Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Integr Cancer Ther ; 23: 15347354241233258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369762

RESUMO

BACKGROUND: Soothing the liver (called Shu Gan Jie Yu in Chinese, SGJY) is a significant therapeutic method for breast cancer in TCM. In this study, 3 liver-soothing herbs, including Cyperus rotundus L., Citrus medica L. var. sarcodactylis Swingle and Rosa rugosa Thunb. were selected and combined to form a SGJY herbal combinatory. THE AIM OF THE STUDY: To investigate the inhibiting effect of SGJY on breast cancer in vivo and vitro, and to explore the potential mechanisms. MATERIALS AND METHODS: SGJY herbal combination was extracted using water. A breast cancer rat model was developed by chemical DMBA by gavage, then treated with SGJY for 11 weeks. The tumor tissue was preserved for RNA sequencing and analyzed by IPA software. The inhibition effects of SGJY on MCF-7 and T47D breast cancer cells were investigated by SRB assay and cell apoptosis analysis, and the protein expression levels of SNCG, ER-α, p-AKT and p-ERK were measured by western blotting. RESULTS: SGJY significantly reduced the tumor weight and volume, and the level of estradiol in serum. The results of IPA analysis reveal SGJY upregulated 7 canonical pathways and downregulated 16 canonical pathways. Estrogen receptor signaling was the key canonical pathway with 9 genes downregulated. The results of upstream regulator analysis reveal beta-estradiol was the central target; the upstream regulator network scheme showed that 86 genes could affect the expression of the beta-estradiol, including SNCG, CCL21 and MB. Additionally, SGJY was verified to significantly alter the expression of SNCG mRNA, CCL21 mRNA and MB mRNA which was consistent with the data of RNA-Seq. The inhibition effects of SGJY exhibited a dose-dependent response. The apoptosis rates of MCF7 and T47D cells were upregulated. The protein expression of SNCG, ER-α, p-AKT and p-ERK were all significantly decreased by SGJY on MCF-7 and T47D cells. CONCLUSION: The results demonstrate that SGJY may inhibit the growth of breast cancer. The mechanism might involve downregulating the level of serum estradiol, and suppressing the protein expression in the SNCG/ER-α/AKT-ERK pathway.


Assuntos
Neoplasias da Mama , Sistema de Sinalização das MAP Quinases , Animais , Feminino , Humanos , Ratos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Estradiol , gama-Sinucleína/genética , gama-Sinucleína/metabolismo , Células MCF-7 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , RNA Mensageiro/metabolismo , RNA-Seq
2.
Proc Natl Acad Sci U S A ; 121(2): e2309700120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170745

RESUMO

α-, ß-, and γ-Synuclein are intrinsically disordered proteins implicated in physiological processes in the nervous system of vertebrates. α-synuclein (αSyn) is the amyloidogenic protein associated with Parkinson's disease and certain other neurodegenerative disorders. Intensive research has focused on the mechanisms that cause αSyn to form amyloid structures, identifying its NAC region as being necessary and sufficient for amyloid assembly. Recent work has shown that a 7-residue sequence (P1) is necessary for αSyn amyloid formation. Although γ-synuclein (γSyn) is 55% identical in sequence to αSyn and its pathological deposits are also observed in association with neurodegenerative conditions, γSyn is resilient to amyloid formation in vitro. Here, we report a rare single nucleotide polymorphism (SNP) in the SNCG gene encoding γSyn, found in two patients with amyotrophic lateral sclerosis (ALS). The SNP results in the substitution of Met38 with Ile in the P1 region of the protein. These individuals also had a second, common and nonpathological, SNP in SNCG resulting in the substitution of Glu110 with Val. In vitro studies demonstrate that the Ile38 variant accelerates amyloid fibril assembly. Contrastingly, Val110 retards fibril assembly and mitigates the effect of Ile38. Substitution of residue 38 with Leu had little effect, while Val retards, and Ala increases the rate of amyloid formation. Ile38 γSyn also results in the formation of γSyn-containing inclusions in cells. The results show how a single point substitution can enhance amyloid formation of γSyn and highlight the P1 region in driving amyloid formation in another synuclein family member.


Assuntos
Esclerose Lateral Amiotrófica , Doença de Parkinson , Animais , Humanos , Amiloide/química , Esclerose Lateral Amiotrófica/genética , gama-Sinucleína/genética , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Proteínas Amiloidogênicas
3.
Arch Biochem Biophys ; 744: 109698, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487948

RESUMO

Numerous epidemiological studies suggest a link between Parkinson's disease (PD) and cancer, indicating that PD-associated proteins may mediate the development of cancer. Here, we investigated a potential role of PD-associated protein α-synuclein in regulating liver cancer progression in vivo and in vitro. We found the negative correlation of α-synuclein with metabotropic glutamate receptor 5 (mGluR5) and γ-synuclein by analyzing the data from The Cancer Genome Atlas database, liver cancer patients and hepatoma cells with overexpressed α-synuclein. Moreover, upregulated α-synuclein suppressed the growth, migration, and invasion. α-synuclein was found to associate with mGluR5 and γ-synuclein, and the truncated N-terminal of α-synuclein was essential for the interaction. Furthermore, overexpressed α-synuclein exerted the inhibitory effect on hepatoma cells through the degradation of mGluR5 and γ-synuclein via α-synuclein-dependent autophagy-lysosomal pathway (ALP). Consistently, in vivo experiments with rotenone-induced rat model of PD also confirmed that, upregulated α-synuclein in liver cancer tissues through targeting on mGluR5/α-synuclein/γ-synuclein complex inhibited tumorigenesis involving in ALP-dependent degradation of mGluR5 and γ-synuclein. These findings give an insight into an important role of PD-associated protein α-synuclein accompanied by the complex of mGluR5/α-synuclein/γ-synuclein in distant communications between PD and liver cancer, and provide a new strategy in therapeutics for the treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Doença de Parkinson , Animais , Ratos , alfa-Sinucleína/metabolismo , Autofagia/fisiologia , Carcinogênese , Transformação Celular Neoplásica , gama-Sinucleína/genética , gama-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Receptor de Glutamato Metabotrópico 5/genética , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação para Cima , Humanos
4.
Genet Test Mol Biomarkers ; 26(9): 422-429, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36166741

RESUMO

Objective: The aim of this study was to determine whether the methylation patterns of the breast cancer-specific gene 1 (BCSG1) and the breast cancer susceptibility gene 1 (BRCA1) can be used as biomarkers for predicting the occurrence and development of breast cancer. Methods: Methylation-specific polymerase chain reaction (PCR) was used to detect the methylation status of the BCSG1 and BRCA1 genes in ductal infiltrating carcinomas of the breast; carcinoma in situ of the breast; fibroadenoma of the breast and adjacent normal tissues. Quantitative real-time PCR and immunohistochemistry were used to detect the expression levels of BCSG1 and BRCA1. The BCSG1 and BRCA1 genes were knocked down by siRNA to study their effect of BCSG1 and BRCA1 on the behaviour of breast cancer cell lines. Results: The BCSG1 gene was hypomethylated in breast cancer tissues, and its mRNA as well as its protein levels showed elevated expression compared to normal adjacent tissues. In contrast, the BRCA1 gene was hypermethylated in breast cancer tissues and showed correspondingly decreased mRNA and protein expression levels. In vitro experiments demonstrated that BCSG1 could promote the proliferation and migration of breast cancer cells. After inhibiting the methylation, the expression of both the BCSG1 and BRCA1 genes were increased. Conclusion: Abnormal methylation patterns of the BCSG1 and BRCA1 genes are associated with the development of breast cancer. Thus, methylatedion analyses of these genes have biomarker potential for breast cancer prognoses.


Assuntos
Neoplasias da Mama , gama-Sinucleína , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Proliferação de Células/genética , Metilação de DNA/genética , Feminino , Humanos , Metilação , Proteínas de Neoplasias/genética , RNA Mensageiro/genética , RNA Interferente Pequeno , gama-Sinucleína/genética , gama-Sinucleína/metabolismo
5.
Alzheimers Res Ther ; 14(1): 118, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045450

RESUMO

BACKGROUND: Approximately a third of frontotemporal dementia (FTD) is genetic with mutations in three genes accounting for most of the inheritance: C9orf72, GRN, and MAPT. Impaired synaptic health is a common mechanism in all three genetic variants, so developing fluid biomarkers of this process could be useful as a readout of cellular dysfunction within therapeutic trials. METHODS: A total of 193 cerebrospinal fluid (CSF) samples from the GENetic FTD Initiative including 77 presymptomatic (31 C9orf72, 23 GRN, 23 MAPT) and 55 symptomatic (26 C9orf72, 17 GRN, 12 MAPT) mutation carriers as well as 61 mutation-negative controls were measured using a microflow LC PRM-MS set-up targeting 15 synaptic proteins: AP-2 complex subunit beta, complexin-2, beta-synuclein, gamma-synuclein, 14-3-3 proteins (eta, epsilon, zeta/delta), neurogranin, Rab GDP dissociation inhibitor alpha (Rab GDI alpha), syntaxin-1B, syntaxin-7, phosphatidylethanolamine-binding protein 1 (PEBP-1), neuronal pentraxin receptor (NPTXR), neuronal pentraxin 1 (NPTX1), and neuronal pentraxin 2 (NPTX2). Mutation carrier groups were compared to each other and to controls using a bootstrapped linear regression model, adjusting for age and sex. RESULTS: CSF levels of eight proteins were increased only in symptomatic MAPT mutation carriers (compared with controls) and not in symptomatic C9orf72 or GRN mutation carriers: beta-synuclein, gamma-synuclein, 14-3-3-eta, neurogranin, Rab GDI alpha, syntaxin-1B, syntaxin-7, and PEBP-1, with three other proteins increased in MAPT mutation carriers compared with the other genetic groups (AP-2 complex subunit beta, complexin-2, and 14-3-3 zeta/delta). In contrast, CSF NPTX1 and NPTX2 levels were affected in all three genetic groups (decreased compared with controls), with NPTXR concentrations being affected in C9orf72 and GRN mutation carriers only (decreased compared with controls). No changes were seen in the CSF levels of these proteins in presymptomatic mutation carriers. Concentrations of the neuronal pentraxins were correlated with brain volumes in the presymptomatic period for the C9orf72 and GRN groups, suggesting that they become abnormal in proximity to symptom onset. CONCLUSIONS: Differential synaptic impairment is seen in the genetic forms of FTD, with abnormalities in multiple measures in those with MAPT mutations, but only changes in neuronal pentraxins within the GRN and C9orf72 mutation groups. Such markers may be useful in future trials as measures of synaptic dysfunction, but further work is needed to understand how these markers change throughout the course of the disease.


Assuntos
Demência Frontotemporal , Biomarcadores/líquido cefalorraquidiano , Proteína C9orf72/líquido cefalorraquidiano , Proteína C9orf72/genética , Demência Frontotemporal/líquido cefalorraquidiano , Demência Frontotemporal/genética , Humanos , Mutação/genética , Neurogranina/líquido cefalorraquidiano , Neurogranina/genética , Sintaxina 1/líquido cefalorraquidiano , Sintaxina 1/genética , beta-Sinucleína/genética , gama-Sinucleína/líquido cefalorraquidiano , gama-Sinucleína/genética , Proteínas tau/genética
6.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682736

RESUMO

The α-, ß- and γ-synucleins are small soluble proteins expressed in the nervous system of mammals and evolutionary conserved in vertebrates. After being discovered in the cartilaginous fish Torpedo californica, synucleins have been sequenced in all vertebrates, showing differences in the number of genes and splicing isoforms in different taxa. Although α-, ß- and γ-synucleins share high homology in the N-terminal sequence, suggesting their evolution from a common ancestor, the three isoforms also differ in molecular characteristics, expression levels and tissue distribution. Moreover, their functions have yet to be fully understood. Great scientific interest on synucleins mainly derives from the involvement of α-synuclein in human neurodegenerative diseases, collectively named synucleinopathies, which involve the accumulation of amyloidogenic α-synuclein inclusions in neurons and glia cells. Studies on synucleinopathies can take advantage of the development of new vertebrate models other than mammals. Moreover, synuclein expression in non-mammalian vertebrates contribute to clarify the physiological role of these proteins in the evolutionary perspective. In this paper, gene expression levels of α-, ß- and γ-synucleins have been analysed in the main organs of adult Xenopus laevis by qRT-PCR. Moreover, recombinant α-, ß- and γ-synucleins were produced to test the specificity of commercial antibodies against α-synuclein used in Western blot and immunohistochemistry. Finally, the secondary structure of Xenopus synucleins was evaluated by circular dichroism analysis. Results indicate Xenopus as a good model for studying synucleinopathies, and provide a useful background for future studies on synuclein functions and their evolution in vertebrates.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Animais , Mamíferos/metabolismo , Isoformas de Proteínas/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , beta-Sinucleína/genética , beta-Sinucleína/metabolismo , gama-Sinucleína/genética , gama-Sinucleína/metabolismo
7.
Int J Biol Sci ; 18(8): 3167-3177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35637967

RESUMO

Gamma synuclein (SNCG) is a neuronal protein that is also aberrantly overexpressed in various types of human cancer. SNCG overexpression promotes cancer invasion and metastasis. However, the mechanisms that drive cancer metastasis upon SNCG expression remain elusive. Elucidation of the mechanisms underlying the promotion of cancer metastasis by SNCG may help discover therapeutic avenues for SNCG-overexpressed cancer. Here, we show that SNCG promotes transforming growth factor-ß (TGF-ß)-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation. Mechanistically, SNCG promotes p38MAPK phosphorylation by interacting with the MAPK kinase 3/6 (MKK3/6) and prevents their degradation. SNCG knockdown leads to a decrease in TGF-ß-induced phosphorylation of MKK3/6; and abrogates the induction of matrix metalloproteinase (MMP)-9 expression by TGF-ß and its target gene Twist1. Furthermore, p38MAPK inhibition abrogates the promotion of MMP-9 expression and cancer cell invasion by SNCG. Both p38MAPK and MMP inhibitors can suppress the promotion of cancer cell invasion by SNCG. Finally, overexpression of SNCG in liver cancer cells promotes lung metastasis, which can be suppressed by the p38MAPK inhibitor. Together, our data uncover a previously unknown role of SNCG in promoting TGF-ß-MKK3/6-p38MAPK signaling. This study highlights the critical role of p38MAPK in the promotion of cancer metastasis by SNCG, and indicates that p38MAPK inhibitor may serve as a potential therapeutic for SNCG-overexpressed cancer.


Assuntos
Sistema de Sinalização das MAP Quinases , Metástase Neoplásica , gama-Sinucleína , Humanos , MAP Quinase Quinase 3 , MAP Quinase Quinase 6 , Sistema de Sinalização das MAP Quinases/genética , Invasividade Neoplásica , Proteínas de Neoplasias , Fator de Crescimento Transformador beta/metabolismo , gama-Sinucleína/genética , gama-Sinucleína/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35163729

RESUMO

The synuclein family consists of α-, ß-, and γ-Synuclein (α-Syn, ß-Syn, and γ-Syn) expressed in the neurons and concentrated in synaptic terminals. While α-Syn is at the center of interest due to its implication in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies, limited information exists on the other members. The current study aimed at investigating the biological role of γ-Syn controlling the midbrain dopamine (DA) function. We generated two different mouse models with: (i) γ-Syn overexpression induced by an adeno-associated viral vector and (ii) γ-Syn knockdown induced by a ligand-conjugated antisense oligonucleotide, in order to modify the endogenous γ-Syn transcription levels in midbrain DA neurons. The progressive overexpression of γ-Syn decreased DA neurotransmission in the nigrostriatal and mesocortical pathways. In parallel, mice evoked motor deficits in the rotarod and impaired cognitive performance as assessed by novel object recognition, passive avoidance, and Morris water maze tests. Conversely, acute γ-Syn knockdown selectively in DA neurons facilitated forebrain DA neurotransmission. Importantly, modifications in γ-Syn expression did not induce the loss of DA neurons or changes in α-Syn expression. Collectively, our data strongly suggest that DA release/re-uptake processes in the nigrostriatal and mesocortical pathways are partially dependent on substantia nigra pars compacta /ventral tegmental area (SNc/VTA) γ-Syn transcription levels, and are linked to modulation of DA transporter function, similar to α-Syn.


Assuntos
Dopamina , Neurônios Dopaminérgicos , gama-Sinucleína , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Substância Negra/metabolismo , Transmissão Sináptica/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , gama-Sinucleína/genética , gama-Sinucleína/metabolismo
9.
Adv Sci (Weinh) ; 9(4): e2104759, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34898027

RESUMO

The H19X-encoded miR-424(322)/503 cluster regulates multiple cellular functions. Here, it is reported for the first time that it is also a critical linchpin of fat mass expansion. Deletion of this miRNA cluster in mice results in obesity, while increasing the pool of early adipocyte progenitors and hypertrophied adipocytes. Complementary loss and gain of function experiments and RNA sequencing demonstrate that miR-424(322)/503 regulates a conserved genetic program involved in the differentiation and commitment of white adipocytes. Mechanistically, it is demonstrated that miR-424(322)/503 targets γ-Synuclein (SNCG), a factor that mediates this program rearrangement by controlling metabolic functions in fat cells, allowing adipocyte differentiation and adipose tissue enlargement. Accordingly, diminished miR-424(322) in mice and obese humans co-segregate with increased SNCG in fat and peripheral blood as mutually exclusive features of obesity, being normalized upon weight loss. The data unveil a previously unknown regulatory mechanism of fat mass expansion tightly controlled by the miR-424(322)/503 through SNCG.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , gama-Sinucleína/metabolismo , Adipogenia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/genética , gama-Sinucleína/genética
10.
Hum Mol Genet ; 30(23): 2332-2346, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34254125

RESUMO

α-Synuclein (αS) has been well-documented to play a role in human synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). First, the lesions found in PD/DLB brains-Lewy bodies and Lewy neurites-are rich in aggregated αS. Second, genetic evidence links missense mutations and increased αS expression to familial forms of PD/DLB. Third, toxicity and cellular stress can be caused by αS under certain experimental conditions. In contrast, the homologs ß-synuclein (ßS) and γ-synuclein (γS) are not typically found in Lewy bodies/neurites, have not been clearly linked to brain diseases and have been largely non-toxic in experimental settings. In αS, the so-called non-amyloid-ß component of plaques (NAC) domain, constituting amino acids 61-95, has been identified to be critical for aggregation in vitro. This domain is partially absent in ßS and only incompletely conserved in γS, which could explain why both homologs do not cause disease. However, αS in vitro aggregation and cellular toxicity have not been firmly linked experimentally, and it has been proposed that excess αS membrane binding is sufficient to induce neurotoxicity. Indeed, recent characterizations of Lewy bodies have highlighted the accumulation of lipids and membranous organelles, raising the possibility that ßS and γS could also become neurotoxic if they were more prone to membrane/lipid binding. Here, we increased ßS and γS membrane affinity by strategic point mutations and demonstrate that these proteins behave like membrane-associated monomers, are cytotoxic and form round cytoplasmic inclusions that can be prevented by inhibiting stearoyl-CoA desaturase.


Assuntos
Membrana Celular/metabolismo , Corpos de Inclusão/metabolismo , alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo , gama-Sinucleína/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Humanos , Mutagênese , Agregação Patológica de Proteínas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Solubilidade , alfa-Sinucleína/química , alfa-Sinucleína/genética , beta-Sinucleína/química , beta-Sinucleína/genética , gama-Sinucleína/química , gama-Sinucleína/genética
11.
Cancer Med ; 10(16): 5599-5613, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245137

RESUMO

Gamma-synuclein (SNCG) promotes invasive behavior and is reportedly a prognostic factor in a range of cancers. However, its role in biliary tract carcinoma (BTC) remains unknown. Consequently, we investigated the clinicopathological significance and function of SNCG in BTC. Using resected BTC specimens from 147 patients with adenocarcinoma (extrahepatic cholangiocarcinoma [ECC, n = 96]; intrahepatic cholangiocarcinoma [ICC, n = 51]), we immunohistochemically evaluated SNCG expression and investigated its correlation with clinicopathological factors and outcomes. Furthermore, cell lines with high SNCG expression were selected from 16 BTC cell lines and these underwent cell proliferation and migration assays by siRNAs. In the results, SNCG expression was present in 22 of 96 (22.9%) ECC patients and in 10 of 51 (19.6%) ICC patients. SNCG expression was significantly correlated with poorly differentiated tumor in both ECC and ICC (p = 0.01 and 0.03, respectively) and with perineural invasion and lymph node metastases in ECC (p = 0.04 and 0.003, respectively). Multivariate analyses revealed that SNCG expression was an independent poor prognostic factor in both OS and RFS in both ECC and ICC. In vitro analyses showed high SNCG expression in three BTC cell lines (NCC-BD1, NCC-BD3, and NCC-CC6-1). Functional analysis revealed that SNCG silencing could suppress cell migration in NCC-BD1 and NCC-CC6-1 and downregulate cell proliferation in NCC-CC6-1 significantly. In conclusion, SNCG may promote tumor cell activity and is potentially a novel prognostic marker in BTC.


Assuntos
Neoplasias dos Ductos Biliares/mortalidade , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/mortalidade , Proteínas de Neoplasias/metabolismo , gama-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/cirurgia , Ductos Biliares Extra-Hepáticos/patologia , Ductos Biliares Extra-Hepáticos/cirurgia , Ductos Biliares Intra-Hepáticos/patologia , Ductos Biliares Intra-Hepáticos/cirurgia , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular , Colangiocarcinoma/patologia , Colangiocarcinoma/cirurgia , Intervalo Livre de Doença , Feminino , Seguimentos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/genética , Prognóstico , gama-Sinucleína/análise , gama-Sinucleína/genética
12.
Genes Genomics ; 43(6): 633-641, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33788083

RESUMO

BACKGROUND: Although overexpression of synuclein gamma (SNCG) has been reported in several cancers, few studies have been performed onSNCG in endometrial carcinomas. OBJECTIVE: This study aimed to investigate the role of SNCG in the progression of endometrial carcinoma. METHODS: The expression pattern and function ofSNCG gene were analyzed using the Gene Expression Omnibus (GEO) and Gene Set Enrichment Analysis (GSEA) datasets. Two vector types, containing either SNCG or negative control shRNAs, were used to evaluate cell proliferation, apoptosis, and metastasis using Cell Counting Kit 8, colony formation, flow cytometry, wound-healing, transwell, and invasion assays. The relative protein levels of N-cadherin, E-cadherin, vimentin, p-PI3K, PI3K, p-AKT, AKT, p-ERK, and ERK were determined by western bloting. RESULTS: Our results revealed thatSNCG mRNA expression and SNCG protein levels in shRNA-treated SPEC2 cells were lower than in the negative control cells. Furthermore, cell proliferation, migration, and invasion were significantly inhibited in SNCG shRNA-treated cells, but apoptosis was increased. The results of western blot analysis indicated that SNCG silencing reduced the protein levels of N-cadherin, vimentin, p-PI3K, p-AKT, and p-ERK, but not those of total PI3K, AKT, and ERK. CONCLUSIONS: Therefore, shRNA-mediated suppression of SNCG inhibited SPEC2 cell proliferation, migration, and invasion, and promoted SPEC2 cell apoptosis, which was presumably accomplished via regulation of the PI3K/AKT/ERK signaling pathway.


Assuntos
Neoplasias do Endométrio/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-akt/genética , gama-Sinucleína/genética , Animais , Antígenos CD/genética , Apoptose/genética , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/terapia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Vimentina/genética , gama-Sinucleína/antagonistas & inibidores
13.
Stem Cells ; 39(4): 458-466, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33442906

RESUMO

Development of the retina is regulated by growth factors, such as insulin-like growth factors 1 and 2 (IGF-1/2), which coordinate proliferation, differentiation, and maturation of the neuroepithelial precursors cells. In the circulation, IGF-1/2 are transported by the insulin growth factor binding proteins (IGFBPs) family members. IGFBPs can impact positively and negatively on IGF-1, by making it available or sequestering IGF-1 to or from its receptor. In this study, we investigated the expression of IGFBPs and their role in the generation of human retinal organoids from human pluripotent stem cells, showing a dynamic expression pattern suggestive of different IGFBPs being used in a stage-specific manner to mediate IGF-1 functions. Our data show that IGF-1 addition to culture media facilitated the generation of retinal organoids displaying the typical laminated structure and photoreceptor maturation. The organoids cultured in the absence of IGF-1, lacked the typical laminated structure at the early stages of differentiation and contained significantly less photoreceptors and more retinal ganglion cells at the later stages of differentiation, confirming the positive effects of IGF-1 on retinal lamination and photoreceptor development. The organoids cultured with the IGFBP inhibitor (NBI-31772) and IGF-1 showed lack of retinal lamination at the early stages of differentiation, an increased propensity to generate horizontal cells at mid-stages of differentiation and reduced photoreceptor development at the later stages of differentiation. Together these data suggest that IGFBPs enable IGF-1's role in retinal lamination and photoreceptor development in a stage-specific manner.


Assuntos
Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like I/genética , Organoides/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células-Tronco Pluripotentes/metabolismo , Catecóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proteína Semelhante a ELAV 3/genética , Proteína Semelhante a ELAV 3/metabolismo , Proteína Semelhante a ELAV 4/genética , Proteína Semelhante a ELAV 4/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/antagonistas & inibidores , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like II/metabolismo , Isoquinolinas/farmacologia , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Organoides/citologia , Organoides/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Recoverina/genética , Recoverina/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , gama-Sinucleína/genética , gama-Sinucleína/metabolismo
14.
Bull Cancer ; 108(3): 323-332, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33423781

RESUMO

Breast cancer is the most common cancer diagnosed in women worldwide. The current treatments for breast cancer, including surgery, radiotherapy and chemotherapy aim to destroy cancer cells, whereas they also cause damage to normal tissues and cells. Thus, an effective, safe and specific breast cancer treatment is urgently needed. The breast cancer-specific gene 1 (BCSG1) has been shown to be specific for the development of breast cancer and is a target for breast cancer diagnosis and treatment. It is expected to silence the expression of BCSG1 at the gene level for the purpose of treating breast cancer. The effect of RNAi technology on silencing target genes is comparable to gene knockout and has been widely used in animal experiments and plant genetic research. In the field of cancer therapy, numerous investigators have used siRNAs to specifically inhibit target genes, demonstrating that siRNAs can treat cancers at the molecular level. However, the delivery of siRNAs into humans needs to overcome multiple physiological barriers, limiting the clinical applications of siRNAs. This review focuses on the application of BCSG1 gene, siRNAs in cancer treatments, and the nanocarrier delivery system of siRNAs. The potential application and research value of BCSG1-specific siRNA in the treatment of breast cancer are discussed.


Assuntos
Neoplasias da Mama/terapia , Portadores de Fármacos , Inativação Gênica , Nanotecnologia/métodos , Proteínas de Neoplasias/genética , RNA Interferente Pequeno/uso terapêutico , gama-Sinucleína/genética , Neoplasias da Mama/genética , Feminino , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos
15.
Environ Toxicol ; 36(3): 308-319, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33035382

RESUMO

Prostate cancer (PCa) has become the second leading cause of cancer-related mortality in males worldwide. Although the long noncoding RNA DLX6-AS1 has been recognized to be an oncogene in multiple cancers, the biological function and regulatory mechanism of DLX6-AS1 in prostate cancer are still obscure. In the present study, we observed that DLX6-AS1 was significantly upregulated in PCa tissues and cells. Knockdown of DLX6-AS1 inhibited PCa progression by suppressing cell proliferation and accelerating cell apoptosis. Molecular mechanism exploration indicated that DLX6-AS1 acted as a sponge for miR-497-5p and synuclein gamma (SNCG) was a downstream target gene of miR-497-5p. In addition, there was a negative correlation between DLX6-AS1 and miR-497-5p in PCa tissues. Rescue assays showed that SNCG overexpression could partially recover DLX6-AS1 knockdown-mediated inhibition of progression in PCa. Furthermore, xenograft tumor model was established to determine the role of DLX6-AS1 in PCa tumor growth and the results suggested that DLX6-AS1 could facilitate tumor growth by regulating SNCG in vivo. In conclusion, our study investigated the biological function and underlying mechanism of DLX6-AS1 in PCa and validated that DLX6-AS1 functioned as an oncogene through miR-497-5p/SNCG axis.


Assuntos
Proliferação de Células/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Apoptose , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , Regulação para Cima , gama-Sinucleína/genética , gama-Sinucleína/metabolismo
16.
Mol Med Rep ; 23(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33313952

RESUMO

Lung cancer is the most common cancer type worldwide and the leading cause of cancer-related mortality. Diabetes is closely associated with the occurrence, development and prognosis of lung cancer. Therefore, the present study aimed to investigate whether SNCG could affect the proliferation of lung cancer cells induced by high glucose. Lung cancer cells induced by high glucose simulated the pathologies of patients with lung cancer with diabetes in vitro. The proliferation of HBE cells and lung cancer cells after transfection and treatment of glucose was detected using Cell Counting Kit-8 assay. The mRNA expression levels of synuclein γ (SNCG), insulin-like growth factor 1 (IGF-1) and IGF-1 receptor (IGF-1R) in HBE cells and lung cancer cells alone, or cells induced by high glucose were analyzed via reverse transcription-quantitative (RT-q)PCR analysis. Moreover RT-qPCR analysis was used to determine the transfection efficiencies. The clone formation ability, migration and inflammation of lung cancer cells after high glucose induction and transfection were detected using clone formation, wound healing and ELISA assays. The protein expression levels of SNCG, IGF-1, IGF-1R, ERK 1/2, phosphorylated (p)-ERK1/2 and JNK in lung cancer cells after high glucose induction and transfection were determined using western blot analysis. The results suggested that high glucose significantly promoted the proliferation of A549, NCI-H1975 and SK-MES-1 cells at 24 and 48 h, as well as upregulated the expression levels of SNCG, IGF-1 and IGF-1R. Knockdown of SNCG suppressed the proliferation, clone formation ability and migration, but alleviated inflammation in A549 cells induced by high glucose. Knockdown of SNCG suppressed the expression levels of SNCG, IGF-1, IGF-1R, ERK1/2 and p-ERK1/2, while it promoted JNK expression in A549 cells induced by high glucose. The effect of AXL1717 (an IGF-1R inhibitor) treatment on cells was consistent with that of SNCG knockdown. In conclusion, inhibition of SNCG suppresses proliferation of lung cancer cells induced by high glucose.


Assuntos
Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , gama-Sinucleína/antagonistas & inibidores , gama-Sinucleína/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Glucose/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas de Neoplasias/metabolismo , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ensaio Tumoral de Célula-Tronco , gama-Sinucleína/metabolismo
17.
Mol Biol (Mosk) ; 54(6): 1006-1017, 2020.
Artigo em Russo | MEDLINE | ID: mdl-33276364

RESUMO

In this study, we explored the effects of treating human endometrial cancer cells with γ-synuclein-specific short hairpin RNA (shRNA) and elucidated the associated mechanisms in vitro and in vivo through the p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) signaling pathways. Cell proliferation and migration were assessed using CCK8, Transwell, and scratch wound healing assays. Flow cytometry and laser scanning confocal microscopy were used to detect cell cycle changes. Relative levels of phosphorylated and non-phosphorylated (p) p38, ERK1/2 and JNK1/2/3 were determined in vitro and in vivo using simple western blotting assays. Cell proliferation in the experimental group decreased significantly and cells transfected with shRNA showed reduced migration rates (P < 0.05). p-p38, p-ERK1/2, and p-JNK1/2/3 levels were downregulated in the experimental group in vitro and in vivo. Tumor volumes and weights in the experimental group were significantly lower (P < 0.05). Tumor formation time in the negative control group was significantly shorter (P < 0.05). Flow cytometry showed that the number of cells in the G1 and mitotic phases increased and that in the S phase decreased after SNCG silencing (P < 0.05). Confocal microscopy showed that the percentage of cells in the mitotic phase increased after SNCG gene silencing (P < 0.05). We conclude that shRNA-mediated suppression of γ-synuclein decreased the proliferation, migration, and tumorigenicity of endometrial cancer cells via downregulation of p38, ERK, and JNK phosphorylation. High SNCG expression is closely related to the growth cycle of endometrial cancer cells.


Assuntos
Pontos de Checagem do Ciclo Celular , Neoplasias do Endométrio , MAP Quinases Reguladas por Sinal Extracelular , Proteínas de Neoplasias/genética , RNA Interferente Pequeno/genética , gama-Sinucleína/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Trends Cancer ; 6(8): 624-627, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32386876

RESUMO

p53 and γ-synuclein are two major regulators of cancer pathogenesis that have the propensity to form amyloid-like fibrils reminiscent of those in neurodegenerative diseases. Here we propose that fibril formation by these amyloidogenic molecules reflects evolvability, an acquired epigenetic inheritance that may be involved in cancer proliferation, drug resistance, and metastasis.


Assuntos
Amiloide/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/patologia , Proteína Supressora de Tumor p53/metabolismo , gama-Sinucleína/metabolismo , Amiloide/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Predisposição Genética para Doença , Humanos , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , gama-Sinucleína/genética
19.
J Neurosci ; 40(20): 3896-3914, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32300046

RESUMO

Optic neuropathies are a group of optic nerve (ON) diseases caused by various insults including glaucoma, inflammation, ischemia, trauma, and genetic deficits, which are characterized by retinal ganglion cell (RGC) death and ON degeneration. An increasing number of genes involved in RGC intrinsic signaling have been found to be promising neural repair targets that can potentially be modulated directly by gene therapy, if we can achieve RGC specific gene targeting. To address this challenge, we first used adeno-associated virus (AAV)-mediated gene transfer to perform a low-throughput in vivo screening in both male and female mouse eyes and identified the mouse γ-synuclein (mSncg) promoter, which specifically and potently sustained transgene expression in mouse RGCs and also works in human RGCs. We further demonstrated that gene therapy that combines AAV-mSncg promoter with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing can knock down pro-degenerative genes in RGCs and provide effective neuroprotection in optic neuropathies.SIGNIFICANCE STATEMENT Here, we present an RGC-specific promoter, mouse γ-synuclein (mSncg) promoter, and perform extensive characterization and proof-of-concept studies of mSncg promoter-mediated gene expression and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing in RGCs in vivo To our knowledge, this is the first report demonstrating in vivo neuroprotection of injured RGCs and optic nerve (ON) by AAV-mediated CRISPR/Cas9 inhibition of genes that are critical for neurodegeneration. It represents a powerful tool to achieve RGC-specific gene modulation, and also opens up a promising gene therapy strategy for optic neuropathies, the most common form of eye diseases that cause irreversible blindness.


Assuntos
Regulação da Expressão Gênica/genética , Edição de RNA/genética , Células Ganglionares da Retina/metabolismo , gama-Sinucleína/genética , Animais , Sistemas CRISPR-Cas , Dependovirus/genética , Feminino , Deleção de Genes , Terapia Genética , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nervo Óptico/patologia , Doenças do Nervo Óptico/genética , Doenças do Nervo Óptico/terapia , Células Ganglionares da Retina/patologia , Transgenes/genética
20.
Oncol Rep ; 43(3): 827-838, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32020216

RESUMO

Restoration of normal DNA promoter methylation and expression states of cancer­related genes may be an option for the prevention as well as the treatment of several types of cancer. Constitutional promoter methylation of BRCA1 DNA repair associated (BRCA1) gene is linked with a high risk of developing breast and ovarian cancer. Furthermore, hypomethylation of the proto­oncogene Î³ synuclein (SNCG) is associated with the metastasis of breast and ovarian cancer and reduced disease­free survival (DFS). In the present study, we evaluated the potential of curcumin to re­express hypermethylated BRCA1 and to suppress hypomethylated SNCG in triple­negative breast cancer (TNBC) cell line HCC­38, the estrogen receptor­negative/progesterone receptor­negative (ER­/PR­) cell line UACC­3199, and the ER+/PR+ cell line T47D. The cells were treated with 5 and 10 µM curcumin for 6 days and with 5­aza­2'­deoxycytidine (5'­aza­CdR) for 48 h. Methylation­specific PCR and bisulfite pyrosequencing assays were used to assess DNA promoter methylation while gene expression levels were analyzed using quantitative real­time PCR and immunoblotting. We found that curcumin treatment restored BRCA1 gene expression by reducing the DNA promoter methylation level in HCC­38 and UACC­3199 cells and that it suppressed the expression of SNCG by inducing DNA promoter methylation in T47D cells. Notably, 5'­aza­CdR restored BRCA1 gene expression only in UACC­3199, and not in HCC­38 cells. Curcumin­induced hypomethylation of the BRCA1 promoter appears to be realized through the upregulation of the ten­eleven translocation 1 (TET1) gene, whereas curcumin­induced hypermethylation of SNCG may be realized through the upregulation of the DNA methyltransferase 3 (DNMT3) and the downregulation of TET1. Notably, miR­29b was found to be reversely expressed compared to TET1 in curcumin­ and 5'­aza­CdR­treated cells, suggesting its involvement in the regulation of TET1. Overall, our results indicate that curcumin has an intrinsic dual function on DNA promoter methylation. We believe that curcumin may be considered a promising therapeutic option for treating TNBC patients in addition to preventing breast and ovarian cancer, particularly in cancer­free females harboring methylated BRCA1.


Assuntos
Proteína BRCA1/genética , Curcumina/farmacologia , DNA (Citosina-5-)-Metiltransferases/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , gama-Sinucleína/genética , Azacitidina/farmacologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , DNA Metiltransferase 3A , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , Oxigenases de Função Mista/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...