Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.247
Filtrar
1.
Sci Rep ; 14(1): 11442, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769440

RESUMO

The global supply of fluoropolymers and fluorinated solvents is decreasing due to environmental concerns regarding polyfluoroalkyl substances. CYTOP has been used for decades primarily as a component of a femtoliter chamber array for digital bioanalysis; however, its supply has recently become scarce, increasing the urgency of fabricating a femtoliter chamber array using alternative materials. In this study, we investigated the feasibility of fabricating a femtoliter chamber array using four types of fluoropolymers in stable supply as candidate substitutes and verified their applicability for digital bioanalysis. Among these candidates, Fluorine Sealant emerged as a viable option for fabricating femtoliter chamber arrays using a conventional photolithography process. To validate its efficacy, we performed various digital bioanalysis using FP-A-based chamber arrays with model enzymes such as CRISPR-Cas, horseradish peroxidase, and ß-galactosidase. The results demonstrated the similar performance to that of CYTOP, highlighting the broader utility of FP-A in digital bioanalysis. Our findings underscore the potential of FP-A to enhance the versatility of digital bioanalysis and foster the ongoing advancement of innovative diagnostic technologies.


Assuntos
Polímeros , Polímeros/química , Peroxidase do Rábano Silvestre/metabolismo , Peroxidase do Rábano Silvestre/química , beta-Galactosidase/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 354, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819482

RESUMO

Whey is a byproduct of dairy industries, the aqueous portion which separates from cheese during the coagulation of milk. It represents approximately 85-95% of milk's volume and retains much of its nutrients, including functional proteins and peptides, lipids, lactose, minerals, and vitamins. Due to its composition, mainly proteins and lactose, it can be considered a raw material for value-added products. Whey-derived products are often used to supplement food, as they have shown several physiological effects on the body. Whey protein hydrolysates are reported to have different activities, including antihypertensive, antioxidant, antithrombotic, opioid, antimicrobial, cytomodulatory, and immuno-modulatory. On the other hand, galactooligosaccharides obtained from lactose can be used as prebiotic for beneficial microorganisms for the human gastrointestinal tract. All these compounds can be obtained through physicochemical, microbial, or enzymatic treatments. Particularly, enzymatic processes have the advantage of being highly selective, more stable than chemical transformations, and less polluting, making that the global enzyme market grow at accelerated rates. The sources and different products associated with the most used enzymes are particularly highlighted in this review. Moreover, we discuss metagenomics as a tool to identify novel proteolytic enzymes, from both cultivable and uncultivable microorganisms, which are expected to have new interesting activities. Finally enzymes for the transformation of whey sugar are reviewed. In this sense, carbozymes with ß-galactosidase activity are capable of lactose hydrolysis, to obtain free monomers, and transgalactosylation for prebiotics production. KEY POINTS: • Whey can be used to obtain value-added products efficiently through enzymatic treatments • Proteases transform whey proteins into biopeptides with physiological activities • Lactose can be transformed into prebiotic compounds using ß-galactosidases.


Assuntos
Hidrolisados de Proteína , Proteínas do Soro do Leite , Proteínas do Soro do Leite/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/química , Prebióticos , Humanos , Soro do Leite/química , Soro do Leite/metabolismo , Lactose/metabolismo , beta-Galactosidase/metabolismo , beta-Galactosidase/genética
3.
Food Chem ; 452: 139557, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728895

RESUMO

ß-Galactosidase (ß-gal), an enzyme related to cell wall degradation, plays an important role in regulating cell wall metabolism and reconstruction. However, activatable fluorescence probes for the detection and imaging of ß-gal fluctuations in plants have been less exploited. Herein, we report an activatable fluorescent probe based on intramolecular charge transfer (ICT), benzothiazole coumarin-bearing ß-galactoside (BC-ßgal), to achieve distinct in situ imaging of ß-gal in plant cells. It exhibits high sensitivity and selectivity to ß-gal with a fast response (8 min). BC-ßgal can be used to efficiently detect the alternations of intracellular ß-gal levels in cabbage root cells with considerable imaging integrity and imaging contrast. Significantly, BC-ßgal can assess ß-gal activity in cabbage roots under heavy metal stress (Cd2+, Cu2+, and Pb2+), revealing that ß-gal activity is negatively correlated with the severity of heavy metal stress. Our work thus facilitates the study of ß-gal biological mechanisms.


Assuntos
Brassica , Corantes Fluorescentes , Metais Pesados , Raízes de Plantas , beta-Galactosidase , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Brassica/química , Brassica/metabolismo , Brassica/enzimologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Corantes Fluorescentes/química , Metais Pesados/metabolismo , Metais Pesados/análise , Imagem Óptica , Proteínas de Plantas/metabolismo
4.
Food Res Int ; 183: 114175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760120

RESUMO

Lactose hydrolysed concentrated milk was prepared using ß-galactosidase enzyme (4.76U/mL) with a reaction period of 12 h at 4 °C. Addition of polysaccharides (5 % maltodextrin/ß-cyclodextrin) to concentrated milk either before or after lactose hydrolysis did not result in significant differences (p > 0.05) in degree of hydrolysis (% DH) of lactose and residual lactose content (%). Three different inlet temperatures (165 °C, 175 °C and 185 °C) were used for the preparation of powders which were later characterised based on physico-chemical and maillard browning characteristics. Moisture content, solubility and available lysine content of the powders decreased significantly, whereas, browning parameters i.e., browning index, 5-hydroxymethylfurfural, furosine content increased significantly (p < 0.05) with an increase in inlet air temperature. The powder was finally prepared with 5 % polysaccharide and an inlet air temperature of 185 °C which reduced maillard browning. Protein-polysaccharide interactions were identified using Fourier Transform infrared spectroscopy, fluorescence spectroscopy and determination of free amino groups in the powder samples. Maltodextrin and ß-cyclodextrin containing powder samples exhibited lower free amino groups and higher degree of graft value as compared to control sample which indicated protein-polysaccharide interactions. Results obtained from Fourier Transform infrared spectroscopy also confirmed strong protein-polysaccharide interactions, moreover a significant decrease in fluorescence intensity was also observed in the powder samples. These interactions between the proteins and polysaccharides reduced the maillard browning in powders.


Assuntos
Furaldeído , Lactose , Reação de Maillard , Leite , Polissacarídeos , Pós , Lactose/química , Polissacarídeos/química , Leite/química , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Furaldeído/análogos & derivados , Furaldeído/química , beta-Galactosidase/metabolismo , beta-Ciclodextrinas/química , Hidrólise , Secagem por Atomização , Temperatura , Lisina/química , Lisina/análogos & derivados , Solubilidade , Espectrometria de Fluorescência , Proteínas do Leite/química , Manipulação de Alimentos/métodos
5.
Biomacromolecules ; 25(5): 3055-3062, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38693874

RESUMO

Polymersomes, nanosized polymeric vesicles, have attracted significant interest in the areas of artificial cells and nanomedicine. Given their size, their visualization via confocal microscopy techniques is often achieved through the physical incorporation of fluorescent dyes, which however present challenges due to potential leaching. A promising alternative is the incorporation of molecules with aggregation-induced emission (AIE) behavior that are capable of fluorescing exclusively in their assembled state. Here, we report on the use of AIE polymersomes as artificial organelles, which are capable of undertaking enzymatic reactions in vitro. The ability of our polymersome-based artificial organelles to provide additional functionality to living cells was evaluated by encapsulating catalytic enzymes such as a combination of glucose oxidase/horseradish peroxidase (GOx/HRP) or ß-galactosidase (ß-gal). Via the additional incorporation of a pyridinium functionality, not only the cellular uptake is improved at low concentrations but also our platform's potential to specifically target mitochondria expands.


Assuntos
Glucose Oxidase , Peroxidase do Rábano Silvestre , beta-Galactosidase , Glucose Oxidase/química , Humanos , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Organelas/metabolismo , Corantes Fluorescentes/química , Polímeros/química , Fluorescência , Células HeLa , Mitocôndrias/metabolismo
6.
ACS Appl Mater Interfaces ; 16(20): 26870-26885, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739846

RESUMO

Pathogen detection has become a major research area all over the world for water quality surveillance and microbial risk assessment. Therefore, designing simple and sensitive detection kits plays a key role in envisaging and evaluating the risk of disease outbreaks and providing quality healthcare settings. Herein, we have designed a facile and low-cost colorimetric sensing strategy for the selective and sensitive determination of ß-galactosidase producing pathogens. The hexagonal boron nitride quantum dots (h-BN QDs) were established as a nanozyme that showed prominent peroxidase-like activity, which catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by H2O2. The h-BN QDs were embedded on a layer-by-layer assembled agarose biopolymer. The ß-galactosidase enzyme partially degrades ß-1,4 glycosidic bonds of agarose polymer, resulting in accessibility of h-BN QDs on the solid surface. This assay can be conveniently conducted and analyzed by monitoring the blue color formation due to TMB oxidation within 30 min. The nanocomposite was stable for more than 90 days and was showing TMB oxidation after incubating it with Escherichia coli (E. coli). The limit of detection was calculated to be 1.8 × 106 and 1.5 × 106 CFU/mL for E. coli and Klebsiella pneumonia (K. pneumonia), respectively. Furthermore, this novel sensing approach is an attractive platform that was successfully applied to detect E. coli in spiked water samples and other food products with good accuracy, indicating its practical applicability for the detection of pathogens in real samples.


Assuntos
Benzidinas , Compostos de Boro , Colorimetria , Escherichia coli , Pontos Quânticos , beta-Galactosidase , Pontos Quânticos/química , Colorimetria/métodos , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , Compostos de Boro/química , Benzidinas/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Peroxidase/química , Peroxidase/metabolismo , Limite de Detecção , Oxirredução , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação
7.
ACS Appl Bio Mater ; 7(5): 3154-3163, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38695332

RESUMO

ß-Galactosidase (ß-Gala) is an essential biomarker enzyme for early detection of breast tumors and cellular senescence. Creating an accurate way to monitor ß-Gala activity is critical for biological research and early cancer detection. This work used fluorometric, colorimetric, and paper-based color sensing approaches to determine ß-Gala activity effectively. Via the sensing performance, the catalytic activity of ß-Gala resulted in silicon nanoparticles (SiNPs), fluorescent indicators obtained via a one-pot hydrothermal process. As a standard enzymatic hydrolysis product of the substrate, kaempferol 3-O-ß-d-galactopyranoside (KOßDG) caused the fluorometric signal to be attenuated on kaempferol-silicon nanoparticles (K-SiNPs). The sensing methods demonstrated a satisfactory linear response in sensing ß-Gala and a low detection limit. The findings showed the low limit of detection (LOD) as 0.00057 and 0.098 U/mL for fluorometric and colorimetric, respectively. The designed probe was then used to evaluate the catalytic activity of ß-Gala in yogurt and human serum, with recoveries ranging from 98.33 to 107.9%. The designed sensing approach was also applied to biological sample analysis. In contrast, breast cancer cells (MCF-7) were used as a model to test the in vitro toxicity and molecular fluorescence imaging potential of K-SiNPs. Hence, our fluorescent K-SiNPs can be used in the clinic to diagnose breast cellular carcinoma, since they can accurately measure the presence of invasive ductal carcinoma in serologic tests.


Assuntos
Neoplasias da Mama , Quempferóis , Teste de Materiais , Nanopartículas , Silício , beta-Galactosidase , Humanos , beta-Galactosidase/metabolismo , Silício/química , Células MCF-7 , Nanopartículas/química , Quempferóis/química , Quempferóis/farmacologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Tamanho da Partícula , Colorimetria , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Feminino , Estrutura Molecular
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124411, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38728851

RESUMO

The advancement of biological imaging techniques critically depends on the development of novel near-infrared (NIR) fluorescent probes. In this study, we introduce a designed NIR fluorescent probe, NRO-ßgal, which exhibits a unique off-on response mechanism to ß-galactosidase (ß-gal). Emitting a fluorescence peak at a wavelength of 670 nm, NRO-ßgal showcases a significant Stokes shift of 85 nm, which is indicative of its efficient energy transfer and minimized background interference. The probe achieves a remarkably low in vitro detection limit of 0.2 U/L and demonstrates a rapid response within 10 min, thereby underscoring its exceptional sensitivity, selectivity, and operational swiftness. Such superior analytical performance broadens the horizon for its application in intricate biological imaging studies. To validate the practical utility of NRO-ßgal in bio-imaging, we employed ovarian cancer cell and mouse models, where the probe's efficacy in accurately delineating tumor cells was examined. The results affirm NRO-ßgal's capability to provide sharp, high-contrast images of tumor regions, thereby significantly enhancing the precision of surgical tumor resection. Furthermore, the probe's potential for real-time monitoring of enzymatic activity in living tissues underscores its utility as a powerful tool for diagnostics in oncology and beyond.


Assuntos
Corantes Fluorescentes , Neoplasias Ovarianas , beta-Galactosidase , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Feminino , beta-Galactosidase/metabolismo , Animais , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Humanos , Linhagem Celular Tumoral , Camundongos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Imagem Óptica/métodos , Camundongos Nus , Limite de Detecção , Espectrometria de Fluorescência
9.
Crit Rev Immunol ; 44(5): 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618724

RESUMO

Gastric cancer (GC) is highly heterogeneous and influenced by aging-related factors. This study aimed to improve individualized prognostic assessment of GC by identifying aging-related genes and subtypes. Immune scores of GC samples from GEO and TCGA databases were calculated using ESTIMATE and scored as high immune (IS_high) and low immune (IS_low). ssGSEA was used to analyze immune cell infiltration. Univariate Cox regression was employed to identify prognosis-related genes. LASSO regression analysis was used to construct a prognostic model. GSVA enrichment analysis was applied to determine pathways. CCK-8, wound healing, and Transwell assays tested the proliferation, migration, and invasion of the GC cell line (AGS). Cell cycle and aging were examined using flow cytometry, ß-galactosidase staining, and Western blotting. Two aging-related GC subtypes were identified. Subtype 2 was characterized as lower survival probability and higher risk, along with a more immune-responsive tumor microenvironment. Three genes (IGFBP5, BCL11B, and AKR1B1) screened from aging-related genes were used to establish a prognosis model. The AUC values of the model were greater than 0.669, exhibiting strong prognostic value. In vitro, IGFBP5 overexpression in AGS cells was found to decrease viability, migration, and invasion, alter the cell cycle, and increase aging biomarkers (SA-ß-galactosidase, p53, and p21). This analysis uncovered the immune characteristics of two subtypes and aging-related prognosis genes in GC. The prognostic model established for three aging-related genes (IGFBP5, BCL11B, and AKR1B1) demonstrated good prognosis performance, providing a foundation for personalized treatment strategies aimed at GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Prognóstico , Envelhecimento , beta-Galactosidase , Proteínas Supressoras de Tumor , Microambiente Tumoral/genética , Proteínas Repressoras , Aldeído Redutase
10.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 444-452, 2024 May 09.
Artigo em Chinês | MEDLINE | ID: mdl-38636998

RESUMO

Objective: To investigate the impact of intermittent senescent cell clearance on the proliferation and differentiation of dental pulp stem cells (DPSC) in long-term, large-scale expansion, and to explore strategies for maintaining the youthful state of DPSC in vitro. Methods: Human-derived dental pulp stem cells were isolated from healthy permanent teeth extracted for orthodontic or impeding eruption reasons, provided by the Department of Oral and Maxillofacial Surgery at West China Hospital of Stomatology, Sichuan University. Long-term, large-scale in vitro expansion of DPSC was conducted. The study compared young DPSC (passage 5) with aged DPSC (passage 25) using cellular senescence-associated ß-galactosidase staining, colony formation assay, and Alizarin Red S staining for osteogenic differentiation induction. To assess the differences between the two cell populations in terms of senescence and amplification and differentiation ability. Medicine screening for the most effective senolytic was compared among 5 common senolytics [Navitoclax (ABT-263), curcumin, dasatinib, fisetin, and quercetin]. The clearance efficacy was compared using cellular senescence-associated ß-galactosidase staining to reflect the changes in senescent cell ratio. The senolytic with the highest efficacy was chosen for further experiments. The passage at which the proportion of senescent cells significantly increased was identified, and the selected senolytic was administered three times at three-generation intervals from that passage to remove senescent cells. Both the control and senolytic-treated groups were estimated by fluorescence cellular senescence-associated ß-galactosidase staining, real-time fluorescence quantitative PCR (RT-qPCR), colony formation assay, wound healing assay, and Alizarin Red S staining for osteogenic differentiation induction. Subcutaneous heterotopic osteogenesis was performed in nude mice and the grafts were analyzed by HE staining and alkaline phosphatase (ALP) immunohistochemical staining. Results: The proportion of senescent cells increased as the expansion extended, leading to decreased proliferation and osteogenic differentiation ability of senescent DPSC compared to young DPSC (P<0.05). Senescent DPSC exhibited altered mRNA expression levels of senescence-related genes, including p21, p16INK4a, IL-6, and Ki67 (P<0.001). Among the five senolytics, ABT-263 had the biggest decreases in the proportion of senescent cells. After intermittent ABT-263 treatment during expansion, the proportion of senescent cells in the senolytic-treated group [(6.72±2.34)%] was significantly lower than that in the control group [(31.82±0.57)%] (P<0.001). RT-qPCR confirmed that compared with the control group, mRNA expressions of p21, p16INK4a, and IL-6 in the senolytic-treated group were significantly decreased (P<0.05), while mRNA expressions of Ki67 were significantly increased (P<0.01). Furthermore, the cell healing ability and osteogenic differentiation ability of the senolytic-treated group were higher than those of the control group (P<0.05). In vivo experimental results indicated that the relative new bone area [(2.36±0.48)%] after DPSC transplantation in the senolytic-treated group was greater than that in the control group [(1.00±0.46)%] (P<0.05), and the expression of ALP was higher than that in the control group (P<0.01). Conclusions: ABT-263 can effectively eliminate senescent cells in long-term large-scale DPSC expansion. Continuous treatment with ABT-263 during cultivation can maintain the proliferation and differentiation ability of DPSC both in vivo and in vitro.


Assuntos
Diferenciação Celular , Proliferação de Células , Senescência Celular , Polpa Dentária , Osteogênese , Células-Tronco , Polpa Dentária/citologia , Humanos , Células-Tronco/citologia , Osteogênese/efeitos dos fármacos , Animais , Camundongos , Dasatinibe/farmacologia , Camundongos Nus , Quercetina/farmacologia , beta-Galactosidase/metabolismo
11.
J Dent Res ; 103(5): 461-466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38584298

RESUMO

A subset of bacterial species that holds genes encoding for ß-glucuronidase and ß-galactosidase, enzymes involved in the metabolism of conjugated estrogens, is called the "estrobolome." There is an emerging interest embracing this concept, as it may exert a selective impact on a number of pathologies, including oral cancer. Although the estrobolome bacteria are typically part of the gut microbiota, recent experimental pieces of evidence have suggested a crosstalk among oral and gut microbiota. In fact, several oral bacterial species are well represented also in the gut microbiota, and these microbes can effectively induce the estrobolome activation. The main pathways used for activating the estrobolome are based on the induction of the expression patterns for 2 bacterial enzymes: ß-glucuronidase and aromatase, both involved in the increase of estrogen released in the bloodstream and consequently in the salivary compartment. Mechanistically, high estrogen availability in saliva is responsible for an increase in oral cancer risk for different reasons: briefly, 1) estrogens directly exert biological and metabolic effects on oral mucosa cells; 2) they can modulate the pathological profile of some bacteria, somewhere associated with neoplastic processes (i.e., Fusobacterium spp., Parvimonas ssp.); and 3) some oral bacteria are able to convert estrogens into carcinogenic metabolites, such as 4-hydroxyestrone and 16α-hydroxyestrone (16α-OHE), and can also promote local and systemic inflammation. Nowadays, only a small number of scientific studies have taken into consideration the potential correlations among oral dysbiosis, alterations of the gut estrobolome, and some hormone-dependent cancers: this lack of attention on such a promising topic could be a bias affecting the full understanding of the pathogenesis of several estrogen-related oral pathologies. In our article, we have speculated on the activity of an oral-gut-estrobolome axis, capable of synergizing these 2 important microbiotas, shedding light on a pilot hypothesis requiring further research.


Assuntos
Estrogênios , Microbioma Gastrointestinal , Neoplasias Bucais , Humanos , Estrogênios/metabolismo , Boca/microbiologia , Glucuronidase/metabolismo , Saliva/microbiologia , Saliva/metabolismo , beta-Galactosidase/metabolismo
12.
Physiol Rep ; 12(8): e16014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644513

RESUMO

HMG (high mobility group) proteins are a diverse family of nonhistone chromosomal proteins that interact with DNA and a wide range of transcriptional regulators to regulate the structural architecture of DNA. HMGXB4 (also known as HMG2L1) is an HMG protein family member that contains a single HMG box domain. Our previous studies have demonstrated that HMGXB4 suppresses smooth muscle differentiation and exacerbates endotoxemia by promoting a systemic inflammatory response in mice. However, the expression of Hmgxb4 in vivo has not fully examined. Herein, we generated a mouse model that harbors a gene trap in the form of a lacZ gene insertion into the Hmgxb4 gene. This mouse enables the visualization of endogenous HMGXB4 expression in different tissues via staining for the ß-galactosidase activity of LacZ which is under the control of the endogenous Hmgxb4 gene promoter. We found that HMGXB4 is widely expressed in mouse tissues and is a nuclear protein. Furthermore, the Hmgxb4 gene trap mice exhibit normal cardiac function and blood pressure. Measurement of ß-galactosidase activity in the Hmgxb4 gene trap mice demonstrated that the arterial injury significantly induces Hmgxb4 expression. In summary, the Hmgxb4 gene trap reporter mouse described here provides a valuable tool to examine the expression level of endogenous Hmgxb4 in both physiological and pathological settings in vivo.


Assuntos
Proteínas de Grupo de Alta Mobilidade , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , beta-Galactosidase/metabolismo , beta-Galactosidase/genética , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Óperon Lac/genética , Camundongos Transgênicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Aging (Albany NY) ; 16(8): 6673-6693, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38683123

RESUMO

PURPOSE: The objective of this study was to investigate the senescent phenotypes of human corneal endothelial cells (hCEnCs) upon treatment with ultraviolet (UV)-A. METHODS: We assessed cell morphology, senescence-associated ß-galactosidase (SA-ß-gal) activity, cell proliferation and expression of senescence markers (p16 and p21) in hCEnCs exposed to UV-A radiation, and senescent hCEnCs induced by ionizing radiation (IR) were used as positive controls. We performed RNA sequencing and proteomics analyses to compare gene and protein expression profiles between UV-A- and IR-induced senescent hCEnCs, and we also compared the results to non-senescent hCEnCs. RESULTS: Cells exposed to 5 J/cm2 of UV-A or to IR exhibited typical senescent phenotypes, including enlargement, increased SA-ß-gal activity, decreased cell proliferation and elevated expression of p16 and p21. RNA-Seq analysis revealed that 83.9% of the genes significantly upregulated and 82.6% of the genes significantly downregulated in UV-A-induced senescent hCEnCs overlapped with the genes regulated in IR-induced senescent hCEnCs. Proteomics also revealed that 93.8% of the proteins significantly upregulated in UV-A-induced senescent hCEnCs overlapped with those induced by IR. In proteomics analyses, senescent hCEnCs induced by UV-A exhibited elevated expression levels of several factors part of the senescence-associated secretory phenotype. CONCLUSIONS: In this study, where senescence was induced by UV-A, a more physiological stress for hCEnCs compared to IR, we determined that UV-A modulated the expression of many genes and proteins typically altered upon IR treatment, a more conventional method of senescence induction, even though UV-A also modulated specific pathways unrelated to IR.


Assuntos
Proliferação de Células , Senescência Celular , Células Endoteliais , Raios Ultravioleta , Humanos , Senescência Celular/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Proliferação de Células/efeitos da radiação , Células Endoteliais/efeitos da radiação , Células Endoteliais/metabolismo , Endotélio Corneano/efeitos da radiação , Endotélio Corneano/metabolismo , Células Cultivadas , Proteômica , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , beta-Galactosidase/metabolismo , beta-Galactosidase/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética
14.
Acc Chem Res ; 57(9): 1238-1253, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38604701

RESUMO

ConspectusCellular senescence can be defined as an irreversible stopping of cell proliferation that arises in response to various stress signals. Cellular senescence is involved in diverse physiological and pathological processes in different tissues, exerting effects on processes as differentiated as embryogenesis, tissue repair and remodeling, cancer, aging, and tissue fibrosis. In addition, the development of some pathologies, aging, cancer, and other age-related diseases has been related to senescent cell accumulation. Due to the complexity of the senescence phenotype, targeting senescent cells is not trivial, is challenging, and is especially relevant for in vivo detection in age-related diseases and tissue samples. Despite the elimination of senescent cells (senolysis) using specific drugs (senolytics) that have been shown to be effective in numerous preclinical disease models, the clinical translation is still limited due to the off-target effects of current senolytics and associated toxicities. Therefore, the development of new chemical strategies aimed at detecting and eliminating senescent cells for the prevention and selective treatment of senescence-associated diseases is of great interest. Such strategies not only will contribute to a deeper understanding of this rapidly evolving field but also will delineate and inspire new possibilities for future research.In this Account, we report our recent research in the development of new chemical approaches for the detection and elimination of senescent cells based on new probes, nanoparticles, and prodrugs. The designed systems take advantage of the over-representation in senescent cells of certain biomarkers such as ß-galactosidase and lipofuscin. One- and two-photon probes, for higher tissue penetration, have been developed. Moreover, we also present a renal clearable fluorogenic probe for the in vivo detection of the ß-galactosidase activity, allowing for correlation with the senescent burden in living animals. Moreover, as an alternative to molecular-based probes, we also developed nanoparticles for senescence detection. Besides, we describe advances in new therapeutic agents to selectively eradicate senescent cells using ß-galactosidase activity-sensitive gated nanoparticles loaded with cytotoxic or senolytic agents or new prodrugs aiming to increase the selectivity and reduction of off-target toxicities of current drugs. Moreover, new advances therapies have been applied in vitro and in vivo. Studies with the probes, nanoparticles, and prodrugs have been applied in several in vitro and in vivo models of cancer, fibrosis, aging, and drug-induced cardiotoxicity in which senescence plays an important role. We discuss the benefits of these chemical strategies toward the development of more specific and sophisticated probes, nanoparticles, and prodrugs targeting senescent cells.


Assuntos
Senescência Celular , Senescência Celular/efeitos dos fármacos , Humanos , Animais , Senoterapia/farmacologia , Senoterapia/química , beta-Galactosidase/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(19): e2301458121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683989

RESUMO

Proteins that are kinetically stable are thought to be less prone to both aggregation and proteolysis. We demonstrate that the classical lac system of Escherichia coli can be leveraged as a model system to study this relation. ß-galactosidase (LacZ) plays a critical role in lactose metabolism and is an extremely stable protein that can persist in growing cells for multiple generations after expression has stopped. By attaching degradation tags to the LacZ protein, we find that LacZ can be transiently degraded during lac operon expression but once expression has stopped functional LacZ is protected from degradation. We reversibly destabilize its tetrameric assembly using α-complementation, and show that unassembled LacZ monomers and dimers can either be degraded or lead to formation of aggregates within cells, while the tetrameric state protects against proteolysis and aggregation. We show that the presence of aggregates is associated with cell death, and that these proteotoxic stress phenotypes can be alleviated by attaching an ssrA tag to LacZ monomers which leads to their degradation. We unify our findings using a biophysical model that enables the interplay of protein assembly, degradation, and aggregation to be studied quantitatively in vivo. This work may yield approaches to reversing and preventing protein-misfolding disease states, while elucidating the functions of proteolytic stability in constant and fluctuating environments.


Assuntos
Escherichia coli , Óperon Lac , Proteólise , beta-Galactosidase , beta-Galactosidase/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Agregados Proteicos , Estabilidade Enzimática
16.
Anal Chem ; 96(16): 6390-6397, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38608159

RESUMO

Although gastric cancer (GC) is one of the most frequent malignant tumors in the digestive tract with high morbidity and mortality, it remains a diagnostic dilemma due to its reliance on invasive biopsy or insensitive assays. Herein, we report a fluorescent gastric cancer reporter (FGCR) with activatable near-infrared fluorescence (NIRF) signals and high renal-clearance efficiency for the detection of orthotopic GC in a murine model via real-time imaging and remote urinalysis. In the presence of gastric-tumor-associated ß-galactosidase (ß-Gal), FGCR can be fluorescently activated for in vivo NIRF imaging. Relying on its high renal-clearance efficiency (∼95% ID), it can be rapidly excreted through kidneys to urine for the ultrasensitive detection of tumors with a diameter down to ∼2.1 mm and for assessing the prognosis of oxaliplatin-based chemotherapy. This study not only provides a new approach for noninvasive auxiliary diagnosis and prognosis of GC but also provides guidelines for the development of fluorescence probes for cancer diagnosis.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Neoplasias Gástricas , beta-Galactosidase , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/urina , Neoplasias Gástricas/patologia , Animais , beta-Galactosidase/metabolismo , Corantes Fluorescentes/química , Humanos , Camundongos , Linhagem Celular Tumoral , Camundongos Nus
17.
Food Chem ; 450: 139331, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38621310

RESUMO

The sensitive detection of foodborne pathogenic and rapid antibiotic susceptibility testing (AST) is of great significance. This paper reports the enzyme-triggered in situ synthesis of yellow emitting silicon nanoparticles (SiNPs) and the detection of Escherichia coli (E. coli) O157:H7 in food samples and the rapid AST. The rapid counting of E. coli O157:H7 has been achieved through direct visual observation, equipment detection, and smartphone digitalization. A simple detection platform based on smartphone senses and cotton swabs has been established. Meanwhile, rapid AST based on enzyme-catalyzed SiNPs can intuitively obtain colorimetric samples. This paper established a system for bacterial enzyme-triggered in situ synthesis of SiNPs, with high responsiveness, luminescence ratio, and specificity. The detection limit for E. coli O157:H7 can reach 100 CFU/mL during 5 h, and the recovery efficiency ranges from 90.14% to 110.16%, which makes it a promising strategy for the rapid detection of E. coli O157:H7 and AST.


Assuntos
Escherichia coli O157 , Nanopartículas , Silício , beta-Galactosidase , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/isolamento & purificação , Nanopartículas/química , Silício/química , Silício/farmacologia , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Testes de Sensibilidade Microbiana , Contaminação de Alimentos/análise , Colorimetria , Antibacterianos/farmacologia , Antibacterianos/química , Microbiologia de Alimentos
18.
Bioorg Med Chem Lett ; 104: 129727, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582132

RESUMO

ß-galactosidase (ß-gal) has high activity in various malignancies, which is suitable for targeted positron emission tomography (PET) imaging. Meanwhile, ß-gal can successfully guide the formation of nanofibers, which enhances the intensity of imaging and extends the imaging time. Herein, we designed a ß-galactosidase-guided self-assembled PET imaging probe [68Ga]Nap-NOTA-1Gal. We envisage that ß-gal could recognize and cleave the target site, bringing about self-assembling to form nanofibers, thereby enhancing the PET imaging effect. The targeting specificity of [68Ga]Nap-NOTA-1Gal for detecting ß-gal activity was examined using the control probe [68Ga]Nap-NOTA-1. Micro-PET imaging showed that tumor regions of [68Ga]Nap-NOTA-1Gal were visible after injection. And the tumor uptake of [68Ga]Nap-NOTA-1Gal was higher than [68Ga]Nap-NOTA-1 at all-time points. Our results demonstrated that the [68Ga]Nap-NOTA-1Gal can be used for the purpose of a new promising PET probe for helping diagnose cancer with high levels of ß-gal activity.


Assuntos
Sondas Moleculares , Nanofibras , Neoplasias , beta-Galactosidase , Humanos , beta-Galactosidase/análise , Linhagem Celular Tumoral , Radioisótopos de Gálio , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos
19.
Int J Biol Macromol ; 268(Pt 2): 131766, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657932

RESUMO

The biological function of terminal galactose on glycoprotein is an open field of research. Although progress had being made on enzymes that can remove the terminal galactose on glycoproteins, there is a lack of report on galactosidases that can work directly on living cells. In this study, a unique beta 1,4 galactosidase was isolated from Elizabethkingia meningoseptica (Em). It exhibited favorable stability at various temperatures (4-37 °C) and pH (5-8) levels and can remove ß-1, 4 linked galactoses directly from glycoproteins. Using Alanine scanning, we found that two acidic residues (Glu-468, and Glu-531) in the predicted active pocket are critical for galactosidase activity. In addition, we also demonstrated that it could cleave galactose residues present on living cell surface. As this enzyme has a potential application for living cell glycan editing, we named it emGalaseE or glycan-editing galactosidase I (csgeGalaseI). In summary, our findings lay the groundwork for further investigation by presenting a simple and effective approach for the removal of galactose moieties from cell surface.


Assuntos
Flavobacteriaceae , Galactose , Flavobacteriaceae/enzimologia , Galactose/metabolismo , Galactose/química , Concentração de Íons de Hidrogênio , Sequência de Aminoácidos , Estabilidade Enzimática , Membrana Celular/metabolismo , Galactosidases/metabolismo , Galactosidases/química , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Temperatura , Especificidade por Substrato
20.
Bioprocess Biosyst Eng ; 47(6): 919-929, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644439

RESUMO

The growing need in the current market for innovative solutions to obtain lactose-free (L-F) milk is caused by the annual increase in the prevalence of lactose intolerance inside as well as the newborn, children, and adults. Various configurations of enzymes can yield two distinct L-F products: sweet (ß-galactosidase) and unsweet (ß-galactosidase and glucose oxidase) L-F milk. In addition, the reduction of sweetness through glucose decomposition should be performed in a one-pot mode with catalase to eliminate product inhibition caused by H2O2. Both L-F products enjoy popularity among a rapidly expanding group of consumers. Although enzyme immobilization techniques are well known in industrial processes, new carriers and economic strategies are still being searched. Polymeric carriers, due to the variety of functional groups and non-toxicity, are attractive propositions for individual and co-immobilization of food enzymes. In the presented work, two strategies (with free and immobilized enzymes; ß-galactosidase NOLA, glucose oxidase from Aspergillus niger, and catalase from Serratia sp.) for obtaining sweet and unsweet L-F milk under low-temperature conditions were proposed. For free enzymes, achieving the critical assumption, lactose hydrolysis and glucose decomposition occurred after 1 and 4.3 h, respectively. The tested catalytic membranes were created on regenerated cellulose and polyamide. In both cases, the time required for lactose and glucose bioconversion was extended compared to free enzymes. However, these preparations could be reused for up to five (ß-galactosidase) and ten cycles (glucose oxidase with catalase).


Assuntos
Enzimas Imobilizadas , Glucose Oxidase , Lactose , Leite , beta-Galactosidase , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Leite/química , Lactose/metabolismo , Lactose/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Animais , Aspergillus niger/enzimologia , Glucose/metabolismo , Glucose/química , Catalase/metabolismo , Catalase/química , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...