Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.378
Filtrar
1.
PLoS One ; 19(4): e0300903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598453

RESUMO

The order Hymenoptera holds great significance for humans, particularly in tropical and subtropical regions, due to its role as a pollinator of wild and cultivated flowering plants, parasites of destructive insects and honey producers. Despite this importance, limited attention has been given to the genetic diversity and molecular identification of Hymenopteran insects in most protected areas. This study provides insights into the first DNA barcode of Hymenopteran insects collected from Hazarganji Chiltan National Park (HCNP) and contributes to the global reference library of DNA barcodes. A total of 784 insect specimens were collected using Malaise traps, out of which 538 (68.62%) specimens were morphologically identified as Hymenopteran insects. The highest abundance of species of Hymenoptera (133/538, 24.72%) was observed during August and least in November (16/538, 2.97%). Genomic DNA extraction was performed individually from 90/538 (16.73%) morphologically identified specimens using the standard phenol-chloroform method, which were subjected separately to the PCR for their molecular confirmation via the amplification of cytochrome c oxidase subunit 1 (cox1) gene. The BLAST analyses of obtained sequences showed 91.64% to 100% identities with related sequences and clustered phylogenetically with their corresponding sequences that were reported from Australia, Bulgaria, Canada, Finland, Germany, India, Israel, and Pakistan. Additionally, total of 13 barcode index numbers (BINs) were assigned by Barcode of Life Data Systems (BOLD), out of which 12 were un-unique and one was unique (BOLD: AEU1239) which was assigned for Anthidium punctatum. This indicates the potential geographical variation of Hymenopteran population in HCNP. Further comprehensive studies are needed to molecularly confirm the existing insect species in HCNP and evaluate their impacts on the environment, both as beneficial (for example, pollination, honey producers and natural enemies) and detrimental (for example, venomous stings, crop damage, and pathogens transmission).


Assuntos
Himenópteros , Parques Recreativos , Humanos , Animais , Abelhas/genética , Paquistão , Código de Barras de DNA Taxonômico/métodos , Insetos/genética , Himenópteros/genética , Plantas/genética
2.
Arch Microbiol ; 206(5): 205, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573383

RESUMO

Honeybees are vital for global crop pollination, making indispensable contributions to agricultural productivity. However, these vital insects are currently facing escalating colony losses on a global scale, primarily attributed to parasitic and pathogenic attacks. The prevalent response to combat these infections may involve the use of antibiotics. Nevertheless, the application of antibiotics raises concerns regarding potential adverse effects such as antibiotic resistance and imbalances in the gut microbiota of bees. In response to these challenges, this study reviews the utilization of a probiotic-supplemented pollen substitute diet to promote honeybee gut health, enhance immunity, and overall well-being. We systematically explore various probiotic strains and their impacts on critical parameters, including survival rate, colony strength, honey and royal jelly production, and the immune response of bees. By doing so, we emphasize the significance of maintaining a balanced gut microbial community in honeybees. The review also scrutinizes the factors influencing the gut microbial communities of bees, elucidates the consequences of dysbiosis, and evaluates the potential of probiotics to mitigate these challenges. Additionally, it delineates different delivery mechanisms for probiotic supplementation and elucidates their positive effects on diverse health parameters of honeybees. Given the alarming decline in honeybee populations and the consequential threat to global food security, this study provides valuable insights into sustainable practices aimed at supporting honeybee populations and enhancing agricultural productivity.


Assuntos
Criação de Abelhas , Probióticos , Abelhas , Animais , Agricultura , Antibacterianos , Disbiose
3.
PLoS One ; 19(4): e0301474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564614

RESUMO

With the decline of bee populations worldwide, studies determining current wild bee distributions and diversity are increasingly important. Wild bee identification is often completed by experienced taxonomists or by genetic analysis. The current study was designed to compare two methods of identification including: (1) morphological identification by experienced taxonomists using images of field-collected wild bees and (2) genetic analysis of composite bee legs (multiple taxa) using metabarcoding. Bees were collected from conservation grasslands in eastern Iowa in summer 2019 and identified to the lowest taxonomic unit using both methods. Sanger sequencing of individual wild bee legs was used as a positive control for metabarcoding. Morphological identification of bees using images resulted in 36 unique taxa among 22 genera, and >80% of Bombus specimens were identified to species. Metabarcoding was limited to genus-level assignments among 18 genera but resolved some morphologically similar genera. Metabarcoding did not consistently detect all genera in the composite samples, including kleptoparasitic bees. Sanger sequencing showed similar presence or absence detection results as metabarcoding but provided species-level identifications for cryptic species (i.e., Lasioglossum). Genus-specific detections were more frequent with morphological identification than metabarcoding, but certain genera such as Ceratina and Halictus were identified equally well with metabarcoding and morphology. Genera with proportionately less tissue in a composite sample were less likely to be detected using metabarcoding. Image-based methods were limited by image quality and visible morphological features, while genetic methods were limited by databases, primers, and amplification at target loci. This study shows how an image-based identification method compares with genetic techniques, and how in combination, the methods provide valuable genus- and species-level information for wild bees while preserving tissue for other analyses. These methods could be improved and transferred to a field setting to advance our understanding of wild bee distributions and to expedite conservation research.


Assuntos
Código de Barras de DNA Taxonômico , Animais , Abelhas/genética , Bases de Dados Factuais , Iowa , Código de Barras de DNA Taxonômico/métodos
4.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569059

RESUMO

Declines in bumble bee species range and abundances are documented across multiple continents and have prompted the need for research to aid species recovery and conservation. The rusty patched bumble bee (Bombus affinis) is the first federally listed bumble bee species in North America. We conducted a range-wide population genetics study of B. affinis from across all extant conservation units to inform conservation efforts. To understand the species' vulnerability and help establish recovery targets, we examined population structure, patterns of genetic diversity, and population differentiation. Additionally, we conducted a site-level analysis of colony abundance to inform prioritizing areas for conservation, translocation, and other recovery actions. We find substantial evidence of population structuring along an east-to-west gradient. Putative populations show evidence of isolation by distance, high inbreeding coefficients, and a range-wide male diploidy rate of ~15%. Our results suggest the Appalachians represent a genetically distinct cluster with high levels of private alleles and substantial differentiation from the rest of the extant range. Site-level analyses suggest low colony abundance estimates for B. affinis compared to similar datasets of stable, co-occurring species. These results lend genetic support to trends from observational studies, suggesting that B. affinis has undergone a recent decline and exhibit substantial spatial structure. The low colony abundances observed here suggest caution in overinterpreting the stability of populations even where B. affinis is reliably detected interannually. These results help delineate informed management units, provide context for the potential risks of translocation programs, and help set clear recovery targets for this and other threatened bumble bee species.


Assuntos
Himenópteros , Abelhas/genética , Masculino , Animais , Espécies em Perigo de Extinção
5.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573061

RESUMO

Soybean (Glycine max (L.) Merr.) is an important agricultural crop around the world, and previous studies suggest that honey bees (Apis mellifera Linnaeus) can be a component for optimizing soybean production through pollination. Determining when bees are present in soybean fields is critical for assessing pollination activity and identifying periods when bees are absent so that bee-toxic pesticides may be applied. There are currently several methods for detecting pollinator activity, but these existing methods have substantial limitations, including the bias of pan trappings against large bees and the limited duration of observation possible using manual techniques. This study aimed to develop a new method for detecting honey bees in soybean fields using bioacoustics monitoring. Microphones were placed in soybean fields to record the audible wingbeats of foraging bees. Foraging activity was identified using the wingbeat frequency of honey bees (234 ±â€…14 Hz) through a combination of algorithmic and manual approaches. A total of 243 honey bees were detected over 10 days of recording in 4 soybean fields. Bee activity was significantly greater in blooming fields than in non-blooming fields. Temperature had no significant effect on bee activity, but bee activity differed significantly between soybean varieties, suggesting that soybean attractiveness to honey bees is heavily dependent on varietal characteristics. Refinement of bioacoustics methods, particularly through the incorporation of machine learning, could provide a practical tool for measuring the activity of honey bees and other flying insects in soybeans as well as other crops and ecosystems.


Assuntos
Himenópteros , Abelhas , Animais , Soja , Ecossistema , Produtos Agrícolas , Polinização
6.
J Gen Physiol ; 156(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38557788

RESUMO

DSC1, a Drosophila channel with sequence similarity to the voltage-gated sodium channel (NaV), was identified over 20 years ago. This channel was suspected to function as a non-specific cation channel with the ability to facilitate the permeation of calcium ions (Ca2+). A honeybee channel homologous to DSC1 was recently cloned and shown to exhibit strict selectivity for Ca2+, while excluding sodium ions (Na+), thus defining a new family of Ca2+ channels, known as CaV4. In this study, we characterize CaV4, showing that it exhibits an unprecedented type of inactivation, which depends on both an IFM motif and on the permeating divalent cation, like NaV and CaV1 channels, respectively. CaV4 displays a specific pharmacology with an unusual response to the alkaloid veratrine. It also possesses an inactivation mechanism that uses the same structural domains as NaV but permeates Ca2+ ions instead. This distinctive feature may provide valuable insights into how voltage- and calcium-dependent modulation of voltage-gated Ca2+ and Na+ channels occur under conditions involving local changes in intracellular calcium concentrations. Our study underscores the unique profile of CaV4 and defines this channel as a novel class of voltage-gated Ca2+ channels.


Assuntos
Cálcio , Canais de Sódio Disparados por Voltagem , Abelhas , Animais , Canais de Sódio Disparados por Voltagem/química , Íons
7.
PeerJ ; 12: e17157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560453

RESUMO

Background: Honey is a nutritious food made by bees from nectar and sweet deposits of flowering plants and has been used for centuries as a natural remedy for wound healing and other bacterial infections due to its antibacterial properties. Honey contains a diverse community of bacteria, especially probiotic bacteria, that greatly affect the health of bees and their consumers. Therefore, understanding the microorganisms in honey can help to ensure the quality of honey and lead to the identification of potential probiotic bacteria. Methods: Herein, the bacteria community in honey produced by Apis cerana was investigated by applying the next-generation sequencing (NGS) method for the V3-V4 hypervariable regions of the bacterial 16S rRNA gene. In addition, lactic acid bacteria (LAB) in the honey sample were also isolated and screened for in vitro antimicrobial activity. Results: The results showed that the microbiota of A. cerana honey consisted of two major bacterial phyla, Firmicutes (50%; Clostridia, 48.2%) and Proteobacteria (49%; Gammaproteobacteria, 47.7%). Among the 67 identified bacterial genera, the three most predominant genera were beneficial obligate anaerobic bacteria, Lachnospiraceae (48.14%), followed by Gilliamella (26.80%), and Enterobacter (10.16%). Remarkably, among the identified LAB, Lactobacillus kunkeei was found to be the most abundant species. Interestingly, the isolated L. kunkeei strains exhibited antimicrobial activity against some pathogenic bacteria in honeybees, including Klebsiella spp., Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus. This underscores the potential candidacy of L. kunkeei for developing probiotics for medical use. Taken together, our results provided new insights into the microbiota community in the A. cerana honey in Hanoi, Vietnam, highlighting evidence that honey can be an unexplored source for isolating bacterial strains with potential probiotic applications in honeybees and humans.


Assuntos
Anti-Infecciosos , Mel , Microbiota , Humanos , Abelhas/genética , Animais , RNA Ribossômico 16S/genética , Bactérias/genética , Microbiota/genética
8.
Pestic Biochem Physiol ; 200: 105808, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582580

RESUMO

Growing evidences have shown that the decline in honey bee populations is mainly caused by the combination of multiple stressors. However, the impacts of parasitic Nosema ceranae to host fitness during long-term pesticide exposure-induced stress is largely unknown. In this study, the effects of chronic exposure to a sublethal dose of dinotefuran, in the presence or absence of N. ceranae, was examined in terms of survival, food consumption, detoxification enzyme activities and gut microbial community. The interaction between dinotefuran and Nosema ceranae on the survival of honey bee was synergistic. Co-exposure to dinotefuran and N. ceranae led to less food consumption and greater changes of enzyme activities involved in defenses against oxidative stress. Particularly, N. ceranae and dinotefuran-N. ceranae co-exposure significantly impacted the gut microbiota structure and richness in adult honey bees, while dinotefuran alone did not show significant alternation of core gut microbiota compared to the control group. We herein demonstrated that chronical exposure to dinotefuran decreases honey bee's survival but is not steadily associated with the gut microbiota dysbiosis; by contrast, N. ceranae parasitism plays a dominant role in the combination in influencing the gut microbial community of the host honey bee. Our findings provide a comprehensive understanding of combinatorial effects between biotic and abiotic stressors on one of the most important pollinators, honey bees.


Assuntos
Microbioma Gastrointestinal , Guanidinas , Nitrocompostos , Nosema , Abelhas , Animais , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade
9.
Pestic Biochem Physiol ; 200: 105843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582603

RESUMO

Isoxazoline is a novel structure with strong potential for controlling agricultural insect pests, but its high toxicity to honeybees limits its development in agriculture. Herein, a series of N-phenylamide isoxazoline derivatives with low honeybee toxicity were designed and synthesized using the intermediate derivatization method. Bioassay results showed that these compounds exhibited good insecticidal activity. Compounds 3b and 3f showed significant insecticidal effects against Plutella xylostella (P. xylostella) with median lethal concentrations (LC50) of 0.06 and 0.07 mg/L, respectively, comparable to that of fluralaner (LC50 = 0.02 mg/L) and exceeding that of commercial insecticide fluxametamide (LC50 = 0.52 mg/L). It is noteworthy that the acute honeybee toxicities of compounds 3b and 3f (LD50 = 1.43 and 1.63 µg/adult, respectively) were significantly reduced to 1/10 of that of fluralaner (LD50 = 0.14 µg/adult), and were adequate or lower than that of fluxametamide (LD50 = 1.14 µg/adult). Theoretical simulation using molecular docking indicates that compound 3b has similar binding modes with fluralaner and a similar optimal docking pose with fluxametamide when binding to the GABA receptor, which may contribute to its potent insecticidal activity and relatively low toxicity to honey bees. This study provides compounds 3b and 3f as potential new insecticide candidates and provides insights into the development of new isoxazoline insecticides exhibiting both high efficacy and environmental safety.


Assuntos
Inseticidas , Mariposas , Abelhas , Animais , Inseticidas/toxicidade , Inseticidas/química , Simulação de Acoplamento Molecular , Insetos , Receptores de GABA/metabolismo , Amidas/toxicidade , Mariposas/metabolismo
10.
J Ethnobiol Ethnomed ; 20(1): 42, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600492

RESUMO

BACKGROUND: Indigenous and non-indigenous people in subtropical and temperate areas of Bhutan share an intricate relationship with stingless bees for diverse purposes including ethno-medicinal uses. Stingless bees hold significant importance in the realms of social, economic, cultural, and spiritual aspects. Bhutan's cultural traditions demonstrate a strong bond with the environment, exemplified by the regular use of honey from stingless bees for remedies such as treating the common cold, cough, and sore throat. METHODS: Ethnographic research was conducted to document the ethno-medicinal uses and cultural importance of stingless in Bhutan. We deployed semi-structured interviews with stingless beekeepers and honey collectors including traditional healers who perform religious rituals for curing and preventing physical and mental illness. RESULTS: We documented 22 different uses of stingless bee honey in food, medicine, veterinary medicine, crafts, beliefs, and religious purposes. The relative cultural importance (RCI) of stingless bees among Bhutan's ethnic communities was assessed through our calculations. It was determined that these bees hold notably greater significance for the Lhotshampa communities compared to other ethnic groups in Bhutan. This finding demonstrates the dependence of Hindu ethnic communities on natural resources in their everyday life. All participant communities largely exploit these bees through destructive extraction practices. They often find the natural nests in nearby forests, transfer them as a log hive to their backyards, and practice traditional meliponiculture. CONCLUSION: The ethnic communities of Bhutan use stingless bees for various purposes and the local knowledge are persistent. However, significant efforts should be made to address the ethno-medicinal, ecological, biological, and commercial perspectives of meliponiculture in Bhutan.


Assuntos
Mel , Abelhas , Humanos , Animais , Butão , Florestas , Etnicidade , Grupos Populacionais
11.
Can J Vet Res ; 88(2): 45-54, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38595951

RESUMO

Honey bees can be affected by a variety of pathogens, which impacts their vital role as pollinators in agriculture. A cross-sectional study was conducted in southwestern Quebec to: i) estimate the prevalence of 11 bee pathogens; ii) assess the agreement between beekeeper suspicion of a disease and laboratory detection of the causative pathogen; and iii) explore the association between observed clinical signs and pathogen detection in a colony. A total of 242 colonies in 31 apiaries owned by 15 beekeepers was sampled in August 2017. The prevalence of Varroa destructor detection was estimated as 48% for colonies and 93% for apiaries. The apparent prevalence of colonies infected by Nosema spp. and Melissococcus plutonius was estimated as 40% and 21%, respectively. At least 180 colonies were tested by polymerase chain reaction (PCR) for deformed wing virus (DWV), acute-Kashmir-Israeli complex (AKI complex), and black queen cell virus (BQCV), which were detected in 33%, 9%, and 95% of colonies, respectively. Acarapis woodi, Paenibacillus larvae, and Aethina tumida were not detected. Varroasis was suspected by beekeepers in 14 of the 15 beekeeping operations in which the mite was detected. However, no correlation was found between suspected European foulbrood and detection of M. plutonius or between suspected nosemosis and detection of Nosema spp. Colony weakness was associated with Nosema spore counts of at least 0.5 × 106 per bee. Melissococcus plutonius was more frequently detected in colonies showing scattered brood.


Les abeilles mellifères peuvent être affectées par plusieurs agents pathogènes, impactant leur rôle vital de pollinisateur en agriculture. Une étude transversale a été réalisée dans le sud-ouest du Québec afin 1) d'estimer la prévalence de onze agents pathogènes de l'abeille, 2) d'évaluer l'accord entre la suspicion d'une maladie par l'apiculteur et la détection de l'agent causal, 3) d'explorer les associations entre les signes cliniques et la détection d'un agent pathogène dans une colonie. Au total, 242 colonies de 31 ruchers appartenant à 15 apiculteurs ont été échantillonnées en août 2017. La prévalence de Varroa destructor a été estimée à 48 % pour les colonies et à 93 % pour les ruchers. La prévalence apparente de colonies infectées par Nosema spp. ou Melissococcus plutonius a été estimée à respectivement 40 % et 21 %. Le virus des ailes déformées, le complexe viral AKI et le virus de la reine noire ont été détectés dans respectivement 33 %, 9 % et 95 % dans des 180 colonies testées par PCR. Acarapis woodi, Paenibacillus larvae et Aethina tumida n'ont pas été détectés. La varroase était suspectée par les apiculteurs de 14 des 15 entreprises où la mite a été détectée. Aucune corrélation n'a été trouvée entre la suspicion de loque européenne et la détection de M. plutonius ou entre la suspicion de nosémose et la détection de Nosema spp. La faiblesse des colonies a été associée à des comptes de Nosema d'au moins 0,5 × 106 spores par abeille. Melissococcus plutonius était plus fréquemment détecté parmi les colonies présentant du couvain en mosaïque.(Traduit pas les auteurs).


Assuntos
Estudos Transversais , Enterococcaceae , Vírus de RNA , Abelhas , Animais , Quebeque/epidemiologia , Prevalência
12.
Biol Lett ; 20(4): 20230518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593853

RESUMO

Only a few diurnal animals, such as bumblebees, extend their activity into the time around sunrise and sunset when illumination levels are low. Low light impairs viewing conditions and increases sensory costs, but whether diurnal insects use low light as a cue to make behavioural decisions is uncertain. To investigate how they decide to initiate foraging at these times of day, we observed bumblebee nest-departure behaviours inside a flight net, under naturally changing light conditions. In brighter light bees did not attempt to return to the nest and departed with minimal delay, as expected. In low light the probability of non-departures increased, as a small number of bees attempted to return after spending time on the departure platform. Additionally, in lower illumination bees spent more time on the platform before flying away, up to 68 s. Our results suggest that bees may assess light conditions once outside the colony to inform the decision to depart. These findings give novel insights into how behavioural decisions are made at the start and the end of a foraging day in diurnal animals when the limits of their vision impose additional costs on foraging efficiency.


Assuntos
Abelhas , Comportamento Animal , Luz , Animais , Abelhas/fisiologia
13.
PLoS One ; 19(4): e0300025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603704

RESUMO

In this study, we identified a new strain of the genus Neocypholaelaps from the beehives of Apis mellifera colonies in the Republic of Korea (ROK). The Neocypholaelap sp. KOR23 mites were collected from the hives of honeybee apiaries in Wonju, Gangwon-do, in May 2023. Morphological and molecular analyses based on 18S and 28S rRNA gene regions conclusively identified that these mites belong to the genus Neocypholaelaps, closely resembling Neocypholaelaps sp. APGD-2010 that was first isolated from the United States. The presence of 9 of 25 honeybee pathogens in these mite samples suggests that Neocypholaelaps sp. KOR23 mite may act as an intermediate vector and carrier of honeybee diseases. The identification of various honeybee pathogens within this mite highlights their significance in disease transmission among honeybee colonies. This comprehensive study provides valuable insights into the taxonomy and implications of these mites for bee health management and pathogen dissemination.


Assuntos
Ácaros , Varroidae , Abelhas , Animais , República da Coreia
14.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612550

RESUMO

The bee gut microbiota plays an important role in the services the bees pay to the environment, humans and animals. Alongside, gut-associated microorganisms are vehiculated between apparently remote habitats, promoting microbial heterogeneity of the visited microcosms and the transfer of the microbial genetic elements. To date, no metaproteomics studies dealing with the functional bee microbiota are available. Here, we employ a metaproteomics approach to explore a fraction of the bacterial, fungal, and unicellular parasites inhabiting the bee gut. The bacterial community portrays a dynamic composition, accounting for specimens of human and animal concern. Their functional features highlight the vehiculation of virulence and antimicrobial resistance traits. The fungal and unicellular parasite fractions include environment- and animal-related specimens, whose metabolic activities support the spatial spreading of functional features. Host proteome depicts the major bee physiological activities, supporting the metaproteomics strategy for the simultaneous study of multiple microbial specimens and their host-crosstalks. Altogether, the present study provides a better definition of the structure and function of the bee gut microbiota, highlighting its impact in a variety of strategies aimed at improving/overcoming several current hot topic issues such as antimicrobial resistance, environmental pollution and the promotion of environmental health.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Microbiota , Saúde Única , Humanos , Abelhas , Animais , Reações Cruzadas
15.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612607

RESUMO

This study aimed to investigate the venom sac extracts (VSEs) of the European hornet (EH) Vespa crabro (Linnaeus, 1758) (Hymenoptera: Vespidae), focusing on the differences between stinging females, gynes (G), and workers (W), at the protein level. Using a quantitative "Sequential Window Acquisition of all Theoretical Fragment Ion Mass Spectra" (SWATH-MS) analysis, we identified and quantified a total of 240 proteins. Notably, within the group, 45.8% (n = 110) showed significant differential expression between VSE-G and VSE-W. In this set, 57.3% (n = 63) were upregulated and 42.7% (n = 47) downregulated in the G. Additionally, the two-hundred quantified proteins from the class Insecta belong to sixteen different species, six of them to the Hymenoptera/Apidae lineage, comprising seven proteins with known potential allergenicity. Thus, phospholipase A1 (Vesp v 1), phospholipase A1 verutoxin 2b (VT-2b), hyaluronidase A (Vesp v 2A), hyaluronidase B (Vesp v 2B), and venom allergen 5 (Vesp v 5) were significantly downregulated in the G, and vitellogenin (Vesp v 6) was upregulated. Overall, 46% of the VSE proteins showed differential expression, with a majority being upregulated in G. Data are available via ProteomeXchange with identifier PXD047955. These findings shed light on the proteomic differences in VSE between EH castes, potentially contributing to our understanding of their behavior and offering insights for allergy research.


Assuntos
Hipersensibilidade , Vespas , Feminino , Abelhas , Animais , Hialuronoglucosaminidase , Fosfolipases A1 , Proteômica
16.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612745

RESUMO

Insects heavily rely on the olfactory system for food, mating, and predator evasion. However, the caste-related olfactory differences in Apis cerana, a eusocial insect, remain unclear. To explore the peripheral and primary center of the olfactory system link to the caste dimorphism in A. cerana, transcriptome and immunohistochemistry studies on the odorant receptors (ORs) and architecture of antennal lobes (ALs) were performed on different castes. Through transcriptomesis, we found more olfactory receptor genes in queens and workers than in drones, which were further validated by RT-qPCR, indicating caste dimorphism. Meanwhile, ALs structure, including volume, surface area, and the number of glomeruli, demonstrated a close association with caste dimorphism. Particularly, drones had more macroglomeruli possibly for pheromone recognition. Interestingly, we found that the number of ORs and glomeruli ratio was nearly 1:1. Also, the ORs expression distribution pattern was very similar to the distribution of glomeruli volume. Our results suggest the existence of concurrent plasticity in both the peripheral olfactory system and ALs among different castes of A. cerana, highlighting the role of the olfactory system in labor division in insects.


Assuntos
Himenópteros , Receptores Odorantes , Abelhas/genética , Animais , Caracteres Sexuais , Comunicação Celular , Alimentos , Receptores Odorantes/genética
17.
Nutrients ; 16(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612950

RESUMO

The family context has been associated with children's weight status. This study aims to investigate the association of parents' adherence to the Mediterranean diet and family time with the weight status of children. The research is part of BeE-school, a cluster-randomized trial implemented in primary schools located in socially vulnerable contexts. A total of 735 children (380 boys and 355 girls) aged 6 to 10 participated in the study. Anthropometrics were assessed during school time, and weight status was categorized, while parents self-reported sociodemographic variables, adherence to the Mediterranean diet (MEDAS questionnaire), and family time. Children from families with higher education levels whose parents have a high adherence to the Mediterranean diet have lower odds of overweight/obesity (odds ratio (OR) 0.301, 95% CI 0.143-0.634, p = 0.002). Also, children from families with lower education levels who have more time together with their family have lower odds of overweight/obesity (OR 0.731, 95% CI 0.573-0.934, p = 0.012). The family environment, mainly family time together and adherence to the Mediterranean diet, exerts a significant influence on children's weight status. Professionals working in children's health should consider the family when fostering health-promoting behaviors.


Assuntos
Dieta Mediterrânea , Masculino , Criança , Feminino , Animais , Humanos , Abelhas , Sobrepeso/epidemiologia , Sobrepeso/prevenção & controle , Instituições Acadêmicas , Obesidade/epidemiologia , Obesidade/prevenção & controle , Pais , Tiletamina
18.
Sci Rep ; 14(1): 7834, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570597

RESUMO

Potassium channels belong to the super family of ion channels and play a fundamental role in cell excitability. Kir channels are potassium channels with an inwardly rectifying property. They play a role in setting the resting membrane potential of many excitable cells including neurons. Although putative Kir channel family genes can be found in the Apis mellifera genome, their functional expression, biophysical properties, and sensitivity to small molecules with insecticidal activity remain to be investigated. We cloned six Kir channel isoforms from Apis mellifera that derive from two Kir genes, AmKir1 and AmKir2, which are present in the Apis mellifera genome. We studied the tissue distribution, the electrophysiological and pharmacological characteristics of three isoforms that expressed functional currents (AmKir1.1, AmKir2.2, and AmKir2.3). AmKir1.1, AmKir2.2, and AmKir2.3 isoforms exhibited distinct characteristics when expressed in Xenopus oocytes. AmKir1.1 exhibited the largest potassium currents and was impermeable to cesium whereas AmKir2.2 and AmKir2.3 exhibited smaller currents but allowed cesium to permeate. AmKir1 exhibited faster opening kinetics than AmKir2. Pharmacological experiments revealed that both AmKir1.1 and AmKir2.2 are blocked by the divalent ion barium, with IC50 values of 10-5 and 10-6 M, respectively. The concentrations of VU041, a small molecule with insecticidal properties required to achieve a 50% current blockade for all three channels were higher than those needed to block Kir channels in other arthropods, such as the aphid Aphis gossypii and the mosquito Aedes aegypti. From this, we conclude that Apis mellifera AmKir channels exhibit lower sensitivity to VU041.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Animais , Abelhas/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Potenciais da Membrana/fisiologia , Potássio , Clonagem Molecular , Isoformas de Proteínas/genética , Césio
19.
Sci Rep ; 14(1): 7866, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570723

RESUMO

In 2019, a joint eight-variant model was published in which eight single nucleotide polymorphisms (SNPs) in seven Apis mellifera genes were associated with Varroa destructor drone brood resistance (DBR, i.e. mite non-reproduction in drone brood). As this model was derived from only one Darwinian Black Bee Box colony, it could not directly be applied on a population-overarching scale in the northern part of Belgium (Flanders), where beekeepers prefer the carnica subspecies. To determine whether these eight SNPs remained associated with the DBR trait on a Flemish colony-broad scope, we performed population-wide modelling through sampling of various A. mellifera carnica colonies, DBR scoring of Varroa-infested drone brood and variant genotyping. Novel eight-variant modelling was performed and the classification performance of the eight SNPs was evaluated. Besides, we built a reduced three-variant model retaining only three genetic variants and found that this model classified 76% of the phenotyped drones correctly. To examine the spread of beneficial alleles and predict the DBR probability distribution in Flanders, we determined the allelic frequencies of the three variants in 292 A. mellifera carnica queens. As such, this research reveals prospects of marker-assisted selection for Varroa drone brood resistance in honeybees.


Assuntos
Varroidae , Abelhas/genética , Animais , Varroidae/genética , Polimorfismo de Nucleotídeo Único , Frequência do Gene , Bélgica , Fenótipo
20.
PLoS One ; 19(4): e0301213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578814

RESUMO

Limited honey production worldwide leads to higher market prices, thus making it prone to adulteration. Therefore, regular physicochemical analysis is imperative for ensuring authenticity and safety. This study describes the physicochemical and antioxidant properties of Apis cerana honey sourced from the islands of Lombok and Bali, showing their unique regional traits. A comparative analysis was conducted on honey samples from Lombok and Bali as well as honey variety from Malaysia. Moisture content was found slightly above 20% in raw honey samples from Lombok and Bali, adhering to the national standard (SNI 8664:2018) of not exceeding 22%. Both honey types displayed pH values within the acceptable range (3.40-6.10), ensuring favorable conditions for long-term storage. However, Lombok honey exhibited higher free acidity (78.5±2.14 meq/kg) than Bali honey (76.0±1.14 meq/kg), surpassing Codex Alimentarius recommendations (≤50 meq/kg). The ash content, reflective of inorganic mineral composition, was notably lower in Lombok (0.21±0.02 g/100) and Bali honey (0.14±0.01 g/100) compared to Tualang honey (1.3±0.02 g/100). Electric conductivity, indicative of mineral content, revealed Lombok and Bali honey with lower but comparable values than Tualang honey. Hydroxymethylfurfural (HMF) concentrations in Lombok (14.4±0.11 mg/kg) and Bali (17.6±0.25 mg/kg) were slightly elevated compared to Tualang honey (6.4±0.11 mg/kg), suggesting potential processing-related changes. Sugar analysis revealed Lombok honey with the highest sucrose content (2.39±0.01g/100g) and Bali honey with the highest total sugar content (75.21±0.11 g/100g). Both honeys exhibited lower glucose than fructose content, aligning with Codex Alimentarius guidelines. The phenolic content, flavonoids, and antioxidant activity were significantly higher in Lombok and Bali honey compared to Tualang honey, suggesting potential health benefits. Further analysis by LC-MS/MS-QTOF targeted analysis identified various flavonoids/flavanols and polyphenolic/phenolic acid compounds in Lombok and Bali honey. The study marks the importance of characterizing the unique composition of honey from different regions, ensuring quality and authenticity in the honey industry.


Assuntos
Antioxidantes , Mel , Abelhas , Animais , Antioxidantes/química , Mel/análise , Indonésia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Minerais/análise , Flavonoides/análise , Açúcares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...