Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(2): 102821, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563857

RESUMO

Tauopathies are neurodegenerative diseases caused by pathologic misfolded tau protein aggregation in the nervous system. Population studies implicate EIF2AK3 (eukaryotic translation initiation factor 2 alpha kinase 3), better known as PERK (protein kinase R-like endoplasmic reticulum kinase), as a genetic risk factor in several tauopathies. PERK is a key regulator of intracellular proteostatic mechanisms-unfolded protein response and integrated stress response. Previous studies found that tauopathy-associated PERK variants encoded functional hypomorphs with reduced signaling in vitro. But, it remained unclear how altered PERK activity led to tauopathy. Here, we chemically or genetically modulated PERK signaling in cell culture models of tau aggregation and found that PERK pathway activation prevented tau aggregation, whereas inhibition exacerbated tau aggregation. In primary tauopathy patient brain tissues, we found that reduced PERK signaling correlated with increased tau neuropathology. We found that tauopathy-associated PERK variants targeted the endoplasmic reticulum luminal domain; and two of these variants damaged hydrogen bond formation. Our studies support that PERK activity protects against tau aggregation and pathology. This may explain why people carrying hypomorphic PERK variants have increased risk for developing tauopathies. Finally, our studies identify small-molecule augmentation of PERK signaling as an attractive therapeutic strategy to treat tauopathies by preventing tau pathology.


Assuntos
Agregados Proteicos , Agregação Patológica de Proteínas , eIF-2 Quinase , Proteínas tau , Humanos , Suscetibilidade a Doenças , eIF-2 Quinase/química , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Mutação , Fatores de Risco , Proteínas tau/química , Proteínas tau/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia
2.
Proc Natl Acad Sci U S A ; 119(33): e2204235119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939694

RESUMO

Mammalian cells respond to dsRNA in multiple manners. One key response to dsRNA is the activation of PKR, an eIF2α kinase, which triggers translational arrest and the formation of stress granules. However, the process of PKR activation in cells is not fully understood. In response to increased endogenous or exogenous dsRNA, we observed that PKR forms novel cytosolic condensates, referred to as dsRNA-induced foci (dRIFs). dRIFs contain dsRNA, form in proportion to dsRNA, and are enhanced by longer dsRNAs. dRIFs enrich several other dsRNA-binding proteins, including ADAR1, Stau1, NLRP1, and PACT. Strikingly, dRIFs correlate with and form before translation repression by PKR and localize to regions of cells where PKR activation is initiated. We hypothesize that dRIF formation is a mechanism that cells use to enhance the sensitivity of PKR activation in response to low levels of dsRNA or to overcome viral inhibitors of PKR activation.


Assuntos
RNA de Cadeia Dupla , RNA Viral , Viroses , eIF-2 Quinase , Ativação Enzimática , Humanos , Imunidade Inata , Fosforilação , Biossíntese de Proteínas , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/imunologia , RNA Viral/química , RNA Viral/imunologia , Proteínas de Ligação a RNA/química , Grânulos de Estresse , Viroses/enzimologia , Viroses/imunologia , eIF-2 Quinase/química
3.
Fish Shellfish Immunol ; 112: 74-80, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33667675

RESUMO

The dsRNA-activated protein kinase R (PKR) is one of key antiviral effectors induced by interferons (IFNs), and its functions are largely unknown in tilapia, an important commercial fish species suffering from several viral infectious diseases. In the present study, a PKR gene named On-PKR was identified and cloned from Nile tilapia, Oreochromis niloticus. On-PKR gene was constitutively expressed in all tissues examined, with the highest expression level observed in head kidney and liver, and was rapidly induced in all organs/tissues tested following the stimulation of poly(I:C). Importantly, the expression of On-PKR is induced by group I and group II IFNs with distinct induction kinetics in vivo: group I IFN elicits a relative delayed but sustained induction of On-PKR, whereas group II IFN triggers a rapid and transient expression of On-PKR. Moreover, the overexpression of On-PKR has been proven to inhibit the protein translation and virus replication in fish cells. The present study thus contributes to a better understanding of the functions of antiviral effectors in tilapia, and may provide clues for the prevention and therapy of viral diseases in fish.


Assuntos
Ciclídeos/genética , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , eIF-2 Quinase/genética , eIF-2 Quinase/imunologia , Sequência de Aminoácidos , Animais , Doenças dos Peixes/virologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Imunidade/genética , Filogenia , Poli I-C/farmacologia , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Alinhamento de Sequência/veterinária , eIF-2 Quinase/química
4.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562773

RESUMO

NSCLC (non-small cell lung cancer) is a leading cause of cancer-related deaths worldwide. Clinical trials showed that Hiltonol, a stable dsRNA representing an advanced form of polyI:C (polyinosinic-polycytidilic acid), is an adjuvant cancer-immunomodulator. However, its mechanisms of action and effect on lung cancer have not been explored pre-clinically. Here, we examined, for the first time, how a novel Hiltonol cocktail kills NSCLC cells. By retrospective analysis of NSCLC patient tissues obtained from the tumor biobank; pre-clinical studies with Hiltonol alone or Hiltonol+++ cocktail [Hiltonol+anti-IL6+AG490 (JAK2 inhibitor)+Stattic (STAT3 inhibitor)]; cytokine analysis; gene knockdown and gain/loss-of-function studies, we uncovered the mechanisms of action of Hiltonol+++. We demonstrated that Hiltonol+++ kills the cancer cells and suppresses the metastatic potential of NSCLC through: (i) upregulation of pro-apoptotic Caspase-9 and Caspase-3, (ii) induction of cytosolic cytochrome c, (iii) modulation of pro-inflammatory cytokines (GRO, MCP-1, IL-8, and IL-6) and anticancer IL-24 in NSCLC subtypes, and (iv) upregulation of tumor suppressors, PKR (protein kinase R) and OAS (2'5' oligoadenylate synthetase). In silico analysis showed that Lys296 of PKR and Lys66 of OAS interact with Hiltonol. These Lys residues are purportedly involved in the catalytic/signaling activity of the tumor suppressors. Furthermore, knockdown of PKR/OAS abrogated the anticancer action of Hiltonol, provoking survival of cancer cells. Ex vivo analysis of NSCLC patient tissues corroborated that loss of PKR and OAS is associated with cancer advancement. Altogether, our findings unraveled the significance of studying tumor biobank tissues, which suggests PKR and OAS as precision oncological suppressor candidates to be targeted by this novel Hiltonol+++ cocktail which represents a prospective drug for development into a potent and tailored therapy for NSCLC subtypes.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Antineoplásicos Imunológicos/farmacologia , Carboximetilcelulose Sódica/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Óxidos S-Cíclicos/farmacologia , Neoplasias Pulmonares/metabolismo , Poli I-C/farmacologia , Polilisina/análogos & derivados , Tirfostinas/farmacologia , eIF-2 Quinase/metabolismo , 2',5'-Oligoadenilato Sintetase/química , 2',5'-Oligoadenilato Sintetase/genética , Células A549 , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sítios de Ligação , Carboximetilcelulose Sódica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Modelos Moleculares , Polilisina/farmacologia , Microambiente Tumoral/efeitos dos fármacos , eIF-2 Quinase/química , eIF-2 Quinase/genética
5.
PLoS Comput Biol ; 16(5): e1007864, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453748

RESUMO

Interactions between disordered proteins involve a wide range of changes in the structure and dynamics of the partners involved. These changes can be classified in terms of binding modes, which include disorder-to-order (DO) transitions, when proteins fold upon binding, as well as disorder-to-disorder (DD) transitions, when the conformational heterogeneity is maintained in the bound states. Furthermore, systematic studies of these interactions are revealing that proteins may exhibit different binding modes with different partners. Proteins that exhibit this context-dependent binding can be referred to as fuzzy proteins. Here we investigate amino acid code for fuzzy binding in terms of the entropy of the probability distribution of transitions towards decreasing order. We implement these entropy calculations into the FuzPred (http://protdyn-fuzpred.org) algorithm to predict the range of context-dependent binding modes of proteins from their amino acid sequences. As we illustrate through a variety of examples, this method identifies those binding sites that are sensitive to the cellular context or post-translational modifications, and may serve as regulatory points of cellular pathways.


Assuntos
Sítios de Ligação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas/química , Algoritmos , Biologia Computacional/métodos , Bases de Dados de Proteínas , Fator de Iniciação 2 em Eucariotos/química , Lógica Fuzzy , Humanos , Proteínas Intrinsicamente Desordenadas/química , Probabilidade , Domínios Proteicos , Dobramento de Proteína , Curva ROC , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteína Supressora de Tumor p53/química , eIF-2 Quinase/química
6.
Biochemistry ; 59(12): 1252-1260, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32176479

RESUMO

Protein kinase R (PKR) is a key antiviral component of the innate immune pathway and is activated by viral double-stranded RNAs (dsRNAs). Adenovirus-associated RNA 1 (VAI) is an abundant, noncoding viral RNA that functions as a decoy by binding PKR but not inducing activation, thereby inhibiting the antiviral response. In VAI, coaxial stacking produces an extended helix that mediates high-affinity PKR binding but is too short to result in activation. Like adenovirus, Epstein-Barr virus produces high concentrations of a noncoding RNA, EBER1. Here, we compare interactions of PKR with VAI and EBER1 and present a structural model of EBER1. Both RNAs function as inhibitors of dsRNA-mediated PKR activation. However, EBER1 weakly activates PKR whereas VAI does not. PKR binds EBER1 more weakly than VAI. Assays at physiological ion concentrations indicate that both RNAs can accommodate two PKR monomers and induce PKR dimerization. A structural model of EBER1 was obtained using constraints derived from chemical structure probing and small-angle X-ray scattering experiments. The central stem of EBER1 coaxially stacks with stem loop 4 and stem loop 1 to form an extended RNA duplex of ∼32 bp that binds PKR and promotes activation. Our observations that EBER1 binds PKR much more weakly than VAI and exhibits weak PKR activation suggest that EBER1 is less well suited to function as an RNA decoy.


Assuntos
Herpesvirus Humano 4/genética , Interações entre Hospedeiro e Microrganismos/genética , RNA Viral/metabolismo , eIF-2 Quinase/genética , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/imunologia , Humanos , Imunidade Inata/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Multimerização Proteica/genética , Multimerização Proteica/imunologia , Estabilidade de RNA , RNA Viral/química , Espalhamento a Baixo Ângulo , Difração de Raios X , eIF-2 Quinase/química , eIF-2 Quinase/imunologia , eIF-2 Quinase/metabolismo
7.
Nat Struct Mol Biol ; 26(11): 1053-1062, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695187

RESUMO

BiP is a major endoplasmic reticulum (ER) chaperone and is suggested to act as primary sensor in the activation of the unfolded protein response (UPR). How BiP operates as a molecular chaperone and as an ER stress sensor is unknown. Here, by reconstituting components of human UPR, ER stress and BiP chaperone systems, we discover that the interaction of BiP with the luminal domains of UPR proteins IRE1 and PERK switch BiP from its chaperone cycle into an ER stress sensor cycle by preventing the binding of its co-chaperones, with loss of ATPase stimulation. Furthermore, misfolded protein-dependent dissociation of BiP from IRE1 is primed by ATP but not ADP. Our data elucidate a previously unidentified mechanistic cycle of BiP function that explains its ability to act as an Hsp70 chaperone and ER stress sensor.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , eIF-2 Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/química , Humanos , Modelos Moleculares , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/química , Resposta a Proteínas não Dobradas , eIF-2 Quinase/química
8.
Biochemistry ; 58(27): 2967-2977, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31246429

RESUMO

The RNA-activated protein kinase, PKR, is a key mediator of the innate immunity response to viral infection. Viral double-stranded RNAs induce PKR dimerization and autophosphorylation. The PKR kinase domain forms a back-to-back dimer. However, intermolecular ( trans) autophosphorylation is not feasible in this arrangement. We have obtained PKR kinase structures that resolves this dilemma. The kinase protomers interact via the known back-to-back interface as well as a front-to-front interface that is formed by exchange of activation segments. Mutational analysis of the front-to-front interface support a functional role in PKR activation. Molecular dynamics simulations reveal that the activation segment is highly dynamic in the front-to-front dimer and can adopt conformations conducive to phosphoryl transfer. We propose a mechanism where back-to-back dimerization induces a conformational change that activates PKR to phosphorylate a "substrate" kinase docked in a front-to-front geometry. This mechanism may be relevant to related kinases that phosphorylate the eukaryotic initiation factor eIF2α.


Assuntos
eIF-2 Quinase/química , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Fosforilação , Conformação Proteica , Domínios Proteicos , Multimerização Proteica
9.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31189710

RESUMO

Accumulated evidence demonstrates that Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, the precise role of PERK in JEV-induced apoptosis and encephalitis remains unknown. Here, we report that JEV infection activates the PERK-ATF4-CHOP apoptosis pathway both in vitro and in vivo PERK activation also promotes the formation of stress granule, which in turn represses JEV-induced apoptosis. However, PERK inhibitor reduces apoptosis, indicating that JEV-activated PERK predominantly induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway. Among JEV proteins that have been reported to induce ER stress, only JEV NS4B can induce PERK activation. PERK has been reported to form an active molecule by dimerization. The coimmunoprecipitation assay shows that NS4B interacts with PERK. Moreover, glycerol gradient centrifugation shows that NS4B induces PERK dimerization. Both the LIG-FHA and the LIG-WD40 domains within NS4B are required to induce PERK dimerization, suggesting that JEV NS4B pulls two PERK molecules together by simultaneously interacting with them via different motifs. PERK deactivation reduces brain cell damage and encephalitis during JEV infection. Furthermore, expression of JEV NS4B is sufficient to induce encephalitis via PERK in mice, indicating that JEV activates PERK primarily via its NS4B to cause encephalitis. Taken together, our findings provide a novel insight into JEV-caused encephalitis.IMPORTANCE Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, whether the PERK pathway of ER stress response plays important roles in JEV-induced apoptosis and encephalitis remains unknown. Here, we found that JEV infection activates ER stress sensor PERK in neuronal cells and mouse brains. PERK activation induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway upon JEV infection. Among the JEV proteins prM, E, NS1, NS2A, NS2B, and NS4B, only NS4B activates PERK. Moreover, activated PERK participates in apoptosis and encephalitis induced by JEV and NS4B. These findings provide a novel therapeutic approach for JEV-caused encephalitis.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/metabolismo , Neurônios/citologia , Proteínas não Estruturais Virais/metabolismo , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Adenina/uso terapêutico , Animais , Apoptose , Sítios de Ligação , Linhagem Celular , Modelos Animais de Doenças , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Encefalite Japonesa/virologia , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos , Neurônios/metabolismo , Neurônios/virologia , Multimerização Proteica , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , eIF-2 Quinase/química
10.
RNA ; 25(5): 539-556, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30770398

RESUMO

The interferon-inducible protein kinase R (PKR) is a key component of host innate immunity that restricts viral replication and propagation. As one of the four eIF2α kinases that sense diverse stresses and direct the integrated stress response (ISR) crucial for cell survival and proliferation, PKR's versatile roles extend well beyond antiviral defense. Targeted by numerous host and viral regulators made of RNA and proteins, PKR is subject to multiple layers of endogenous control and external manipulation, driving its rapid evolution. These versatile regulators include not only the canonical double-stranded RNA (dsRNA) that activates the kinase activity of PKR, but also highly structured viral, host, and artificial RNAs that exert a full spectrum of effects. In this review, we discuss our deepening understanding of the allosteric mechanism that connects the regulatory and effector domains of PKR, with an emphasis on diverse structured RNA regulators in comparison to their protein counterparts. Through this analysis, we conclude that much of the mechanistic details that underlie this RNA-regulated kinase await structural and functional elucidation, upon which we can then describe a "PKR code," a set of structural and chemical features of RNA that are both descriptive and predictive for their effects on PKR.


Assuntos
Interações Hospedeiro-Patógeno/genética , RNA de Cadeia Dupla/genética , RNA não Traduzido/genética , Viroses/genética , eIF-2 Quinase/genética , Regulação Alostérica , Animais , Sequência de Bases , Sítios de Ligação , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Interferons/genética , Interferons/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/imunologia , RNA não Traduzido/química , RNA não Traduzido/imunologia , Viroses/imunologia , Viroses/virologia , Replicação Viral , eIF-2 Quinase/química , eIF-2 Quinase/imunologia
11.
Autophagy ; 15(7): 1214-1233, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30741620

RESUMO

Mutations in the ER-associated VAPB/ALS8 protein cause amyotrophic lateral sclerosis and spinal muscular atrophy. Previous studies have argued that ER stress may underlie the demise of neurons. We find that loss of VAP proteins (VAPs) leads to an accumulation of aberrant lysosomes and impairs lysosomal degradation. VAPs mediate ER to Golgi tethering and their loss may affect phosphatidylinositol-4-phosphate (PtdIns4P) transfer between these organelles. We found that loss of VAPs elevates PtdIns4P levels in the Golgi, leading to an expansion of the endosomal pool derived from the Golgi. Fusion of these endosomes with lysosomes leads to an increase in lysosomes with aberrant acidity, contents, and shape. Importantly, reducing PtdIns4P levels with a PtdIns4-kinase (PtdIns4K) inhibitor, or removing a single copy of Rab7, suppress macroautophagic/autophagic degradation defects as well as behavioral defects observed in Drosophila Vap33 mutant larvae. We propose that a failure to tether the ER to the Golgi when VAPs are lost leads to an increase in Golgi PtdIns4P levels, and an expansion of endosomes resulting in an accumulation of dysfunctional lysosomes and a failure in proper autophagic lysosomal degradation. Abbreviations: ALS: amyotrophic lateral sclerosis; CSF: cerebrospinal fluid; CERT: ceramide transfer protein; FFAT: two phenylalanines in an acidic tract; MSP: major sperm proteins; OSBP: oxysterol binding protein; PH: pleckstrin homology; PtdIns4P: phosphatidylinositol-4-phosphate; PtdIns4K: phosphatidylinositol 4-kinase; UPR: unfolded protein response; VAMP: vesicle-associated membrane protein; VAPA/B: mammalian VAPA and VAPB proteins; VAPs: VAMP-associated proteins (referring to Drosophila Vap33, and human VAPA and VAPB).


Assuntos
Autofagia/genética , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Endossomos/efeitos dos fármacos , Endossomos/genética , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Lisossomos/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas R-SNARE/genética , eIF-2 Quinase/química , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
12.
Mol Biol Rep ; 46(1): 1275-1284, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30694453

RESUMO

Recent in vitro studies have shown that vitamin C (Vit C) with pro-oxidative properties causes cytotoxicity of breast cancer cells by selective oxidative stress. However, the effect of Vit C in itself at different concentration levels on MCF-7 breast cancer cell line after 24 h, has not yet been described. We aimed to examine the effect of Vit C on the viability and signalling response of MCF-7/WT (MCF-7 wild-type) cells that were exposed to various concentrations (0.125-4 mM) of Vit C during 24 h. The cytotoxic effect of Vit C on MCF-7/VitC (MCF-7/WT after added 2 mM Vit C) was observed, resulting in a decrease of cell index after 12 h. Also, the cytotoxicity of Vit C (2 mM) after 24 h was confirmed by flow cytometry, i.e., increase of dead, late apoptotic, and depolarized dead MCF-7/VitC cells compared to MCF-7/WT cells. Moreover, changes in proteomic profile of MCF-7/VitC cells compared to the control group were investigated via label-free quantitative mass spectrometry and post-translational modification. Using bioinformatics assessment (i.e., iPathwayGuide and SPIA R packages), a significantly impacted pathway in MCF-7/VitC was identified, namely the protein processing in endoplasmic reticulum. The semi-quantitative change (log2fold change = 4.5) and autophosphorylation at Thr-446 of protein kinase (PKR) (involved in this pathway) indicates that PKR protein could be responsible for the unfolded protein response and inhibition of the cell translation during endoplasmic reticulum stress, and eventually, for cell apoptosis. These results suggest that increased activity of PKR (Thr-446 autophosphorylation) related to cytotoxic effect of Vit C (2 mM) may cause the MCF-7 cells death.


Assuntos
Ácido Ascórbico/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , eIF-2 Quinase/química , eIF-2 Quinase/metabolismo
13.
J Biomol Struct Dyn ; 37(7): 1715-1723, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29663856

RESUMO

The Heme-Regulated Inhibitor (HRI) kinase regulates globin synthesis in a heme-dependent manner in reticulocytes and erythroid cells in bone marrow. Inhibitors of HRI have been proposed to lead to an increased amount of haemoglobin, benefitting anaemia patients. A series of indeno[1,2-c]pyrazoles were discovered to be the first known in vitro inhibitors of HRI. However, the structural mechanism of inhibition is yet to be understood. The aim of this study was to unravel the binding mechanism of these inhibitors using molecular dynamic simulations and docking. The docking scores were observed to correlate well with experimentally determined pIC50 values. The inhibitors were observed to bind in the ATP-binding site forming hydrogen bonds with the hinge region and van der Waals interactions with non-polar residues in the binding site. Further, quantitative structure-activity relationship (QSAR) studies were performed to correlate the structural features of the inhibitors with their biological activity. The developed QSAR models were found to be statistically significant in terms of internal and external predictabilities. The presence of chlorine atoms and the hydroxymethyl groups were found to correlate with higher activity. The identified binding modes and the descriptors can support future rational identification of more potent and selective small molecule inhibitors for this kinase which are of therapeutic importance in the context of various human pathological disorders.


Assuntos
Sítios de Ligação , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/química , eIF-2 Quinase/química , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Relação Quantitativa Estrutura-Atividade , eIF-2 Quinase/antagonistas & inibidores
14.
J Interferon Cytokine Res ; 38(8): 333-340, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30052119

RESUMO

Double-stranded RNA-dependent protein kinase (PKR) is an important antiviral IFN-stimulated gene (ISGs) that recognizes double-stranded RNA (dsRNA) and mediates inhibition of translation initiation and protein synthesis in various types of viral infection. In this study, the complete coding sequence (CDS) of goose PKR (goPKR) is identified and characterized. The open reading frame (ORF) of goPKR is 1668 bp, which encodes a polypeptide of 555 amino acids. The sequence identity results demonstrate that the goose PKR is most closely related to duck PKR gene, with nucleotide identities of 91.6%, whereas nucleotide identity of the goose PKR to chicken, human, and mouse PKR is 76.4%, 51.9%, and 52.0%, respectively. Interestingly, the deduced amino acid sequence of goose PKR contains 3 main structure domains, including 2 double-strand RNA-binding motif (dsRBM) domains and one serine/threonine protein kinase domain. This is similar to the chicken and mammals, whereas it is different from duck PKR protein, which contains only one dsRBM1 domain and one serine/threonine protein kinase domain. Quantitative real-time PCR analysis indicates that goose PKR mRNA is widely expressed in all sampled tissues. It is highly expressed in the blood, spleen, lung, and bursa of Fabricius and jejunum and is slightly expressed in heart, muscle, trachea, and brain. The results of confocal microscopy suggest that PKR-EGFP is mainly localized in the cytoplasm, and overexpression of goPKR protein significantly reduces Newcastle disease virus (NDV) replication (viral copies and viral titer) in goose embryo fibroblasts. These findings show that goose PKR is an important antiviral ISG, involved in the antiviral innate immune defense to NDV in geese.


Assuntos
Antivirais/farmacologia , Gansos/genética , Perfilação da Expressão Gênica , Vírus da Doença de Newcastle/efeitos dos fármacos , Peptídeos/farmacologia , eIF-2 Quinase/genética , eIF-2 Quinase/farmacologia , Animais , Antivirais/química , Antivirais/metabolismo , Vírus da Doença de Newcastle/metabolismo , Peptídeos/química , Peptídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Replicação Viral/efeitos dos fármacos , eIF-2 Quinase/química , eIF-2 Quinase/metabolismo
15.
Mol Immunol ; 101: 65-73, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29879548

RESUMO

The human protein kinase R (PKR) recognizes invading RNA viruses and mediates the antiviral immune response by phosphorylating the eukaryotic translation initiation factor 2α (eIF-2α), thus blocking protein translation in infected cells and thus preventing viral replication. The observation that individuals show different degrees of susceptibility to viral infections gives rise to the hypothesis that single nucleotide polymorphisms (SNPs) in the protein kinase R may alter the response to an infection. Using different available servers (e.g. SIFT, PROVEAN, Polyphen2, SNAP2, SNP&GOs, SNP-PhD, I-Mutant Suite), 14 SNPs were identified that were predicted to have deleterious effects on the protein kinase R. Five SNPs, namely D266Y, Y323D, I398 K, Y465C and Y472C, were selected for homology modeling and the generated models were investigated with regard to their secondary structure, residue fluctuations and eIF-2α binding. Analysis with computational tools POLYVIEW-MM, SAAPdap, SRIDE, CMView, elNémo, NMsim and PatchDock revealed structural changes in all mutants yielding a more stable structure at the cost of reduced flexibility (except Y465C) and less conformational freedom compared to the native protein. The conformational changes in the mutant protein structures and the displacement of functional residues from their strategic positions are predicted to affect the functionality of PKR, and consequently will affect the efficiency of the individual's antiviral immune response negatively. This study will aid the physicians in precision medicine field to tailor optimal treatment for the patients.


Assuntos
Biologia Computacional/métodos , Polimorfismo de Nucleotídeo Único/genética , eIF-2 Quinase/genética , Sequência de Aminoácidos , Bases de Dados Genéticas , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , Fosforilação , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , eIF-2 Quinase/química , eIF-2 Quinase/metabolismo
16.
Biotechnol Genet Eng Rev ; 34(1): 33-59, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29716441

RESUMO

The innate immune system offers a first line of defense by neutralizing foreign pathogens such as bacteria, fungi, and viruses. These pathogens express molecules (RNA and proteins) that have discrete structures, known as the pathogen-associated molecular patterns that are recognized by a highly specialized class of host proteins called pattern recognition receptors to facilitate the host's immune response against infection. The RNA-dependent Protein Kinase R (PKR) is one of the host's pattern recognition receptors that is a key component of an innate immune system. PKR recognizes imperfectly double-stranded non-coding viral RNA molecules via its N-terminal double-stranded RNA binding motifs, undergoes phosphorylation of the C-terminal kinase domain, ultimately resulting in inhibition of viral protein translation by inhibiting the guanine nucleotide exchange activity of eukaryotic initiation factor 2α. Not surprisingly, viruses have evolved mechanisms by which viral non-coding RNA or protein molecules inhibit PKR's activation and/or its downstream activity to allow viral replication. In this review, we will highlight the role of viral proteins in inhibiting PKR's activity and summarize currently known mechanisms by which viral proteins execute such inhibitory activity.


Assuntos
RNA de Cadeia Dupla/metabolismo , Proteínas Virais/metabolismo , Viroses/imunologia , eIF-2 Quinase/metabolismo , Sítios de Ligação , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Ligação Proteica , Biossíntese de Proteínas , RNA Viral/metabolismo , Viroses/virologia , Replicação Viral , Vírus/genética , Vírus/imunologia , eIF-2 Quinase/química
17.
PLoS One ; 13(3): e0194335, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29538447

RESUMO

Eukaryotic translation initiation factor 2-alpha kinase (EIF2AK) proteins inhibit protein synthesis at translation initiation level, in response to various stress conditions, including oxidative stress, heme deficiency, osmotic shock, and heat shock. Origin and functional diversification of EIF2AK sequences remain ambiguous. Here we determine the origin and molecular evolution of EIF2AK proteins in lower eukaryotes and studied the molecular basis of divergence among sub-family sequences. Present work emphasized primitive origin of EIF2AK4 sub-family gene in lower eukaryotes of protozoan lineage. Phylogenetic analysis supported common origin and sub-family based classification of EIF2AKs. Functional divergence studies across sub-families revealed several putative amino acid sites, which assist in altered protein interactions of kinase domains. The data can facilitate designing site-directed experimental studies aiming at elucidating diverse functional aspects of kinase domains regarding down-regulation of protein synthesis.


Assuntos
Evolução Molecular , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biologia Computacional/métodos , Bases de Dados Genéticas , Família Multigênica , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Análise de Sequência de DNA , eIF-2 Quinase/química
18.
J Biol Chem ; 293(11): 4110-4121, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29386355

RESUMO

PRKR-like endoplasmic reticulum kinase (PERK) is one of the major sensor proteins that detect protein folding imbalances during endoplasmic reticulum (ER) stress. However, it remains unclear how ER stress activates PERK to initiate a downstream unfolded protein response (UPR). Here, we found that PERK's luminal domain can recognize and selectively interact with misfolded proteins but not with native proteins. Screening a phage-display library, we identified a peptide substrate, P16, of the PERK luminal domain and confirmed that P16 efficiently competes with misfolded proteins for binding this domain. To unravel the mechanism by which the PERK luminal domain interacts with misfolded proteins, we determined the crystal structure of the bovine PERK luminal domain complexed with P16 to 2.8-Å resolution. The structure revealed that PERK's luminal domain binds the peptide through a conserved hydrophobic groove. Substitutions within hydrophobic regions of the PERK luminal domain abolished the binding between PERK and misfolded proteins. We also noted that peptide binding results in major conformational changes in the PERK luminal domain that may favor PERK oligomerization. The structure of the PERK luminal domain-P16 complex suggested stacking of the luminal domain that leads to PERK oligomerization and activation via autophosphorylation after ligand binding. Collectively, our structural and biochemical results strongly support a ligand-driven model in which the PERK luminal domain interacts directly with misfolded proteins to induce PERK oligomerization and activation, resulting in ER stress signaling and the UPR.


Assuntos
Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Multimerização Proteica , eIF-2 Quinase/química , eIF-2 Quinase/metabolismo , Animais , Sítios de Ligação , Bovinos , Células Cultivadas , Cristalografia por Raios X , Estresse do Retículo Endoplasmático , Camundongos , Camundongos Knockout , Fragmentos de Peptídeos/química , Biblioteca de Peptídeos , Fosforilação , Ligação Proteica , Conformação Proteica , Transdução de Sinais
19.
J Biomol Struct Dyn ; 36(11): 2845-2861, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28814160

RESUMO

The eIF2α kinase activity of the heme-regulated inhibitor (HRI) is regulated by heme which makes it a unique member of the family of eIF2α kinases. Since heme concentrations create an equilibrium for the kinase to be active/inactive, it becomes important to study the heme binding effects upon the kinase and understanding its mechanism of functionality. In the present study, we report the thermostability achieved by the catalytic kinase domain of HRI (HRI.CKD) upon ligand (heme) binding. Our CD data demonstrates that the HRI.CKD retains its secondary structure at higher temperatures when it is in ligand bound state. HRI.CKD when incubated with hemin loses its monomeric state and attains a higher order oligomeric form resulting in its stability. The HRI.CKD fails to refold into its native conformation upon mutation of H377A/H381A, thereby confirming the necessity of these His residues for correct folding, stability, and activity of the kinase. Though our in silico study demonstrated these His being the ligand binding sites in the kinase insert region, the spectra-based study did not show significant difference in heme affinity for the wild type and His mutant HRI.CKD.


Assuntos
Domínio Catalítico , Heme/química , Hemina/química , Modelos Moleculares , eIF-2 Quinase/química , Sítios de Ligação , Varredura Diferencial de Calorimetria , Expressão Gênica , Heme/metabolismo , Hemina/metabolismo , Ligantes , Conformação Molecular , Mutação , Ligação Proteica , Estabilidade Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade , Termodinâmica , eIF-2 Quinase/genética , eIF-2 Quinase/isolamento & purificação , eIF-2 Quinase/metabolismo
20.
J Phys Chem B ; 121(34): 8142-8148, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28759991

RESUMO

We present here the use of QM/MM LIE (linear interaction energy) based binding free energy calculations that greatly improve the precision and accuracy of predicting experimental binding affinities, in comparison to most current binding free energy methodologies, while maintaining reasonable computational times. Calculations are done for four sets of ligand-protein complexes, chosen on the basis of diversity of protein types and availability of experimental data, totaling 140 ligands binding to therapeutic protein targets BACE1, TYK2, HSP90, and PERK. This method allows calculations for a diverse set of ligands and multiple protein targets without the need for parametrization or extra calculations. The accuracy achieved with this method can be used to guide small molecule computational drug design programs.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Proteínas de Choque Térmico HSP90/química , Ligantes , TYK2 Quinase/química , eIF-2 Quinase/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Sítios de Ligação , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Modelos Moleculares , Ligação Proteica , Teoria Quântica , TYK2 Quinase/metabolismo , Termodinâmica , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...