alfa-N-Acetilgalactosaminidase/metabolismo , Microbioma Gastrointestinal/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Glicosídeos/metabolismo , Glicosilação , Hexosaminidases/metabolismo , Humanos , Mucinas/metabolismo , Peptídeos/metabolismo , Polissacarídeos/química , Proteínas/metabolismo , Especificidade por Substrato , alfa-N-Acetilgalactosaminidase/genética
11.
Sci Rep ; 8(1): 10627, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006512

RESUMO

The non-digestible oligosaccharide fraction of maternal milk represents an important of carbohydrate and energy source for saccharolytic bifidobacteria in the gastrointestinal tract during early life. However, not all neonatal bifidobacteria isolates can directly metabolise the complex sialylated, fucosylated, sulphated and/or N-acetylglucosamine-containing oligosaccharide structures present in mothers milk. For some bifidobacterial strains, efficient carbohydrate syntrophy or crossfeeding is key to their establishment in the gut. In this study, we have adopted advanced functional genomic approaches to create single and double in-frame deletions of the N-acetyl glucosamine 6-phosphate deacetylase encoding genes, nagA1 and nagA2, of B. breve UCC2003. In vitro phenotypic analysis followed by in vivo studies on co-colonisation, mother to infant transmission, and evaluation of the relative co-establishment of B. bifidum and B. breve UCC2003 or UCC2003ΔnagA1ΔnagA2 in dam-reared neonatal mice demonstrates the importance of crossfeeding on sialic acid, fucose and N-acetylglucosamine-containing oligosaccharides for the establishment of B. breve UCC2003 in the neonatal gut. Furthermore, transcriptomic analysis of in vivo gene expression shows upregulation of genes associated with the utilisation of lactose, sialic acid, GlcNAc-6-S and fucose in B. breve UCC2003, while for UCC2003ΔnagA1ΔnagA2 only genes for lactose metabolism were upregulated.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium breve/metabolismo , Metabolismo dos Carboidratos , Trato Gastrointestinal/microbiologia , alfa-N-Acetilgalactosaminidase/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Bifidobacterium bifidum/metabolismo , Bifidobacterium breve/genética , Bifidobacterium breve/isolamento & purificação , Feminino , Trato Gastrointestinal/metabolismo , Perfilação da Expressão Gênica , Lactose/metabolismo , Camundongos , Leite/química , Leite/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oligossacarídeos/metabolismo , Simbiose , Regulação para Cima , alfa-N-Acetilgalactosaminidase/genética
12.
Interdiscip Sci ; 10(1): 81-92, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27138754

RESUMO

Schindler disease is a lysosomal storage disorder caused due to deficiency or defective activity of alpha-N-acetylgalactosaminidase (α-NAGA). Mutations in gene encoding α-NAGA cause wide range of diseases, characterized with mild to severe clinical features. Molecular effects of these mutations are yet to be explored in detail. Therefore, this study was focused on four missense mutations of α-NAGA namely, S160C, E325K, R329Q and R329W. Native and mutant structures of α-NAGA were analysed to determine geometrical deviations such as the contours of root mean square deviation, root mean square fluctuation, percentage of residues in allowed regions of Ramachandran plot and solvent accessible surface area, using conformational sampling technique. Additionally, global energy-minimized structures of native and mutants were further analysed to compute their intra-molecular interactions, hydrogen bond dilution and distribution of secondary structure. In addition, docking studies were also performed to determine variations in binding energies between native and mutants. The deleterious effects of mutants were evident due to variations in their active site residues pertaining to spatial conformation and flexibility, comparatively. Hence, variations exhibited by mutants, namely S160C, E325K, R329Q and R329W to that of native, consequently, lead to the detrimental effects causing Schindler disease. This study computationally explains the underlying reasons for the pathogenesis of the disease, thereby aiding future researchers in drug development and disease management.


Assuntos
Mutação Puntual/genética , alfa-N-Acetilgalactosaminidase/genética , Sequência de Aminoácidos , Biocatálise , Humanos , Ligação de Hidrogênio , Proteínas Mutantes/química , Desnaturação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato , Temperatura , alfa-N-Acetilgalactosaminidase/química
13.
J Biol Chem ; 292(29): 12126-12138, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28546425

RESUMO

The α-N-acetylgalactosaminidase from the probiotic bacterium Bifidobacterium bifidum (NagBb) belongs to the glycoside hydrolase family 129 and hydrolyzes the glycosidic bond of Tn-antigen (GalNAcα1-Ser/Thr). NagBb is involved in assimilation of O-glycans on mucin glycoproteins by B. bifidum in the human gastrointestinal tract, but its catalytic mechanism has remained elusive because of a lack of sequence homology around putative catalytic residues and of other structural information. Here we report the X-ray crystal structure of NagBb, representing the first GH129 family structure, solved by the single-wavelength anomalous dispersion method based on sulfur atoms of the native protein. We determined ligand-free, GalNAc, and inhibitor complex forms of NagBb and found that Asp-435 and Glu-478 are located in the catalytic domain at appropriate positions for direct nucleophilic attack at the anomeric carbon and proton donation for the glycosidic bond oxygen, respectively. A highly conserved Asp-330 forms a hydrogen bond with the O4 hydroxyl of GalNAc in the -1 subsite, and Trp-398 provides a stacking platform for the GalNAc pyranose ring. Interestingly, a metal ion, presumably Ca2+, is involved in the recognition of the GalNAc N-acetyl group. Mutations at Asp-435, Glu-478, Asp-330, and Trp-398 and residues involved in metal coordination (including an all-Ala quadruple mutant) significantly reduced the activity, indicating that these residues and the metal ion play important roles in substrate recognition and catalysis. Interestingly, NagBb exhibited some structural similarities to the GH101 endo-α-N-acetylgalactosaminidases, but several critical differences in substrate recognition and reaction mechanism account for the different activities of these two enzymes.


Assuntos
Acetilgalactosamina/metabolismo , Proteínas de Bactérias/metabolismo , Bifidobacterium bifidum/enzimologia , Coenzimas/metabolismo , Glicosídeo Hidrolases/metabolismo , Metais/metabolismo , alfa-N-Acetilgalactosaminidase/metabolismo , Acetilgalactosamina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Coenzimas/química , Sequência Conservada , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Ligantes , Metais/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Probióticos , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , alfa-N-Acetilgalactosaminidase/antagonistas & inibidores , alfa-N-Acetilgalactosaminidase/química , alfa-N-Acetilgalactosaminidase/genética
14.
Hum Mutat ; 38(9): 1064-1071, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28102005

RESUMO

SNPs&GO is a machine learning method for predicting the association of single amino acid variations (SAVs) to disease, considering protein functional annotation. The method is a binary classifier that implements a support vector machine algorithm to discriminate between disease-related and neutral SAVs. SNPs&GO combines information from protein sequence with functional annotation encoded by gene ontology (GO) terms. Tested in sequence mode on more than 38,000 SAVs from the SwissVar dataset, our method reached 81% overall accuracy and an area under the receiving operating characteristic curve of 0.88 with low false-positive rate. In almost all the editions of the Critical Assessment of Genome Interpretation (CAGI) experiments, SNPs&GO ranked among the most accurate algorithms for predicting the effect of SAVs. In this paper, we summarize the best results obtained by SNPs&GO on disease-related variations of four CAGI challenges relative to the following genes: CHEK2 (CAGI 2010), RAD50 (CAGI 2011), p16-INK (CAGI 2013), and NAGLU (CAGI 2016). Result evaluation provides insights about the accuracy of our algorithm and the relevance of GO terms in annotating the effect of the variants. It also helps to define good practices for the detection of deleterious SAVs.


Assuntos
Substituição de Aminoácidos , Quinase do Ponto de Checagem 2/genética , Biologia Computacional/métodos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , alfa-N-Acetilgalactosaminidase/genética , Hidrolases Anidrido Ácido , Algoritmos , Ontologia Genética , Predisposição Genética para Doença , Humanos , Anotação de Sequência Molecular , Curva ROC , Máquina de Vetores de Suporte
15.
Glycobiology ; 25(8): 806-11, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25964111

RESUMO

A facile enzymatic synthesis of the methylumbelliferyl ß-glycoside of the type 2 A blood group tetrasaccharide in good yields is reported. Using this compound, we developed highly sensitive fluorescence-based high-throughput assays for both endo-ß-galactosidase and α-N-acetylgalactosaminidase activity specific for the oligosaccharide structure of the blood group A antigen. We further demonstrate the potential to use this assay to screen the expressed gene products of metagenomic libraries in the search for efficient blood group antigen-cleaving enzymes.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Glicosídeos/síntese química , Himecromona/síntese química , Oligossacarídeos/síntese química , alfa-N-Acetilgalactosaminidase/química , beta-Galactosidase/química , Sistema ABO de Grupos Sanguíneos/metabolismo , Bioensaio , Escherichia coli/enzimologia , Escherichia coli/genética , Fluorescência , Expressão Gênica , Biblioteca Gênica , Glicosídeos/biossíntese , Ensaios de Triagem em Larga Escala , Humanos , Himecromona/metabolismo , Metagenoma , Oligossacarídeos/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-N-Acetilgalactosaminidase/genética , alfa-N-Acetilgalactosaminidase/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
16.
J Allergy Clin Immunol ; 134(5): 1153-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24934276

RESUMO

BACKGROUND: Genome-wide association studies have yet to identify the majority of genetic variants involved in asthma. We hypothesized that expression quantitative trait locus (eQTL) mapping can identify novel asthma genes by enabling prioritization of putative functional variants for association testing. OBJECTIVE: We evaluated 6706 cis-acting expression-associated variants (eSNPs) identified through a genome-wide eQTL survey of CD4(+) lymphocytes for association with asthma. METHODS: eSNPs were tested for association with asthma in 359 asthmatic patients and 846 control subjects from the Childhood Asthma Management Program, with verification by using family-based testing. Significant associations were tested for replication in 579 parent-child trios with asthma from Costa Rica. Further functional validation was performed by using formaldehyde-assisted isolation of regulatory elements (FAIRE) quantitative PCR and chromatin immunoprecipitation PCR in lung-derived epithelial cell lines (Beas-2B and A549) and Jurkat cells, a leukemia cell line derived from T lymphocytes. RESULTS: Cis-acting eSNPs demonstrated associations with asthma in both cohorts. We confirmed the previously reported association of ORMDL3/GSDMB variants with asthma (combined P = 2.9 × 10(-8)). Reproducible associations were also observed for eSNPs in 3 additional genes: fatty acid desaturase 2 (FADS2; P = .002), N-acetyl-α-D-galactosaminidase (NAGA; P = .0002), and Factor XIII, A1 (F13A1; P = .0001). Subsequently, we demonstrated that FADS2 mRNA is increased in CD4(+) lymphocytes in asthmatic patients and that the associated eSNPs reside within DNA segments with histone modifications that denote open chromatin status and confer enhancer activity. CONCLUSIONS: Our results demonstrate the utility of eQTL mapping in the identification of novel asthma genes and provide evidence for the importance of FADS2, NAGA, and F13A1 in the pathogenesis of asthma.


Assuntos
Asma , Linfócitos T CD4-Positivos/imunologia , Ácidos Graxos Dessaturases , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , alfa-N-Acetilgalactosaminidase , Asma/epidemiologia , Asma/genética , Asma/imunologia , Asma/patologia , Linfócitos T CD4-Positivos/patologia , Criança , Pré-Escolar , Costa Rica , Método Duplo-Cego , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/imunologia , Feminino , Humanos , Masculino , alfa-N-Acetilgalactosaminidase/genética , alfa-N-Acetilgalactosaminidase/imunologia
17.
Chem Commun (Camb) ; 49(65): 7237-9, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23842736

RESUMO

An α-N-acetylgalactosamine-containing quenched activity-based probe (qABP) was designed and successfully synthesized, and it was subsequently used in directed enzyme evolution experiments aided by fluorescence-activated cell sorting (FACS) for the discovery of an α-N-acetylgalactosaminidase variant with improved catalytic activity.


Assuntos
Evolução Molecular Direcionada , Corantes Fluorescentes/química , alfa-N-Acetilgalactosaminidase/metabolismo , Flavobacteriaceae/enzimologia , Citometria de Fluxo , Cinética , Mutação , alfa-N-Acetilgalactosaminidase/genética
18.
Parasitol Res ; 111(5): 2149-56, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22926676

RESUMO

The α-N-acetylgalactosaminidase (α-NAGAL) is an exoglycosidase that selectively cleaves terminal α-linked N-acetylgalactosamines from a variety of sugar chains. A complementary DNA (cDNA) clone encoding a novel Clonorchis sinensis α-NAGAL (Cs-α-NAGAL) was identified in the expressed sequence tags database of the adult C. sinensis liver fluke. The complete coding sequence was 1,308 bp long and encoded a 436-residue protein. The selected glycosidase was manually curated as α-NAGAL (EC 3.2.1.49) based on a composite bioinformatics analysis including a search for orthologues, comparative structure modeling, and the generation of a phylogenetic tree. One orthologue of Cs-α-NAGAL was the Rattus norvegicus α-NAGAL (accession number: NP_001012120) that does not exist in C. sinensis. Cs-α-NAGAL belongs to the GH27 family and the GH-D clan. A phylogenetic analysis revealed that the GH27 family of Cs-α-NAGAL was distinct from GH31 and GH36 within the GH-D clan. The putative 3D structure of Cs-α-NAGAL was built using SWISS-MODEL with a Gallus gallus α-NAGAL template (PDB code 1ktb chain A); this model demonstrated the superimposition of a TIM barrel fold (α/ß) structure and substrate binding pocket. Cs-α-NAGAL transcripts were detected in the adult worm and egg cDNA libraries of C. sinensis but not in the metacercaria. Recombinant Cs-α-NAGAL (rCs-α-NAGAL) was expressed in Escherichia coli, and the purified rCs-α-NAGAL was recognized specifically by the C. sinensis-infected human sera. This is the first report of an α-NAGAL protein in the Trematode class, suggesting that it is a potential diagnostic or vaccine candidate with strong antigenicity.


Assuntos
Clonorchis sinensis/enzimologia , alfa-N-Acetilgalactosaminidase/genética , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/química , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Clonagem Molecular , Clonorquíase/imunologia , Clonorchis sinensis/química , Clonorchis sinensis/genética , Clonorchis sinensis/imunologia , Análise por Conglomerados , Escherichia coli/genética , Perfilação da Expressão Gênica , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Análise de Sequência de DNA , alfa-N-Acetilgalactosaminidase/química , alfa-N-Acetilgalactosaminidase/imunologia
19.
Protein Expr Purif ; 81(1): 106-114, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21982820

RESUMO

α-N-Acetylgalactosaminidase (α-GalNAc-ase; EC.3.2.1.49) is an exoglycosidase specific for the hydrolysis of terminal α-linked N-acetylgalactosamine in various sugar chains. The cDNA corresponding to the α-GalNAc-ase gene was cloned from Aspergillus niger, sequenced, and expressed in the yeast Saccharomyces cerevisiae. The α-GalNAc-ase gene contains an open reading frame which encodes a protein of 487 amino acid residues. The molecular mass of the mature protein deduced from the amino acid sequence of this reading frame is 54 kDa. The recombinant protein was purified to apparent homogeneity and biochemically characterized (pI4.4, K(M) 0.56 mmol/l for 2-nitrophenyl 2-acetamido-2-deoxy-α-d-galactopyranoside, and optimum enzyme activity was achieved at pH2.0-2.4 and 50-55°C). Its molecular weight was determined by analytical ultracentrifuge measurement and dynamic light scattering. Our experiments confirmed that the recombinant α-GalNAc-ase exists as two distinct species (70 and 130 kDa) compared to its native form, which is purely monomeric. N-Glycosylation was confirmed at six of the eight potential N-glycosylation sites in both wild type and recombinant α-GalNAc-ase.


Assuntos
Aspergillus niger/enzimologia , Proteínas Recombinantes/biossíntese , Saccharomyces cerevisiae/genética , alfa-N-Acetilgalactosaminidase/biossíntese , Sequência de Aminoácidos , Aspergillus niger/genética , Técnicas de Cultura de Células , Cromatografia em Gel , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Glicosilação , Concentração de Íons de Hidrogênio , Microscopia Eletrônica , Dados de Sequência Molecular , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimologia , alfa-N-Acetilgalactosaminidase/química , alfa-N-Acetilgalactosaminidase/genética
20.
J Biol Chem ; 287(1): 693-700, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22090027

RESUMO

Bifidobacteria inhabit the lower intestine of mammals including humans where the mucin gel layer forms a space for commensal bacteria. We previously identified that infant-associated bifidobacteria possess an extracellular membrane-bound endo-α-N-acetylgalactosaminidase (EngBF) that may be involved in degradation and assimilation of mucin-type oligosaccharides. However, EngBF is highly specific for core-1-type O-glycan (Galß1-3GalNAcα1-Ser/Thr), also called T antigen, which is mainly attached onto gastroduodenal mucins. By contrast, core-3-type O-glycans (GlcNAcß1-3GalNAcα1-Ser/Thr) are predominantly found on the mucins in the intestines. Here, we identified a novel α-N-acetylgalactosaminidase (NagBb) from Bifidobacterium bifidum JCM 1254 that hydrolyzes the Tn antigen (GalNAcα1-Ser/Thr). Sialyl and galactosyl core-3 (Galß1-3/4GlcNAcß1-3(Neu5Acα2-6)GalNAcα1-Ser/Thr), a major tetrasaccharide structure on MUC2 mucin primarily secreted from goblet cells in human sigmoid colon, can be serially hydrolyzed into Tn antigen by previously identified bifidobacterial extracellular glycosidases such as α-sialidase (SiaBb2), lacto-N-biosidase (LnbB), ß-galactosidase (BbgIII), and ß-N-acetylhexosaminidases (BbhI and BbhII). Because NagBb is an intracellular enzyme without an N-terminal secretion signal sequence, it is likely involved in intracellular degradation and assimilation of Tn antigen-containing polypeptides, which might be incorporated through unknown transporters. Thus, bifidobacteria possess two distinct pathways for assimilation of O-glycans on gastroduodenal and intestinal mucins. NagBb homologs are conserved in infant-associated bifidobacteria, suggesting a significant role for their adaptation within the infant gut, and they were found to form a new glycoside hydrolase family 129.


Assuntos
Bifidobacterium/enzimologia , Mucinas/metabolismo , Proteólise , alfa-N-Acetilgalactosaminidase/metabolismo , Bifidobacterium/citologia , Bifidobacterium/genética , Biocatálise , Sequência de Carboidratos , Clonagem Molecular , Humanos , Lactente , Espaço Intracelular/enzimologia , Dados de Sequência Molecular , Filogenia , alfa-N-Acetilgalactosaminidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...