RESUMO
Jellyfish are economically important organisms in diverse countries, carnivorous organisms that consume various prey (crustaceans, mollusks, bivalves, etc.) and dissolved carbohydrates in marine waters. This study was focused on detecting and quantifying the activity of digestive glycosidases from the cannonball jellyfish (Stomolophus sp. 2) to understand carbohydrate digestion and its temporal-spatial variation. Twenty-three jellyfish gastric pouches were collected in 2015 and 2016 in the Gulf of California in three localities (Las Guásimas, Hermosillo, and Caborca). Nine samples were in intra-localities from Las Guásimas. Chitinase (Ch), ß-glucosidase (ß-glu), and ß-N-acetylhexosaminidase (ß-NAHA) were detected in the gastric pouches. However, cellulase, exoglucanase, α-amylase, polygalacturonase, xylanase, and κ-carrageenase were undetected. Detected enzymes showed halotolerant glycolytic activity (i = 0-4 M NaCl), optimal pH, and temperature at 5.0 and 30-50 °C, respectively. At least five ß-glucosidase and two ß-N-acetylhexosaminidase were detected using zymograms; however, the number of proteins with chitinase activity is not precise. The annual variation of cannonball jellyfish digestive glycosidases from Las Guásimas between 2015-2016 does not show significant differences despite the difference in phytoplankton measured as chlorophyll α (1.9 and 3.4 mg/m3, respectively). In the inter-localities, the glycosidase activity was statistically different in all localities, except for ß-N-acetylhexosaminidase activity between Caborca and Hermosillo (3,009.08 ± 87.95 and 3,101.81 ± 281.11 mU/g of the gastric pouch, respectively), with chlorophyll α concentrations of 2.6, 3.4 mg/m3, respectively. For intra-localities, the glycosidase activity did not show significant differences, with a mean chlorophyll α of 1.3 ± 0.1 mg/m3. These results suggest that digestive glycosidases from Stomolophus sp. 2 can hydrolyze several carbohydrates that may belong to their prey or carbohydrates dissolved in marine waters, with salinity over ≥ 0.6 M NaCl and diverse temperature (4-80 °C) conditions. Also, chlorophyll α is related to glycosidase activity in both seasons and inter-localities, except for chitinase activity in an intra-locality (Las Guásimas).
Assuntos
Celulases , Quitinases , Cifozoários , Animais , Glicosídeo Hidrolases , Cloreto de Sódio , Cifozoários/química , beta-N-Acetil-Hexosaminidases , Carboidratos , ClorofilaRESUMO
The gangliosidoses GM2 are a group of pathologies mainly affecting the central nervous system due to the impaired GM2 ganglioside degradation inside the lysosome. Under physiological conditions, GM2 ganglioside is catabolized by the ß-hexosaminidase A in a GM2 activator protein-dependent mechanism. In contrast, uncharged substrates such as globosides and some glycosaminoglycans can be hydrolyzed by the ß-hexosaminidase B. Monogenic mutations on HEXA, HEXB, or GM2A genes arise in the Tay-Sachs (TSD), Sandhoff (SD), and AB variant diseases, respectively. In this work, we validated a CRISPR/Cas9-based gene editing strategy that relies on a Cas9 nickase (nCas9) as a potential approach for treating GM2 gangliosidoses using in vitro models for TSD and SD. The nCas9 contains a mutation in the catalytic RuvC domain but maintains the active HNH domain, which reduces potential off-target effects. Liposomes (LPs)- and novel magnetoliposomes (MLPs)-based vectors were used to deliver the CRISPR/nCas9 system. When LPs were used as a vector, positive outcomes were observed for the ß-hexosaminidase activity, glycosaminoglycans levels, lysosome mass, and oxidative stress. In the case of MLPs, a high cytocompatibility and transfection ratio was observed, with a slight increase in the ß-hexosaminidase activity and significant oxidative stress recovery in both TSD and SD cells. These results show the remarkable potential of CRISPR/nCas9 as a new alternative for treating GM2 gangliosidoses, as well as the superior performance of non-viral vectors in enhancing the potency of this therapeutic approach.
Assuntos
Gangliosidoses GM2 , Doença de Tay-Sachs , Desoxirribonuclease I/metabolismo , Fibroblastos/metabolismo , Proteína Ativadora de G(M2) , Gangliosídeo G(M2)/genética , Gangliosídeo G(M2)/metabolismo , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Gangliosidoses GM2/terapia , Edição de Genes , Globosídeos/metabolismo , Glicosaminoglicanos/metabolismo , Hexosaminidase A/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Lipossomos/metabolismo , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/metabolismo , Doença de Tay-Sachs/terapia , beta-N-Acetil-Hexosaminidases/metabolismoRESUMO
AIM: We determined the role played by O-linked N-acetylglucosamine (O-GlcNAc) of proteins in systemic arteries during late pregnancy in normotensive and hypertensive rats. MAIN METHODS: O-GlcNAc levels and O-GlcNAc modification of endothelial nitric oxide synthase (eNOS) were determined in aorta (conductance vessel) and mesenteric arteries (resistance vessels) of non-pregnant (NP) and pregnant (P) Wistar rats and spontaneously hypertensive rats (SHR). Vascular O-GlcNAc-modified proteins, O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT) expression, and OGA activity were analyzed. Concentration-response to phenylephrine (PE) curves were constructed for arteries with and without endothelium. Arteries were treated with vehicle or PugNAc (OGA inhibitor, 100 µmol/L) in the presence of L-NAME (NOS inhibitor, 100 µmol/L). KEY FINDINGS: The content of vascular O-GlcNAc-modified proteins was lower, OGT and OGA expression did not change, and OGA activity was higher in arteries of P-Wistar rats and P-SHR compared to arteries of NP-groups. Reactivity to PE increased in arteries of P-Wistar rats treated with PugNAc compared to vehicle. O-GlcNAcylation of eNOS decreased in P-SHR compared to NP-SHR. PugNAc partially inhibited the effects of endothelium removal and L-NAME on reactivity to PE in arteries of P-Wistar rats. However, PugNAc did not alter reactivity to PE in arteries of P-SHR. Our data showed that pregnancy decreased the content of vascular O-GlcNAc-modified proteins. SIGNIFICANCE: Increased OGA activity and decreased O-GlcNAc modification of eNOS boosts eNOS activity in arteries of P-Wistar rats. In P-SHR, altered OGA activity may lower the content of O-GlcNAc-modified proteins, but decreased OGT activity seems a potential mechanism to reduce glycosylation.
Assuntos
Acetilglucosamina/química , Aorta Torácica/fisiopatologia , Hipertensão/fisiopatologia , Artérias Mesentéricas/fisiopatologia , Processamento de Proteína Pós-Traducional , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Aorta Torácica/enzimologia , Feminino , Glicosilação , Hipertensão/enzimologia , Artérias Mesentéricas/enzimologia , N-Acetilglucosaminiltransferases , Gravidez , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , beta-N-Acetil-Hexosaminidases/químicaRESUMO
The main objectives of this study were to evaluate the chemical constitution and allergenic potential of red propolis extract (RPE). They were evaluated, using high performance liquid chromatography (HPLC) and the release of ß-hexosaminidase, respectively. A plethora of biologically active polyphenols and the absence of allergic responses were evinced. RPE inhibited the release of ß-hexosaminidase, suggesting that the extract does not stimulate allergic responses. Additionally, the physicochemical properties and antibacterial activity of hydrogel membranes loaded with RPE were analyzed. Bio-polymeric hydrogel membranes (M) were obtained using 5% carboxymethylcellulose (M1 and M2), 1.0% of citric acid (M3) and 10% RPE (for all). Their characterization was performed using thermal analysis, Fourier transform infrared (FTIR), total phenolic content, phenol release test and, antioxidant activity through 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and Ferric Reducing Antioxidant Power (FRAP). The latter appointed to the similar antioxidant capacity of the M1, M2 and M3. The degradation profiles showed higher thermostability to M3, followed by M2 and M1. The incorporation of RPE into the matrices and the crosslinking of M3 were evinced by FTIR. There were differences in the release of phenolic compounds, with a higher release related to M1 and lower in the strongly crosslinked M3. The degradation profiles showed higher thermostability to M3, followed by M2 and M1. The antibacterial activity of the membranes was determined using the disc diffusion assay, in comparison with controls, obtained in the same way, without RPE. The membranes elicited antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis, with superior performance over M3. The hydrogel membranes loaded with RPE promote a physical barrier against bacterial skin infections and may be applied in the wound healing process.
Assuntos
Própole/química , Administração Tópica , Alérgenos/química , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/química , Antioxidantes/farmacologia , Bandagens , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biopolímeros/administração & dosagem , Biopolímeros/química , Biopolímeros/farmacologia , Brasil , Linhagem Celular , Fenômenos Químicos , Cromatografia Líquida de Alta Pressão , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos , Hidrogéis , Técnicas In Vitro , Mastócitos/efeitos dos fármacos , Mastócitos/enzimologia , Mastócitos/imunologia , Membranas Artificiais , Fenóis/química , Própole/administração & dosagem , Própole/farmacologia , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Termogravimetria , beta-N-Acetil-Hexosaminidases/metabolismoRESUMO
GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the ß-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay-Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. The blood-brain barrier represents a challenge for the development of therapeutic agents for these disorders. In this sense, alternative routes of administration (e.g., intrathecal or intracerebroventricular) have been evaluated, as well as the design of fusion peptides that allow the protein transport from the brain capillaries to the central nervous system. In this review, we outline the current knowledge about clinical and physiopathological findings of GM2 gangliosidoses, as well as the ongoing proposals to overcome some limitations of the traditional alternatives by using novel strategies such as molecular Trojan horses or advanced tools of genome editing.
Assuntos
Proteína Ativadora de G(M2)/genética , Gangliosidoses GM2/patologia , beta-N-Acetil-Hexosaminidases/genética , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapêutico , Barreira Hematoencefálica , Ensaios Clínicos como Assunto , Dieta Cetogênica , Gangliosídeo G(M2)/metabolismo , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Gangliosidoses GM2/terapia , Terapia Genética , Humanos , Mutação , Pirimetamina/uso terapêutico , Transplante de Células-TroncoRESUMO
Zika virus (ZIKV) is an emergent arthropod-borne virus whose outbreak in Brazil has brought major public health problems. Infected individuals have different symptoms, including rash and pruritus, which can be relieved by the administration of antiallergics. In the case of pregnant women, ZIKV can cross the placenta and infect the fetus leading to congenital defects. We have identified that mast cells in the placentae of patients who had Zika during pregnancy can be infected. This led to our investigation on the possible role of mast cells during a ZIKV infection, using the HMC-1 cell line. We analyzed their permissiveness to infection, release of mediators and ultrastructural changes. Flow cytometry detection of ZIKV-NS1 expression 24 h post infection in 45.3% of cells showed that HMC-1 cells are permissive to ZIKV infection. Following infection, ß-hexosaminidase was measured in the supernatant of the cells with a notable release at 30 min. In addition, an increase in TNF-α, IL-6, IL-10 and VEGF levels were measured at 6 h and 24 h post infection. Lastly, different intracellular changes were observed in an ultrastructural analysis of infected cells. Our findings suggest that mast cells may represent an important source of mediators that can activate other immune cell types during a ZIKV infection, which has the potential to be a major contributor in the spread of the virus in cases of vertical transmission.
Assuntos
Citocinas/metabolismo , Mastócitos/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Adulto , Brasil , Linhagem Celular , Feminino , Humanos , Imuno-Histoquímica , Transmissão Vertical de Doenças Infecciosas , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Mastócitos/patologia , Mastócitos/ultraestrutura , Mastócitos/virologia , Microscopia Eletrônica de Transmissão , Placenta/imunologia , Placenta/metabolismo , Placenta/virologia , Gravidez , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Zika virus/patogenicidade , Infecção por Zika virus/enzimologia , Infecção por Zika virus/fisiopatologia , Infecção por Zika virus/transmissão , beta-N-Acetil-Hexosaminidases/metabolismoRESUMO
Macrophages contribute to a continuous increase in blood pressure and kidney damage in hypertension, but their polarization status and the underlying mechanisms have not been clarified. This study revealed an important role for M2 macrophages and the YM1/Chi3l3 protein in hypertensive nephropathy in a mouse model of hypertension. Bone marrow cells were isolated from the femurs and tibia of male FVB/N (control) and transgenic hypertensive animals that overexpressed the rat form of angiotensinogen (TGM(rAOGEN)123, TGM123-FVB/N). The cells were treated with murine M-CSF and subsequently with LPS+IFN-γ to promote their polarization into M1 macrophages and IL-4+IL-13 to trigger the M2 phenotype. We examined the kidneys of TGM123-FVB/N animals to assess macrophage polarization and end-organ damage. mRNA expression was evaluated using real-time PCR, and protein levels were assessed through ELISA, CBA, Western blot, and immunofluorescence. Histology confirmed high levels of renal collagen. Cells stimulated with LPS+IFN-γ in vitro showed no significant difference in the expression of CD86, an M1 marker, compared to cells from the controls or the hypertensive mice. When stimulated with IL-4+IL-13, however, macrophages of the hypertensive group showed a significant increase in CD206 expression, an M2 marker. The M2/M1 ratio reached 288%. Our results indicate that when stimulated in vitro, macrophages from hypertensive mice are predisposed toward polarization to an M2 phenotype. These data support results from the kidneys where we found an increased infiltration of macrophages predominantly polarized to M2 associated with high levels of YM1/Chi3l3 (91,89%), suggesting that YM1/Chi3l3 may be a biomarker of hypertensive nephropathy.
Assuntos
Hipertensão/metabolismo , Nefropatias/metabolismo , Lectinas/metabolismo , Macrófagos/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Biomarcadores/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Rim/metabolismo , Nefropatias/genética , Lectinas/genética , Ativação de Macrófagos/fisiologia , Masculino , Camundongos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , beta-N-Acetil-Hexosaminidases/genéticaRESUMO
O-GlcNAcylation or O-GlcNAc modification is a post-translational modification of several proteins responsible for fundamental cellular processes. Dysregulation of the O-GlcNAc pathway has been linked to the etiology of several diseases such as neurodegenerative and cardiovascular diseases, type 2 diabetes and cancer. O-GlcNAcase (OGA) catalyzes the removal of O-GlcNAc from the modified proteins and several carbohydrate-based OGA inhibitors have been synthesized to understand the role of O-GlcNAc-modified proteins in physiological and pathological conditions. However, many of the inhibitors lack selectivity for OGA over lysosomal hexosaminidases A and B. Aiming the selectively inhibition of OGA, we propose herein the synthesis of twelve novel glucopyranoside derivatives exploring the bioisosteric replacement of the GlcNAc 2-acetamide group by 1,4-disubstituted 1,2,3-triazole ring, bearing a variety of central chains with different shapes. Compounds were readily prepared through "Copper(I) Catalyzed Azide/Alkyne Cycloaddition" (CuAAC) reaction between a sugar azide and different terminal alkynes. Initial Western Blot analyses and further inhibitory assays proved that compounds 6a (IC50â¯=â¯0.50 ± 0.02⯵M, OGA), 6k (IC50â¯=â¯0.52 ± 0.01⯵M, OGA) and 6l (IC50â¯=â¯0.72 ± 0.02⯵M, OGA) were the most potent and selective compounds of the series. Structure-activity relationship analyses and molecular docking simulations demonstrated that the bridge of two-carbon atoms between the C-4 position of the triazole and the phenyl ring (6a), which may be replaced by heteroatoms such as N (6k) or O (6l), is fundamental for accommodation and inhibition within OGA catalytic pocket.
Assuntos
Inibidores Enzimáticos/síntese química , Triazóis/síntese química , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Reação de Cicloadição , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologiaRESUMO
Mast cells play an essential role in different immunological phenomena including allergy and infectious diseases. Several bacteria induce mast cell activation leading to degranulation and the production of several cytokines and chemokines. However, mast cells also have different microbicidal activities such as phagocytosis and the release of DNA with embedded granular proteins known as Mast Cell Extracellular Traps (MCETs). Although previous reports indicate that extracellular bacteria are able to induce MCETs little is known if intracellular bacteria can induce these structures. In this work, we evaluated MCETs induction by the intracellular bacteria Listeria monocytogenes. We found that mast cells released DNA after stimulation with L. monocytogenes, and this DNA was complexed to histone and tryptase. Before extracellular DNA release, L. monocytogenes induced modifications to the mast cell nuclear envelope and DNA was detected outside the nucleus. L. monocytogenes stimulated mast cells to produce significant amounts of reactive oxygen species (ROS) and blocking NADPH oxidase diminished DNA release by mast cells. Finally, MCETs showed antimicrobial activity against L. monocytogenes that was partially blocked when ß-hexosaminidase activity was inhibited. These results show that L. monocytogenes induces mast cells to produce microbicidal MCETs, suggesting a role for mast cells in containing infection beyond the induction of inflammation.
Assuntos
Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Listeria monocytogenes/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Linhagem Celular , DNA/metabolismo , Histonas/metabolismo , Humanos , Listeriose , Mastócitos/ultraestrutura , Membrana Nuclear/ultraestrutura , Fagocitose/imunologia , Espécies Reativas de Oxigênio/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismoRESUMO
O-GlcNAcylation is a dynamic post-translational modification consisting of the addition of a single N-acetylglucosamine sugar to serine and threonine residues in proteins by the enzyme O-linked ß-N-acetylglucosamine transferase (OGT), whereas the enzyme O-GlcNAcase (OGA) removes the modification. In cancer, tumor samples present with altered O-GlcNAcylation; however, changes in O-GlcNAcylation are not consistent between tumor types. Interestingly, the tumor suppressor p53 is modified by O-GlcNAc, and most solid tumors contain mutations in p53 leading to the loss of p53 function. Because ovarian cancer has a high frequency of p53 mutation rates, we decided to investigate the relationship between O-GlcNAcylation and p53 function in ovarian cancer. We measured a significant decrease in O-GlcNAcylation of tumor tissue in an ovarian tumor microarray. Furthermore, O-GlcNAcylation was increased, and OGA protein and mRNA levels were decreased in ovarian tumor cell lines not expressing the protein p53. Treatment with the OGA inhibitor Thiamet-G (TMG), silencing of OGA, or overexpression of OGA and OGT led to p53 stabilization, increased nuclear localization, and increased protein and mRNA levels of p53 target genes. These data suggest that changes in O-GlcNAc homeostasis activate the p53 pathway. Combination treatment of the chemotherapeutic cisplatin with TMG decreased tumor cell growth and enhanced cell cycle arrest without impairing cytotoxicity. The effects of TMG on tumor cell growth were partially dependent on wild type p53 activation. In conclusion, changes in O-GlcNAc homeostasis activate the wild type p53 pathway in ovarian cancer cells, and OGA inhibition has the potential as an adjuvant treatment for ovarian carcinoma.
Assuntos
Acetilglucosamina/metabolismo , Núcleo Celular/metabolismo , Homeostase , Neoplasias Ovarianas/metabolismo , Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53/metabolismo , Acetilglucosamina/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/patologia , Feminino , Inativação Gênica , Humanos , Mutação , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Estabilidade Proteica/efeitos dos fármacos , Piranos/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Tiazóis/farmacologia , Proteína Supressora de Tumor p53/genética , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismoRESUMO
BACKGROUND: Mast cells are hematopoietically derived cells that play a role in inflammatory processes such as allergy, as well as in the immune response against pathogens by the selective and rapid release of preformed and lipid mediators, and the delayed release of cytokines. The native homotetrameric lectin ArtinM, a D-mannose binding lectin purified from Artocarpus heterophyllus seeds, is one of several lectins that are able to activate mast cells. Besides activating mast cells, ArtinM has been shown to affect several biological responses, including immunomodulation and acceleration of wound healing. Because of the potential pharmacological application of ArtinM, a recombinant ArtinM (rArtinM) was produced in Escherichia coli. The current study evaluated the ability of rArtinM to induce mast cell degranulation and activation. RESULTS: The glycan binding specificity of rArtinM was similar to that of jArtinM. rArtinM, via its CRD, was able to degranulate, releasing ß-hexosaminidase and TNF-α, and to promote morphological changes on the mast cell surface. Moreover, rArtinM induced the release of the newly-synthesized mediator, IL-4. rArtinM does not have a co-stimulatory effect on the FcεRI degranulation via. The IgE-dependent mast cell activation triggered by rArtinM seems to be dependent on NFkB activation. CONCLUSIONS: The lectin rArtinM has the ability to activate and degranulate mast cells via their CRDs. The present study indicates that rArtinM is a suitable substitute for the native form, jArtinM, and that rArtinM may serve as an important and reliable pharmacological agent.
Assuntos
Mastócitos/imunologia , Lectinas de Plantas/imunologia , Proteínas Recombinantes/imunologia , Animais , Artocarpus/imunologia , Degranulação Celular , Linhagem Celular , Clonagem Molecular , Escherichia coli/genética , Histamina/metabolismo , Imunoglobulina E/metabolismo , Imunomodulação , Interleucina-4/metabolismo , Manose/metabolismo , NF-kappa B/metabolismo , Lectinas de Plantas/isolamento & purificação , Ligação Proteica , Ratos , Proteínas Recombinantes/isolamento & purificação , beta-N-Acetil-Hexosaminidases/metabolismoRESUMO
Obesity and high fat intake induce alterations in vascular function and structure. Aberrant O-GlcNAcylation (O-GlcNAc) of vascular proteins has been implicated in vascular dysfunction associated with cardiovascular and metabolic diseases. In the present study, we tested the hypothesis that high-fat diet (HFD)-mediated increases in O-GlcNAc-modified proteins contribute to cerebrovascular dysfunction. O-GlcNAc-protein content was increased in arteries from male Wistar rats treated with a HFD (45% fat) for 12 weeks compared with arteries from rats on control diet (CD). HFD augmented body weight [(g) 550±10 compared with 502±10 CD], increased plasma triacylglycerols [(mg/dl) 160±20 compared with 95±15 CD] and increased contractile responses of basilar arteries to serotonin [5-hydroxytryptamine (5-HT)] [(pD2) 7.0±0.1 compared with 6.7±0.09 CD] and the thromboxane analogue 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U-46619) [(pD2) 7.2±0.1 compared with 6.8±0.09 CD]. Of importance, increased levels of O-GlcNAc [induced by 24 h-incubation of vessels with a potent inhibitor of O-GlcNAcase (OGA), O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PugNAc)] increased basilar artery contractions in response to U-46619 [(pD2) 7.4±0.07 compared with 6.8±0.08 CD] and 5-HT [(pD2) 7.5±0.06 compared with 7.1±0.1 CD]. Vessels from rats on the HFD for 12 weeks and vessels treated with PugNAc displayed increased phosphorylation of p38 (Thr(180/182)) and extracellular signal-regulated kinase 1/2 (Erk1/2) (Ser(180/221)). Increased 5HT-induced contractions in arteries from rats on the HFD or in arteries incubated with PugNAc were abrogated by mitogen-activated protein kinase (MAPK) inhibitors. Our data show that HFD augments cerebrovascular O-GlcNAc and this modification contributes to increased contractile responses and to the activation of the MAPK pathway in the rat basilar artery.
Assuntos
Acetilglucosamina/metabolismo , Artérias Cerebrais/metabolismo , Dieta Hiperlipídica , Hiperlipidemias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Obesidade/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Masculino , N-Acetilglucosaminiltransferases/metabolismo , Fosforilação/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Ratos WistarRESUMO
Mucopolysaccharidosis (MPS) is a group of lysosomal storage diseases (LSD), characterized by the deficiency of a lysosomal enzyme responsible for the degradation of glycosaminoglycans (GAG). This deficiency leads to the lysosomal accumulation of partially degraded GAG. Nevertheless, deficiency of a single lysosomal enzyme has been associated with impairment in other cell mechanism, such as apoptosis and redox balance. Although GAG analysis represents the main biomarker for MPS diagnosis, it has several limitations that can lead to a misdiagnosis, whereby the identification of new biomarkers represents an important issue for MPS. In this study, we used a system biology approach, through the use of a genome-scale human metabolic reconstruction to understand the effect of metabolism alterations in cell homeostasis and to identify potential new biomarkers in MPS. In-silico MPS models were generated by silencing of MPS-related enzymes, and were analyzed through a flux balance and variability analysis. We found that MPS models used approximately 2286 reactions to satisfy the objective function. Impaired reactions were mainly involved in cellular respiration, mitochondrial process, amino acid and lipid metabolism, and ion exchange. Metabolic changes were similar for MPS I and II, and MPS III A to C; while the remaining MPS showed unique metabolic profiles. Eight and thirteen potential high-confidence biomarkers were identified for MPS IVB and VII, respectively, which were associated with the secondary pathologic process of LSD. In vivo evaluation of predicted intermediate confidence biomarkers (ß-hexosaminidase and ß-glucoronidase) for MPS IVA and VI correlated with the in-silico prediction. These results show the potential of a computational human metabolic reconstruction to understand the molecular mechanisms this group of diseases, which can be used to identify new biomarkers for MPS.
Assuntos
Mucopolissacaridoses/metabolismo , Biomarcadores/metabolismo , Simulação por Computador , Células HEK293 , Humanos , Leucócitos Mononucleares/enzimologia , Análise do Fluxo Metabólico , Redes e Vias Metabólicas , Biologia de Sistemas , beta-N-Acetil-Hexosaminidases/metabolismoRESUMO
This work presents the synthesis and characterization of two novel binuclear ruthenium compounds of general formula [Ru2O(carb)2(py)6](PF6)2, where py=pyridine and carb are the non-steroidal anti-inflammatory drugs ibuprofen (1) and ketoprofen (2). Both complexes were characterized by ESI-MS/MS spectrometry. The fragmentation patterns, which confirm the proposed structures, are presented. Besides that, compounds 1 and 2 present the charge transfer transitions within 325-330nm; and the intra-core transitions around 585nm, which is the typical spectra profile for [Ru2O] analogues. This suggests the carboxylate bridge has little influence in their electronic structure. The effects of the diruthenium complexes on Ig-E mediated mast cell activation were evaluated by measuring the enzyme ß-hexosaminidase released by mast cells stimulated by antigen. The inhibitory potential of the ketoprofen complex against mast cell stimulation suggests its promising application as a therapeutic agent for treating or preventing IgE-mediated allergic diseases. In addition, in vitro metabolism assays had shown that the ibuprofen complex is metabolized by the cytochrome P450 enzymes.
Assuntos
Antialérgicos/farmacologia , Complexos de Coordenação/farmacologia , Ibuprofeno/farmacologia , Cetoprofeno/farmacologia , Rutênio/química , Animais , Antialérgicos/síntese química , Antialérgicos/química , Degranulação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Sistema Enzimático do Citocromo P-450/metabolismo , Ibuprofeno/síntese química , Ibuprofeno/química , Imunoglobulina E/imunologia , Cetoprofeno/síntese química , Cetoprofeno/química , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/metabolismo , Microssomos Hepáticos/metabolismo , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização por Electrospray , beta-N-Acetil-Hexosaminidases/antagonistas & inibidoresRESUMO
Trypanosoma cruzi, the etiological agent of Chagas' disease, induces a persistent inflammatory response. Macrophages are a first line cell phenotype involved in the clearance of infection. Upon parasite uptake, these cells increase inflammatory mediators like NO, TNF-α, IL-1ß and IL-6, leading to parasite killing. Although desired, inflammatory response perpetuation and exacerbation may lead to tissue damage. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent nuclear transcription factors that, besides regulating lipid and carbohydrate metabolism, have a significant anti-inflammatory effect. This is mediated through the interaction of the receptors with their ligands. PPARγ, one of the PPAR isoforms, has been implicated in macrophage polarization from M1, the classically activated phenotype, to M2, the alternatively activated phenotype, in different models of metabolic disorders and infection. In this study, we show for the first time that, besides PPARγ, PPARα is also involved in the in vitro polarization of macrophages isolated from T. cruzi-infected mice. Polarization was evidenced by a decrease in the expression of NOS2 and proinflammatory cytokines and the increase in M2 markers like Arginase I, Ym1, mannose receptor and TGF-ß. Besides, macrophage phagocytic activity was significantly enhanced, leading to increased parasite load. We suggest that modulation of the inflammatory response by both PPARs might be due, at least in part, to a change in the profile of inflammatory macrophages. The potential use of PPAR agonists as modulators of overt inflammatory response during the course of Chagas' disease deserves further investigation.
Assuntos
Doença de Chagas/metabolismo , Macrófagos/metabolismo , PPAR alfa/metabolismo , PPAR gama/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Western Blotting , Células Cultivadas , Doença de Chagas/genética , Doença de Chagas/parasitologia , Citocinas/genética , Citocinas/metabolismo , Interações Hospedeiro-Patógeno , Mediadores da Inflamação/metabolismo , Lectinas/genética , Lectinas/metabolismo , Ligantes , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/classificação , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , PPAR alfa/genética , PPAR gama/genética , Fagocitose/efeitos dos fármacos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Pirimidinas/farmacologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Trypanosoma cruzi/fisiologia , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismoRESUMO
The fungi Botrytis cinerea and Erysiphe necator are responsible for gray mold and powdery mildew diseases, respectively, which are among the most devastating diseases of grapes. Two endochitinase (ech42 and ech33) genes and one N-acetyl-ß-D-hexosaminidase (nag70) gene from biocontrol agents related to Trichoderma spp. were used to develop a set of 103 genetically modified (GM) 'Thompson Seedless' lines (568 plants) that were established in open field in 2004 and evaluated for fungal tolerance starting in 2006. Statistical analyses were carried out considering transgene, explant origin, and plant response to both fungi in the field and in detached leaf assays. The results allowed for the selection of the 19 consistently most tolerant lines through two consecutive years (2007-2008 and 2008-2009 seasons). Plants from these lines were grafted onto the rootstock Harmony and established in the field in 2009 for further characterization. Transgene status was shown in most of these lines by Southern blot, real-time PCR, ELISA, and immunostrips; the most tolerant candidates expressed the ech42-nag70 double gene construct and the ech33 gene from a local Hypocrea virens isolate. B. cinerea growth assays in Petri dishes supplemented with berry juices extracted from the most tolerant individuals of the selected population was inhibited. These results demonstrate that improved fungal tolerance can be attributed to transgene expression and support the iterative molecular and physiological phenotyping in order to define selected individuals from a population of GM grapevines.
Assuntos
Quitinases/genética , Resistência à Doença/genética , Plantas Geneticamente Modificadas/genética , beta-N-Acetil-Hexosaminidases/genética , Botrytis/patogenicidade , Técnicas de Transferência de Genes , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , Trichoderma/enzimologia , Trichoderma/genética , Vitis/genética , Vitis/crescimento & desenvolvimento , Vitis/microbiologiaRESUMO
O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca2+/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.
Assuntos
Animais , Masculino , Músculo Liso Vascular/fisiologia , Cadeias Leves de Miosina/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Vasoconstrição/fisiologia , Aorta Torácica , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacologia , Acilação/efeitos dos fármacos , Acilação/fisiologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Azepinas/farmacologia , Western Blotting , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Oxazóis/farmacologia , Oximas/farmacologia , Fenilcarbamatos/farmacologia , Fenilefrina/agonistas , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos Wistar , Ribonucleotídeos/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , beta-N-Acetil-Hexosaminidases/antagonistas & inibidoresRESUMO
O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2 ± 2 vs 7.9 ± 1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4 ± 2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3 ± 2 vs 7.5 ± 2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1 ± 2 vs 7.4 ± 2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca(2+)/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.
Assuntos
Músculo Liso Vascular/fisiologia , Cadeias Leves de Miosina/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Vasoconstrição/fisiologia , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacologia , Acilação/efeitos dos fármacos , Acilação/fisiologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Aorta Torácica , Azepinas/farmacologia , Western Blotting , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Masculino , Toxinas Marinhas , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Oxazóis/farmacologia , Oximas/farmacologia , Fenilcarbamatos/farmacologia , Fenilefrina/agonistas , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos Wistar , Ribonucleotídeos/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , beta-N-Acetil-Hexosaminidases/antagonistas & inibidoresRESUMO
The aim of this study was to determine whether hydroxytyrosol and oleuropein, the major phenols found in olives and olive oil, inhibit mast cell activation induced by immune and non-immune pathways. Purified peritoneal mast cells were preincubated in the presence of test compounds (hydroxytyrosol or oleuropein), before incubation with concanavalin A, compound 48/80 or calcium ionophore A23187. Dose-response and time-dependence studies were carried out. Comparative studies with sodium cromoglycate, a classical mast cell stabilizer, were also made. After incubation the supernatants and pellets were used to determine the ß-hexosaminidase content by colorimetric reaction. The percentage of ß-hexosaminidase release in each tube was calculated and taken as a measure of mast cell activation. Other samples of cell pellets were used for cell viability studies by the trypan blue dye exclusion test, or fixed for light and electron microscopy. Biochemical and morphological findings of the present study showed for the first time that hydroxytyrosol and oleuropein inhibit mast cell degranulation induced by both immune and non-immune pathways. These results suggest that olive phenols, particularly hydroxytyrosol and oleuropein, may provide insights into the development of useful tools for the prevention and treatment of mast cell-mediated disorders.
Assuntos
Degranulação Celular/efeitos dos fármacos , Iridoides/farmacologia , Mastócitos/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Animais , Relação Dose-Resposta a Droga , Glucosídeos Iridoides , Masculino , Azeite de Oliva , Álcool Feniletílico/farmacologia , Óleos de Plantas/química , Ratos Wistar , beta-N-Acetil-Hexosaminidases/metabolismoRESUMO
The GlcNAcstatin is a potent inhibitor of O-glycoprotein 2-acetamino-2-deoxy-ß-D-glucopyranosidase, which has been related with type II diabetes and neurodegenerative disorders. Herein, hybrid quantum mechanics/molecular mechanics, molecular dynamics simulations, and potential of mean force were employed to study the interactions established between GlcNAcstatin and a bacterial O-GlcNAcase enzyme from Clostridium perfringens. The results reveal that the imidazole nitrogen atom of GlcNAcstatin has shown a better interaction with the active site of Clostridium perfringens in its protonated form, which is compatible with a substrate-assisted reaction mechanism involving two conserved aspartate residues (297 and 298). Furthermore, the quantum mechanics/molecular mechanics-molecular dynamics simulations appointed a strong interaction between Asp401, Asp298, and Asp297 residues and the GlcNAcstatin inhibitor, which is in accordance with experimental data. Lastly, these results may contribute to understand the molecular mechanism of inhibition of Clostridium perfringens by GlcNAcstatin inhibitor and, consequently, this study might be useful to design new molecules with more interesting inhibitory activity.